Y-Drop Research And Rationale In-season Nutrient Management Brad Bernhard

2019 Fluid Fertilizer Foundation Technology Workshop Council Bluffs, IA December 12th, 2019

Historic Corn Grain Yield and Plant Population

Nutritional Needs For Corn

Grain Yield	Ν	P ₂ O ₅	K ₂ O
bushels/acre		——Ibs/acre ——	
150	150	81	210
200	200	108	280
250	250	135	350
300	300	162	420
			1:

Nutrient Use Efficiency

Yield Efficiency

yield produced per unit of applied nutrient

Recovery Efficiency

amount of applied fertilizer recovered in the plant

Physiological Efficiency

 yield produced per unit of nutrient absorbed by the plant

Historic Corn Grain Yield and Plant Population

Effect of Plant Population on Corn Root Systems What happens to the size of the root system as plant populations are increased? **They Get Smaller**

Root Digging/ Washing

Individual Root Weight

Row	Planting Population (plants per acre)				
Spacing	38,000	44,000	50,000	56,000	Avg
	grams per root				
30"	12.2	10.2	8.6	6.8	9.4
20"	14.6	12.5	10.3	8.6	11.5
Avg	13.4	11.4	9.4	7.7	

LSD (0.05) Spacing = 0.5

LSD (0.05) Planting Density = 0.4

LSD (0.05) Spacing x Planting Density = 0.6

Measured Post - Harvest

Averaged Across 4 Site-Years and 6 Hybrids

Individual Root Weight

Row Planting Population (plants per acre) 38.000 44.000 50.000 56.000 Ava Takeaway: Continued Increases in Planting Population will Further Magnify the Importance of Nutrient Management

Avg is in the one of the second se	Avg	13.4	11.4	9.4	7.7
---	-----	------	------	-----	-----

LSD (0.05) Spacing = 0.5 LSD (0.05) Planting Density = 0.4 LSD (0.05) Spacing x Planting Density = 0.6 Measured Post - Harvest

Averaged Across 4 Site-Years and 6 Hybrids

Nitrogen Management to Improve Grain Yield and Nutrient Use Efficiency

Evaluations Fertilizer Source Urea versus UAN

Evaluations

Fertilizer Source

Urea versus UAN

Application Timing

<u>Upfront</u>: all N applied at preplant <u>50/50 Split</u>: 50% N at preplant 50% N sidedressed at V8

* Total of 180 lbs of N per acre

N Uptake & Partitioning for 230 Bushel Corn

N Uptake & Partitioning for 230 Bushel Corn

Liqui Grow.

Evaluations

Fertilizer Source

Urea versus UAN

Application Timing

<u>Upfront</u>: all N applied at preplant 50/50 Split: 50% N at preplant

50% N sidedressed at V8

* Total of 180 lbs of N per acre

Application Method

V8 Growth Stage

Broadcasted Middle of Row Next to Row

Split applications received 90 lbs of N at preplant and 90 lbs of N / acre at the V8 growth stage

Preplant N Application

Planting

Liqui

row

ALL HALF

Y-Drop

Plant Water Funnel Effect

Urea Broadcast Urea Next to Row

UAN Middle of Row

UAN Next to Row

Liqui

Grow

Sidedress Broadcast Urea

Harvest

liqu

Grow

10001000

1000 0000

III THE

Differences in Check Plot Yield Per Site

Year and Location	Check Plot Yield	
	bushels per acre	
2018 Harrisburg	97	
2018 Champaign	103	
2017 Champaign	184	
2018 Yorkville	195	
2017 Yorkville	208	
2017 Harrisburg	224	
	Liqui Grow	

Differences in Check Plot Yield Per Site

Year and Location	Check Plot Yield	
	bushels per acre	
2018 Harrisburg	97	
2018 Champaign	103	
2017 Champaign	184	
2018 Yorkville	195	
2017 Yorkville	208	
2017 Harrisburg	224	
	Liqu	

Split applications received 90 lbs of N at preplant and 90 lbs of N / acre at the V8 growth stage

Yield Difference from all N Applied Upfront as Urea Broadcast					
		Placement of Urea Sidedress [†]		Placement of UAN Sidedress	
Yield Rank	Broadcast	Broadcast	Next to Row	Middle Row	Next to Row
	bu/acre	Δ bushels per acre			
18HB	190	-7	2	-2	9
18CU	222	-8	12	-17	6
17CU	256	-3	-3	-25	-11
18YV	232	3	5	9	15
17YV	265	7	5	0	13
17HB	265	8	7	9	11
Avg	238	0	5	-4	8
[†] Split application receiv	ved 90 lbs of N as broadcast	urea upfront			Liqui Grow.

⁺ Split application received 90 lbs of N as broadcast urea upfront

LSD ($\alpha = 0.05$) = 5

Key Takeaways

 Nitrogen supplying power of the soil is a good indication of plant yieldresponse to split-applied N.

 When sidedressing N, placing the N in close proximity to the crop row resulted in greater yields.

Key Takeaways

 The sidedress N treatment that resulted in the greatest corn grain yield was placing UAN along the crop row using Y-drops.

Potential for In-season Phosphorus Fertility Management

Grow

P Uptake & Partitioning for 230 Bushel Corn

Liqui Grow_e

Base rate of 180 lbs N/acre at preplant (Control) † gallons of 10-34-0 per acre Sidedress applications were made at the V8 growth stage

In-Furrow Application

6125 R

Y-Drop

10-34-0 5 gal/acre

Grow

10-34-0 Burn 15 gal/acre

Liqu

Grain Yield Averaged Across All Locations

Treatment

Planting	Sidedress	
		bushels per acre
Control	-	265
10-34-0 In-furrow (5 ⁺)	-	271
10-34-0 In-furrow (10)	-	266
10-34-0 In-furrow (15)	-	254
10-34-0 In-furrow (5)	10-34-0 Y-drop (10)	276
—	10-34-0 Y-drop (10)	271
	10-34-0 Y-drop (15)	274
Base rate of 180 lbs N/acro at proplant (Control)		

Base rate of 180 lbs N/acre at preplant (Control) † gallons of 10-34-0 per acre Sidedress applications were made at the V8 growth stage LSD ($\alpha = 0.10$) = 5

Key Takeaways

In-season applications of 10-34-0 can be an effective method to provide the growing crop with late season phosphorus nutrition.

In-furrow applications of 10-34-0 provided the greatest yield increase per unit of nutrient applied.

Sidedressing Corn with Potassium In-season

Soil Test K (Ammonium Acetate PPM)

K Uptake & Partitioning for 230 Bushel Corn

Liqui Grow.

K Uptake & Partitioning for 230 Bushel Corn

In-season Potassium Fertility Trial

- **On-Farm Strip Trials 15 Locations**
- Fertility Plan Farmer applied normal fertility plan

Treatments – Y-drop N vs Y-drop N + K₂O at the V5-V9 growth stage (30 lbs of N and 30 lbs of K₂O per acre)

All soil samples were taken just prior to sidedress application

In-season Potassium Application

N + K₂O vs N Yield Difference

N + K₂O vs N Yield Difference

In-season applications of potassium can increase grain yield, especially when soil test K levels are low

Supporting Research

- Dr. Robert Miller from Colorado State University has found similar results when sidedressing potassium in corn.
- Dr. Antonio Mallarino from Iowa State University has also found positive results sidedressing potassium in corn when soil test K level are below optimum. However, he also concluded that preplant applications were better than sidedress applications at the same rate.

Future Considerations

- 1. High Clearance Equipment and Application Technology
- 2. Short-Statured Hybrids
- 3. Digital Agriculture and Nutrient Tracking Technologies

Future Considerations

- 4. Rented Acres
- 5. Narrower Window for Fall and Spring Fertilizer Applications
- 6. Nutrient Regulations

Thank You Fluid Fertilizer Foundation

Liqui-Grow https://www.liqui-grow.com/ag-blog/