Normal Flora

A)What is Normal Flora?

These are mixture of microorganisms regularly found at any anatomical site on /within the body of a healthy person.

Some of these microorganisms are found in association with humans / animals only.

Others are found in the environment as well.

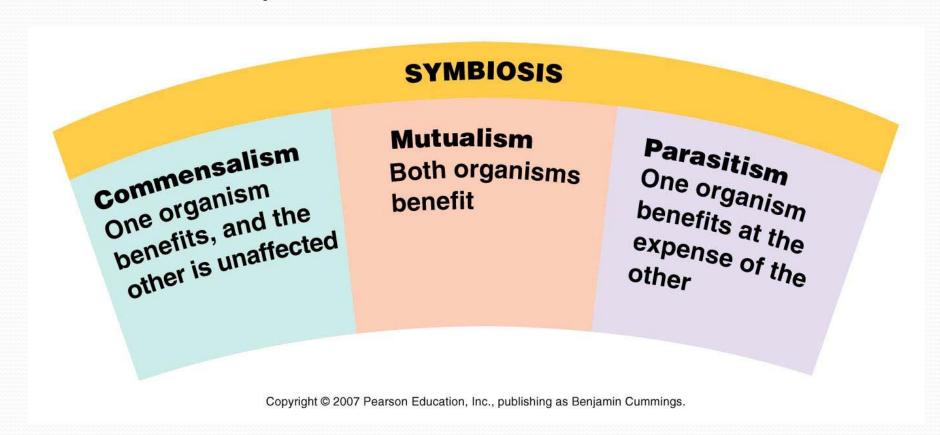
Normal flora types

- Resident vs. Transient
- Resident populations
 (normal flora, microbiota, indigenous microbial population, microflora, microbial flora)

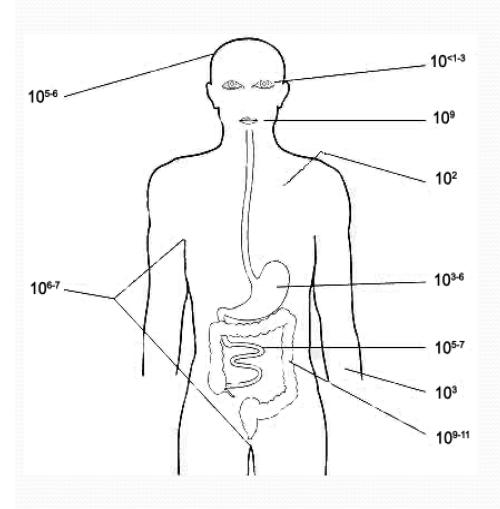
Vast majority of normal flora are bacteria.

Internal tissues normally sterile

Resident flora


• Resident flora: If disturbed, it promptly reestablishes itself/ microorganisms may colonize, proliferate and produce disease

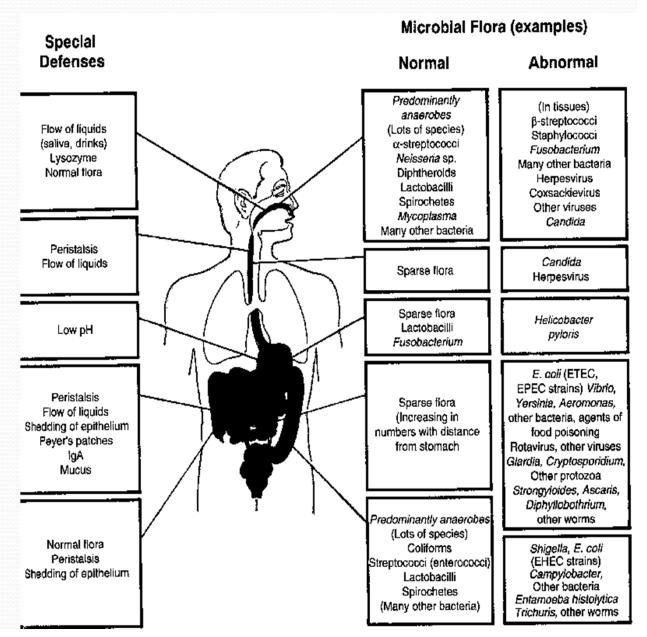
More important


TRANSIENT FLORA

- Non-pathogenic or potentially pathogenic microorganisms that inhabit the skin or mucous membranes for hours, days, or weeks
- Derived from the environment, does not produce disease
- Does not establish itself permanently on the surface
- Little significance

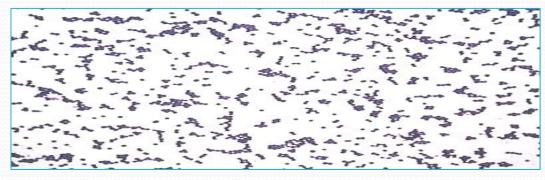
Relationship between normal flora and host

Normal flora


- Human body
 - 10¹³ cells
 - 10¹⁴ bacteria

Normal flora

- Some bacteria occupy more than one niche
- Some bacteria occupy only one niche: tissue tropism
- Tropism determined by bacterial ligand-host receptor interactions
- Variation in microflora at one site
- Combinations of microflora at same site


Where the Normal Flora Are Found

- Skin
- Conjunctiva
- Nasopharynx
- Oral cavity
- Gastrointestinal tract and rectum
- Urogenital tract

NORMAL FLORA- Skin

SITE	COMMON/ MEDICALLY IMPORTANT ORGANISMS	LESS COMMON BUT NOTABLE ORGANISMS
Cutaneous surfaces including urethra and outer ear	Staphyloccocus epidermidis	Staphyloccocus aureus, Corynebacteria (diphteroids) Streptococci, Anaerobes e.g. Peptostreptococci, Yeast (Candida sp.)

Staphylococcus epidermidis, invariably found on skin and nasal membranes.

Normal flora - Skin

- Human adult has 2 square meters of skin
 - Overall, a hostile environment toward bacteria
 - Periodic drying
 - Eccrine (simple sweat) glands
 - Apocrine glands: sweat and nutrients
 - Sebaceous glands: associated with hair follicles

Normal flora - Skin

- S. epidermidis: Major inhabitant making up more than 90% of the flora
- S. aureus: Nose, perineum, vulvar skin
 - Occurrence in nasal passages varies with age being greatest in newborns, less in adults
- Micrococci, Diphtheroids, Propionibacterium
 - Eg. P. acnes = children younger than 10 years are rarely colonized with it

• Skin: 3 main microenvironments

- Axilla, perineum, toe webs
- Hands, face and trunk
- Upper arms and legs

Factors that are Important in Eliminating Non-resident microorganism from the Skin

- Low pH
- 2. Fatty acids (sebaceous secretions)
- 3. Lysozyme

Neither profuse sweating nor washing and bathing can eliminate or significantly modify the normal resident flora

Normal flora of the skin:

Benefit

 Inhibit fungal growth (athlete's foot)

- Body odor
- Acne
- Opportunistic infections

Normal flora - Conjunctiva

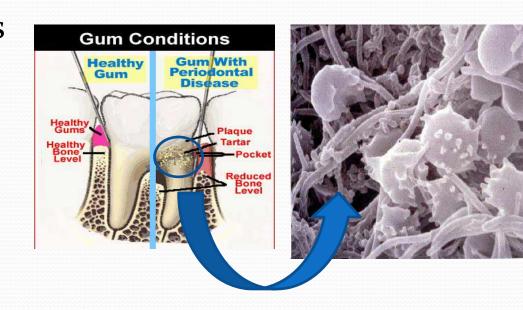
- Variety of bacteria: low numbers present
 - High moisture
 - Blinking mechanically removes bacteria
 - Lachrymal secretions include lysozyme

Normal flora — UPPER RESPIRATORY TRACT

SITE	COMMON/ MEDICALLY IMPORTANT ORGANISMS	LESS COMMON BUT NOTABLE ORGANISMS
NOSE	Staphyloccocus aureus	Staphyloccocus epidermidis, Corynebacteria (diphteroids) Assorted Streptococci,
Oropharynx	Viridans streptococci including Streptococcus mutans	Assorted streptococci, nonpathogenic Neisseria, nontypeable Haemophilus influenzae

Normal flora - Oral cavity

- Ecology and developmental stages
 - Birth: sterile mouth within 4-12 hours (lactobacilli, streptococci)
 - Neonate (Streptococcus salivarius, staphylococci, Neisseriae, Moraxella catarrhalis
 - Teeth appear (Streptococcus mutans, Streptococcus parasanguis)
 - Gingival crevice area (Anaerobic species, yeasts)
 - Puberty (Bacteroides, spirochetes)
- 10⁸ bacteria/mL of saliva; potentially >700 species


Normal flora of the oral cavity

Benefit

- Compete with pathogens for colonization sites
- Produce substances that inhibit pathogens
- Stimulate local immunity

Harm

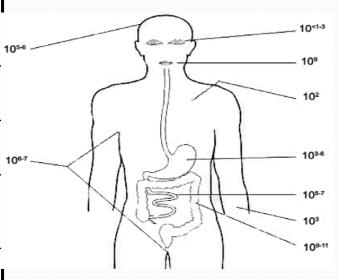
 Plaque formation and dental disease

Normal flora- Oropharynx

- If large numbers are introduced into the bloodstream (following tooth extraction or tonsillectomy) they may settle on deformed/ prosthetic heart valves and produce endocarditis
- Aspiration of saliva (containing 10¹² of these organism and aerobes) ma result in necrotizing pneumonia, lung abscess, and empyema

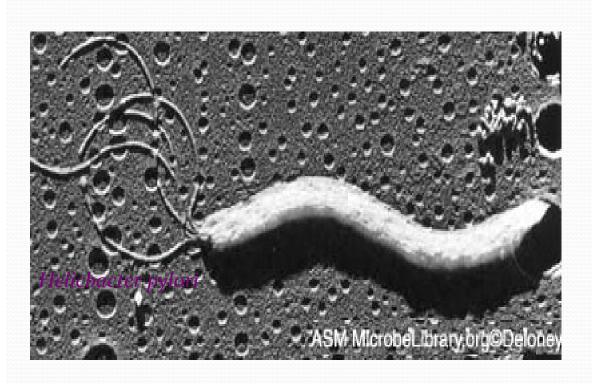
Normal flora - Respiratory tract

- Lower respiratory tract (trachea, bronchi, pulmonary tissues)
 - Usually sterile
 - Ciliated epithelium
 - Mucus blanket: entrapment
 - Alveolar macrophages
 - If breached: opportunistic infections


Normal flora - Gastrointestinal tract

- GI ecology varies
- Esophagus saliva ,food
- Stomach harsh 10²
- Small intestine $(10^3 10^8)$
 - Proximal small intestine (duodenum and jejunum)
 - Distal small intestine (ileum)

- Large intestine
 - $10^9 10^{11} / \text{ml}$
 - >350 species
 - $E.\ coli = 0.1\%$ of total population
 - Primarily anaerobic
 - Facultative aerobes deplete oxygen
 - Adult excretes $3x10^{13}$ bacteria/day
 - 25%-35% of fecal mass = bacteria


Normal flora - Gastrointestinal tract

Location (adult)	Bacteria/gram
	contents
duodenum	10 ³ -10 ⁶
jejunum and ileum	10 ⁵ -10 ⁸
cecum and transverse colon	10 ⁸ -10 ¹⁰
sigmoid colon and rectum	10 ¹¹

SITE	COMMON/ MEDICALLY IMPORTANT ORGANISMS	LESS COMMON BUT NOTABLE ORGANISMS
Gingival crevices	Anaerobes, Prevotella, Fusobacterium, Streptococcus, Actinomyces	
Stomach	NONE	Acidity keeps the number of microorganisms at minimum 10 ³ -10 ⁵ unless obstruction at the pylorus favors the proliferation of grampositive cocci and bacilli

Normal flora of GI tract – stomach Helicobacter pylori

- Causes gastric ulcers
- Probable association with duodenal ulcers

Normal flora of GI tract: SMALL INTESTINE streptococci, lactobacilli, enterococci, enterics, anaerobic rods and cocci

Benefit

- Production of vitamins and nutrients
- Competition with pathogens for colonization sites
- Production of substances that inhibit pathogens

- Possible relationship with inflammatory conditions
- Transfer antibiotic resistance to pathogens

SITE	COMMON/ MEDICALLY IMPORTANT ORGANISMS	LESS COMMON BUT NOTABLE ORGANISMS
Colon (microaeropjilic/anaerobic) **sterile at birth, but organisms are soon introduced with food	INFANTS Breast-fed: Bifidobacterium Bottle-fed: mixed flora, less lactobacilli ADULTS Bacteroides (predominant) Escherichia Bifidobacterium	Lactobacillus, Streptococci, Eubacterim, Fusobacterium, Lactobacillus, assorted gram-negative Anaerobic rods, Enteroccocus faecalis and other streptococcus

Normal flora of GI tract: LARGE INTESTINE Bacteroids, clostridia, bifidobacteria, lactic acid bacteria, enterococci, enterics

Benefit

- Competition with pathogens for colonization sites
- Production of substances that inhibit pathogens
- Stimulate development and activity of immune system

- Relationship with inflammatory bowel diseases
- Production of carcinogens and relationship with colon cancer
- Methanogenesis

Normal flora - Urogenital tract

- Upper urinary tract (kidneys, ureters, bladder) usually sterile
- Male anterior urethra Same as skin: enteric and enterococcus
- Vagina: complex microbiota
 - At birth Same as mother (PH 5)
 - Neonate Same as skin+enteric+ strept (PH 7)
 - At puberty Lactobacillus+same as skin+anaerobes+strep (PH 5)
 - At menopause: return to prepuberty flora

Normal flora of the VAGINA - during child-bearing age lactobacilli and other lactic acid bacteria

Benefit

- Competition with pathogens for colonization sites
- Production of lactic acid that inhibits pathogenic bacteria and yeasts

Harm

none

What are the roles of Normal Flora:

May be source of opportunistic infections
 e.g. In-patients with impaired defense Mechanisms.

2. Immunostimulation

- a) They produce antibodies which may contribute to host defenses.
- b) Some of these antibodies may cross react with normal tissue components.

3) Protection from External Invaders

Because of the normal flora occupy body's epithelial surfaces, they are able to prevent other bacteria from establishing themselves by blocking receptors (attachment), competing for essential nutrients or producing anti-bacteria substances

e.g. Fatty acids, peroxides, Bacteriocins.

- 4) **Production of Carcinogens:** Some normal flora may modify, through their enzymes, some chemicals in our diets into carcinogens
 - e.g. Artificial sweeteners may be enzymatically modified into bladder carcinogens.
 - Predominant and important flora of various body sites in normal health.

5) Nutrition

Some of the normal intestinal flora e.g. *E. coli & Bacteroids* produce Vitamin K in the gut which is available for use by host.

6)Stimulate development of certain tissues: Caecum and lymphatic tissues (Peyer's patches) in GI tract and influence immunology of gut-associated lymphatics

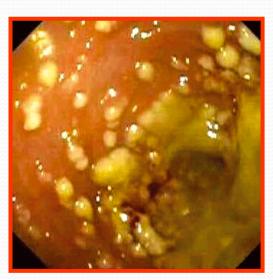
Overall benefits of the normal flora

- Synthesis and excretion of vitamins used by the host
- Competition with pathogens for nutrients and colonization sites
- Direct antagonism against pathogens
- Stimulate the development of immunological tissues
- Stimulate the activity of the immune system by production of natural antibodies

Overall harmful effects of the normal flora

- Competition with host for nutrients
- Bacterial synergism between normal flora and potential pathogens
- Low grade toxemia produced in host
- Endogenous disease and opportunistic infection

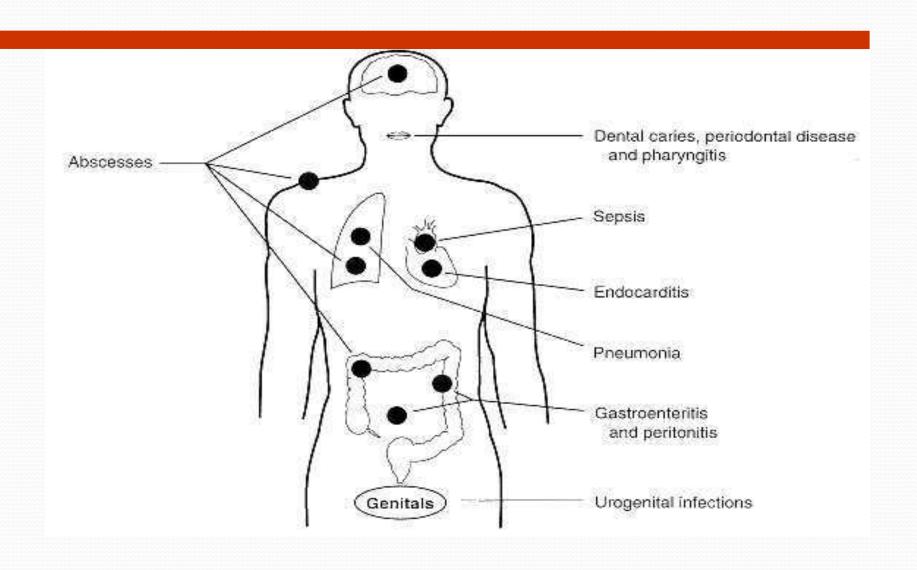
Opportunistic flora


- Some normal flora become opportunistic pathogens
 - (Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, Streptococcus pneumoniae, Pseudomonas aeruginosa, etc.)
- Breach of skin/mucosal barrier: trauma, surgery, burns
- Bacterium at one site may be commensal, but might be pathogenic at another site

Opportunistic flora


- Growth of commensals may put patient at risk: Broadspectrum antibiotic therapy decreases total number of bacterial in gut
- During repopulation, faster-growing aerobic
 Enterobacteriaceae over slower-replicating anaerobes
 increases probability of gram-negative bacteremia
- Cross-reactive responses to host tissue: Superantigen
- Chronic, low-grade inflammation
- Perturbation of cytokine network

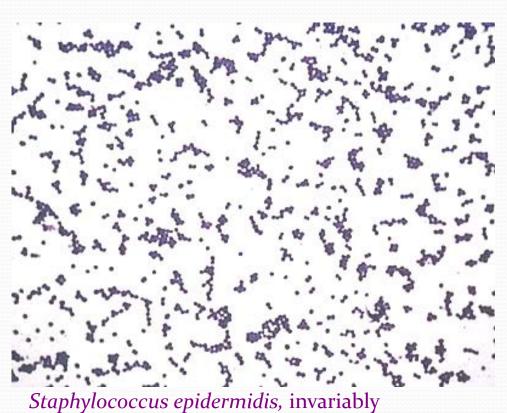
Gastrointestinal flora


- Antibiotics overuse
- Antibiotic associated diarrhae
- *C. dfficile* -associated diarrhea (CDAD)
- Pseudomembranous colitis
 - toxic megacolon

Normal flora - Risks and Opportunistic

Probiotics/Prebiotics

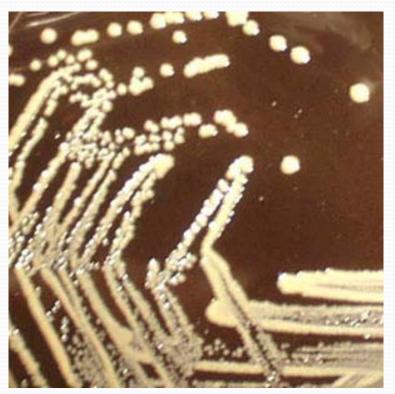
Probiotic


- Oral administration of living organisms to promote health
- Mechanism speculative: competition with other bacteria; stimulation of nonspecific immunity
- Species specific: adherence and growth (tropism)

Prebiotic

- Non-digestible food that stimulates growth or activity of GI microbiota, especially bifidobacteria and lactobacillus bacteria (both of which are noninflammatory)
- Typically a carbohydrate: soluble fiber

Staphylococci


- Includes Staphylococcus epidermidis and Staphylococcus aureus
- Located on skin and most mucous membranes

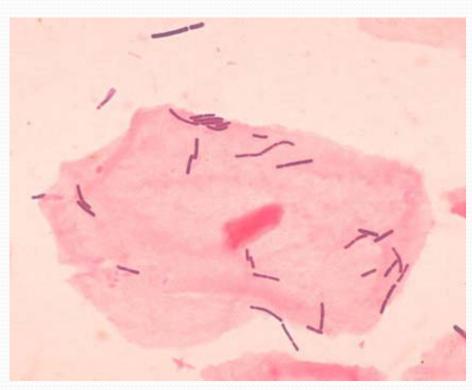
Staphylococcus epidermidis, invariably found on skin and nasal membranes.

Corynebacteria

- Includes
 Corynebacterium and
 Probionibacterium
 species
- Located primarily on skin and upper respiratory tract

Propionibacterim acnes colonies. The bacterium is found on skin, nasal membranes and the conjunctiva of the eye.

Streptococci


- Includes *Streptococcus* salivarius, *S. mitis* and *S. mutans*
- Located in oral cavity

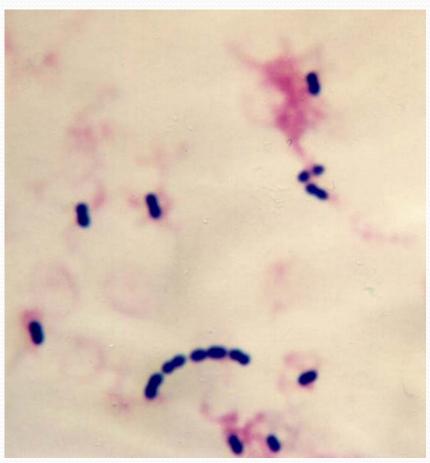
Streptococcus mutans, the main bacterium implicated in dental caries.

Lactic acid bacteria

- Includes *Streptococcus* and *Lactobacillus* species
- Located in oral cavity, intestinal tract and vagina

Lactobacillus acidophilus and a vaginal squamous epithelial cell.

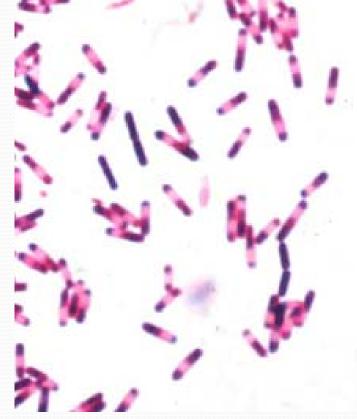
Bifidobacteria


- Members of the genus Bifidobacterium
- Found in the the intestinal tract

Bifidobacterium bifidus. Bifidobacteria make up over 90 percent of the bacteria in the intestine of breast-fed infants.

Enterococci

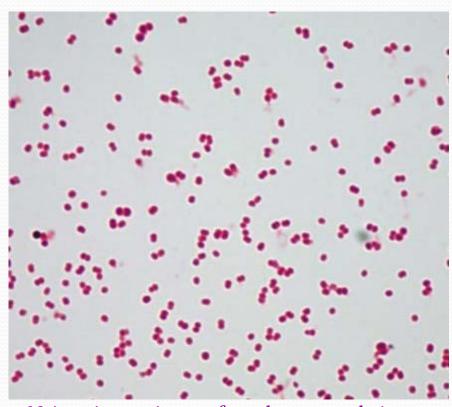
- Includes Enterococcus faecalis and Enterococcus faecium
- Located in the intestinal tract



Enterococcus faecalis - so regularly found in the intestine that some countries use the bacterium as their indicator of fecal pollution of water.

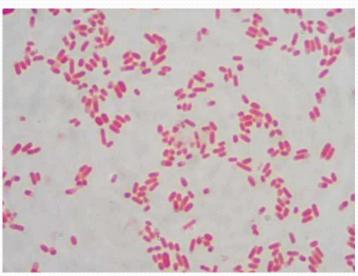
Clostridia

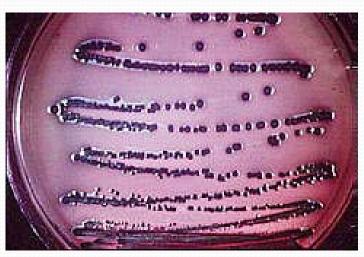
 Members of the genus Clostridium


Found in the the intestinal tract

Clostridium difficile. Clostridia are anaerobic endospore-forming bacteria, found mainly in the large intestine.

Gram-negative cocci


- Includes Neisseria, Moraxella and Veilonella species
- Located in the nasopharynx



Neisseria species are found commonly in the throat.

Enteric bacteria

- Gram-negative rodshaped bacteria including *E. coli* and its relatives
- Located in the intestinal tract

Escherichia coli Gram stain and colonies on EMB agar.