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Unfoldings of Germs

Let [f ] be a germ in En. A germ [F ] ∈En+r is an r-parameter unfolding of [f ] if
[F (−, 0)] = [f ].

In other words, an unfolding of [f ] is a smooth family of germs {[Fu = F (−, u)]}u
whose center of organization is [f ] at the origin u = 0 ∈ Rr , i.e., a deformation
of the germ [f ]. The variables u = (u1, · · · , ur ) ∈ Rr are the external or control
parameters.

A central goal of Catastrophe Theory is to understand the behavior of germs (and
their singularities) under pertubation as defined by an unfolding. In particular, the
theory aims to address the question of the classification of possible unfoldings and
of their stability and genericity properties.

Let [F ] ∈En+r be an unfolding of [f ]. The development of the singularities of [f ]
along the unfolding [F ] is described by the following subsets:

Catastrophe surface: MF = {(x , u) | DFu(x) = 0}.
Catastrophe set:
CF = {(x , u) ∈ MF | x is a degenerate critical point of Fu} ⊆ MF .

Birufication set: BF = {u | there is x such that (x , u) ∈ CF}.
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Examples of Unfoldings

1 Let [f ] ∈En be a germ. The constant r-parameter germ [F ] ∈En+r is
given by F (x , u) = f (x) for all u ∈ Rr .

2 Given germs [f ], [gj ] ∈En, j = 1, · · · , r , there is an r -parameter unfolding of
[f ] given by

[f ] + u1[g1] + · · ·+ ur [gr ].
3 F : R× R→ R, (x , u) 7→ x3 + ux , defines an 1-parameter unfolding of the

germ of f (x) : = x3. The catastrophe surface of [F ] is the fold:

MF = {(x , u) ∈ R× R | u < 0 and x = ±|u/3|1/2}.
4 F : R×R→ R2, (x , u, v) 7→ x4 − ux2 + vx , defines an 2-parameter unfolding

of the germ of f (x) : = x4. The catastrophe surface of [F ] is the cusp:

MF = {(x , u, v) ∈ R× R2 | 4x3 − 2ux + v = 0}.
This looks like a sheet of paper over the (u, v)-plane of external parameters
with a cusp over the birufication set of [F ]

BF = {(u, v) ∈ R2 | ∆ = −8u3 + 27v2 = 0}.
BF describes the region of the (u, v)-plane at which the nature of the critical
points of the germs changes from 3 non-degenerate critical points (∆ < 0) to
1 non-degenerate critical point (∆ > 0). For the values of (u, v) in BF itself,
the germs have 1 degenerate critical point and 1 non-degenerate critical point
(except for the case u = v = 0).
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Induced Unfoldings

Let [F ] ∈En+r and [G ] ∈En+s be unfoldings of the germ [f ] ∈En. We say that
[G ] is induced by [F ] if there are germs

[φ] ∈mn+s,n, [ψ] ∈ms,r , [γ] ∈ms

such that:

φ(x , 0) = x and G (x , v) = F (φ(x , v), ψ(v)) + γ(v)

for (x , v) in an open neighborhood of the origin. If we view the unfoldings [F ] and
[G ] as families of germs {[Fu]}u and {[Gv ]}v , both centered at [f ], then {[Gv ]}v is
induced by {[Fu]}u if there is a parameter transformation [ψ], a family variable
transformation [φ] = {[φv ]}v with [φ0] = id, and a germ [γ] ∈ms such that

[Gv ] = [Fψ(v)][φv ] + γ(v).

In other words, up to equivalence and translation of germs, the family {[Gv ]}v
arises from {[Fu]}u by a transformation of the external parameters which is given
by [ψ]. Two unfoldings [G ] and [F ] are equivalent if r = s, [G ] is induced by [F ],
and the parameter transformation [ψ] is invertible.

An unfolding [F ] ∈En+r of a germ [f ] ∈En is versal if every unfolding [G ] ∈En+s

of [f ] is induced by [F ]. If the number r of external parameters is minimal, then
[F ] is a universal unfolding.
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Properties of Induced Unfoldings

(1) Let [G ] ∈En+s and [F ] ∈En+r be unfoldings of [f ] ∈En and suppose that
[G ] is induced by [F ]. Then the variable transformation [φ] = {[φv ]}v is a
local diffeomorphism for small values of v ∈ Rs (since [φ0] is the identity
germ by definition).

This implies that [Gv ] and [Fψ(v)] have the same kind of singularities for
small v ∈ Rs . Consider the germ at 0 ∈ Rn × Rs of the smooth function

Φ(x , v) = (φ(x , v), ψ(v)) = (φv (x), ψ(v))

with values in Rn × Rr . Then there is an open neighborhood U of 0 ∈ Rn+s

such that

MG ∩ U = Φ−1(MF ) and CG ∩ U = Φ−1(CF ).

Therefore equivalent unfoldings have locally diffeomorphic catastrophe
surfaces and catastrophe sets.

(2) (Transitivity) Let [F ] ∈En+r , [G ] ∈En+s , and [H] ∈En+t be unfoldings of
[f ] ∈En and suppose that [H] is induced by [G ] and [G ] is induced by [F ].
Then [H] is induced by [F ].
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Properties of Induced Unfoldings (ctd.)

(3) (Sums of Unfoldings) Let [F ] ∈En+r and [G ] ∈En+s be unfoldings of
[f ] ∈En. Then [H] ∈En+r+s defined by

H(x , u, v) = F (x , u) + G (x , v)− f (x)

is an (r + s)-parameter unfolding of [f ]. Moreover, [F ] and [G ] are induced
by [H] by restriction of the external parameters.

(4) Let [f ], [g ] ∈En be equivalent germs and let χ ∈ Gn such that [g ] = [f ][χ].
Then χ defines a correspondence χ∗ which sends an unfolding [F ] of [f ] to
the unfolding of [g ] defined by G (x , v) = F (χ(x), v). The correspondence χ∗

is bijective and respects the induction of unfoldings.

(5) (Applications) Suppose that the smooth function V (x , a) gives the value of
a physical quantity of a system which depends on external parameters a.
We may view this as an unfolding [V ] of the germ [V0] of V (x , a0) for some
value of the external parameters a0. Suppose we can identify a convenient
representative of the equivalence class [V0] (using, for example, results about
the classification of germs of certain codimension) and suppose that we are
able to identify a (uni)versal unfolding [F ] of [V0] which induces [V ]. Then
we would be able to study the qualitative properties of the equilibrium points
of V (x , a) using [F ] and its catastrophe surface.
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Examples of Induced Unfoldings

Let [f ] ∈En be a non-critical germ. Then [f ], regarded as an unfolding of
itself, is a universal unfolding of [f ].

(Proof. We may assume that f (x) = x1. Let [G ] ∈En+r be an unfolding of
[f ]. Then

φ(x , u) = (G (x , u), x2, · · · , xn)

is the required variable transformation.)

The 1-parameter unfolding F (x , u) = x3 + u of f (x) = x3 does not induce
the 1-parameter unfolding G (x , u) = x3 + ux , therefore, [F ] is not versal.

(Proof. Suppose that [G ] is induced by [F ]. Then the germ

[Gu(x) = x3 + ux ]

is equivalent to [Fψ(u)(x) = x3 + ψ(u)] (up to translation) for small u ∈ R.
But the germs [Fv (x)] are all equivalent (up to translation), while the germs
[Gu(x)] are not.)
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Transversality of Unfoldings

Let [F ] ∈En+r be an r -parameter unfolding of [f ] ∈m2
n. We consider the linear

subspace V[F ] ⊆mn which is spanned by the germs of the functions (for small
x ∈ Rn)

∂
∂uj

F (x , 0)− ∂
∂uj

F (0, 0), j = 1, · · · , r .

For k > 0, the unfolding [F ] is a k-transversal unfolding of [f ] if

mn = J[f ] + V[F ] + mk+1
n .

1 If [F ] ∈En+r is k-transversal, then [F ] is `-transversal for every ` < k .
2 If mn = J[f ] + V[F ], then [F ] ∈En+r is k-transversal for every k > 0.

Moreover, cod[f ] ≤ r holds, and [f ] is finitely determined.
3 If [f ] is k-determined and [F ] is k-transversal, then mn = J[f ] + V[F ].

(Proof. If [f ] k-determined, then mk+1
n ⊂ J[f ] by Mather’s theorem.)

4 [f ] is finitely determined and [F ] is k-transversal for some k ≥ det[f ] if and
only if mn = J[f ] + V[F ].

5 If [G ] ∈En+s is induced by the unfolding [F ] ∈En+r of [f ] ∈m2
n, then a

direct calculation shows that

V[G ] ⊆ J[f ] + V[F ].
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Transversal Unfoldings: Properties and Examples

(Existence of transversal unfoldings) Let [f ] ∈m2
n and k > 0. There is a

k-transversal unfolding [F ] of [f ] constructed as follows.

Note that the vector space mn/J[f ] + mk+1
n is finite dimensional. Let [gj ],

j = 1, · · · , r , be germs in mn which define a basis of mn/J[f ] + mk+1
n .

Then the germ of

F (x , u) = f (x) + u1g1(x) + · · ·+ urgr (x)

defines a k-transversal unfolding of [f ].

(Proof. Note that ∂
∂uj

F (x , 0)− ∂
∂uj

F (0, 0) = gj(x).)

(Versal vs. k-transversal unfoldings) A versal unfolding [F ] ∈En+r of
[f ] ∈m2

n is k-transversal for every k > 0.
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Transversal Unfoldings: Properties and Examples (ctd.)

There exists an unfolding [F ] of [f ] which is k-transversal for every k > 0 if
and only if [f ] is finitely determined (⇐⇒ cod[f ] <∞.)

(Proof. Suppose that det[f ] = d <∞ and consider a d-transversal unfolding
[F ]. Then mn = J[f ] + V[F ] and therefore [F ] is k-transversal for every k.
Conversely, if [F ] ∈En+r is k-transversal for every k > 0, then the inclusions

J[f ] + mk+2
n ⊆ J[f ] + mk+1

n

must be equalities for k ≥ r because dimRV[F ] ≤ r . Then Nakayama’s
Lemma implies that mr+1

n ⊆ J[f ], and therefore [f ] is finitely determined by
Mather’s theorem.)

Let f (x) = x3. The 1-parameter unfolding F (x , u) = x3 + ux satisfies
mn = J[f ] + V[F ].

Let g(x) = x4. The 2-parameter unfolding G (x , u, v) = x4 − ux2 + vx
satisfies mn = J[g ] + V[G ].
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The Geometric Meaning of Transversality

Let [F ] ∈En+r be an unfolding of [f ] and let k > 0 be a positive integer. Note
that k-transversality can be stated equivalently as a property of the corresponding
vector spaces of k-jets: [F ] is a k-transversal unfolding of [f ] if and only if

jk(mn) = jk(J[f ]) + jk(V[F ]).

We consider the following smooth function for small (a, u) ∈ Rn ×Rr and x ∈ Rn,

F a
u (x) : = F (a + x , u)− F (a, u).

The family {[F a
u ]} consists essentially of the germs nearby [f ] in the unfolding [F ].

Passing to the k-jets of these germs, we obtain a smooth function defined on an
open neighborhood W of 0 ∈ Rn+r as follows,

jke [F ] : W → RN , (a, u) 7→ jk [F a
u ] (k-th extension of [F ])

Here we have identified the vector space Jkn of k-jets of germs in En with the
vector space RN for N =

(
n+k
k

)
. Then the vector space

Im
(
Djke [F ](0)

)
⊆ Tjk [f ](J

k
n ) ∼= RN

essentially describes the vector space of k-jets of germs in the unfolding [F ] of [f ]
which are nearby [f ].
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The Geometric Meaning of Transversality (ctd.)

An elementary calculation shows that the vector space

Im
(
Djke [F ](0)

)
⊆ Tjk [f ](J

k
n ) ∼= RN

is spanned by the k-jets of the germs [D1f ], · · · , [Dnf ] and of the germs in V[F ].

Let Tjk [f ](j
k [f ] ·Gk

n ) be the tangent space at jk [f ] of the orbit of jk [f ] with respect

to the action of the group of (k-jets of) local diffeomorphisms Gk
n preserving the

origin. This tangent space essentially describes the space of directions out of the
point jk [f ] in jk(mn) along which the equivalence class of [f ] is preserved.
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Universal Unfoldings

The following fundamental theorem shows the importance of transversality in the
study of unfoldings. It is the key result that we will need in order to obtain some
useful characterizations of (uni)versal unfoldings.

Theorem (‘Main Lemma’)

Let [f ] be a k-determined germ in m2
n. Then any two r -parameter k-transversal

unfoldings of [f ] are equivalent.

The proof can be viewed as a family version of the proof of Mather’s Sufficient
Criterion for the determinacy of germs and makes use of the Malgrange–Mather
Preparation Theorem – the significance of this theorem in the proof of the Main
Lemma is that it allows us to apply Nakayama’s Lemma.
Let φ : U → Rs be a smooth function on an open neighborhood of 0 ∈ Rn with
φ(0) = 0. There is a ring homomorphism φ∗ : Es →En, [f ] 7→ [f ][φ] = [f ◦ φ].

Theorem (Malgrange–Mather Preparation Theorem)

Let M be a finitely generated module over En. Then M is finitely generated as an
Es -module (with respect to the module structure defined by φ∗) if and only if the
vector space M/〈msM〉 is finite dimensional.
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Characterizations of Versal Unfoldings

Theorem

Let [F ] ∈En+r be an unfolding of [f ] ∈m2
n. The following are equivalent:

(a) [F ] is a versal unfolding.

(b) [F ] is k-transversal for all k > 0.

(c) [F ] is k-transversal for some k > r + 1.

(d) mn = J[f ] + V[F ].

These imply that cod[f ] ≤ r and [f ] is (r + 2)-determined. Moreover, (a)-(d) are
also equivalent to:

(e) [f ] is finitely determined and [F ] is k-transversal for k = det[f ].

Proof (Sketch) We have already discussed (a) ⇒ (b). (b) ⇒ (c) is obvious.
(c) ⇒ (d): We first claim that (c) implies that cod[f ] ≤ r holds. To see this, note
that the sequence of inclusions:

mn = J[f ] + mn ⊇ J[f ] + m2
n ⊇ · · · ⊇ J[f ] + mr+1

n ⊇ J[f ] + mr+2
n ⊇ · · ·

must stabilize after at most r steps because dimRV[F ] ≤ r .
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(e) [f ] is finitely determined and [F ] is k-transversal for k = det[f ].

Proof (Sketch) (d) ⇒ (e) is obvious.

(e) ⇒ (a): Let [G ] ∈En+s be an unfolding
of [f ] and consider the sum [H] = [F ] + [G ] ∈En+r+s of the unfoldings. [H] is
k-transversal because [F ] is so. We may consider [F ] as an (r + s)-parameter

unfolding, denoted by [F̃ ], which is constant in the s variables. Note that [F̃ ] is

again k-transversal. According to the Main Lemma, [H] and [F̃ ] are equivalent.

Note that [G ] is induced by [H], which is equivalent to [F̃ ], and [F̃ ] is induced by
[F ]. This shows that [G ] is induced by [F ] and (a) follows.
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Fundamental Theorem of Universal Unfoldings

Theorem
1 (Existence) A germ [f ] ∈m2

n has a (uni)versal unfolding if and only if [f ] is
finitely determined.

2 (Uniqueness) Any two r -parameter versal unfoldings of a germ in m2
n are

equivalent.

3 (Construction) Let [f ] ∈m2
n with cod[f ] = r and let [gj ], j = 1, · · · , r , be

germs which define a basis of mn/J[f ]. Then the germ of

F (x , u) = f (x) + u1g1(x) + · · ·+ urgr (x)

is a universal unfolding of [f ].

Proof (Sketch) (1) and (2) follow easily from the previous characterizations of
versal unfoldings and the Main Lemma. (3): The unfolding [F ] ∈En+r satisfies
mn = J[f ] + V[F ] by construction, and therefore it is a versal unfolding of [f ].
If [G ] ∈En+s is a versal unfolding, then the characterization of versal unfoldings
shows that r = cod[f ] ≤ s. It follows that [F ] is a universal unfolding.
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Examples of Universal Unfoldings

1 Consider the germ of f (x) = x3. The germ [x ] defines a basis of the vector
space m1/J[f ]. Thus, the universal unfolding of [f ] is given by

F (x , u) = x3 + ux . (fold)
2 Consider the germ of f (x) = x4. The germs [x ], [x2] define a basis of the

vector space m1/J[f ]. Thus, the universal unfolding of [f ] is given by
F (x , u) = x3 − ux2 + vx . (cusp)

3 Let [G ] ∈En+s be a versal unfolding of [f ] ∈En and let [F ] ∈En+r be the
universal unfolding of [f ] as constructed above. Then s ≥ r . Consider [F ] as

an s-parameter unfolding, denoted [F̃ ], which is constant in the remaining
parameters. By the Uniqueness of Versal Unfoldings, the unfoldings [G ] and

[F̃ ] are equivalent. Thus, every versal unfolding of [f ] is the sum of [F ]
and a constant unfolding.

4 A germ [f ] ∈m2
n is non-degenerate if and only if [f ] is a universal unfolding

of itself. (Proof. ‘Only if’: this follows directly from the construction of
universal unfoldings. ‘If’: If [f ] is a universal unfoldings, then mn = J[f ] –
this can also be seen directly as follows: consider the unfolding

H(x , u) = f (x) + u1x1 + · · ·+ unxn.
Since [H] is induced by [f ], a simple calculation shows that the germ of
xj = ∂

∂uj
H(x , 0) lies in J[f ]. Therefore cod[f ] = 0 and [f ] is non-degenerate.)
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Book Program, Boulder, CO, 2004.

Yung-Chen Lu, Singularity theory and an introduction to catastrophe
theory. Universitext, Springer-Verlag, New York-Berlin, 1980.

G. Raptis Catastrophe Theory 20 / 20


	Unfoldings of Germs
	Induced Unfoldings
	Transversality of Unfoldings
	Universal Unfoldings
	References

