Tracking in High Energy Physics

XIX Heidelberg Physics Graduate Days 2007

Carsten Niebuhr (DESY, Hamburg) Guillaume Leibenguth (IPP, ETH Zürich)

Motivation

"Verehrte An- und Abwesende! Wenn Ihr den Rundfunk höret, so denkt auch daran, wie die Menschen in den Besitz dieses wunderbaren Werkzeuges der Mitteilung gekommen sind. Der Urquell aller technischen Errungenschaften ist die göttliche Neugier und der Spieltrieb des bastelnden und grübelnden Forschers und nicht minder die konstruktive Phantasie des technischen Erfinders ...

... Sollen sich auch alle schämen, die gedankenlos sich der Wunder der Wissenschaft und Technik bedienen und nicht mehr davon geistig erfasst haben als die Kuh von der Botanik der Pflanzen, die sie mit Wohlbehagen frisst"

A. Einstein zur Eröffnung der 7. Großen Deutschen Funkausstellung 1930

http://www.staff.uni-marburg.de/~naeser/einstein.htm

Outline of Lecture

Monday

- introduction
- interaction of charged particles with matter
 - energy loss by ionization
 - multiple scattering

• Tuesday

- momentum measurement in magnetic field
- principles of gas detectors
 - gas amplification
 - gas properties

- Wednesday
 - examples for gas detectors at the LHC

- Thursday & Friday
 - solid state detectors:
 Guillaume Leibenguth

Introduction

Literature

Text books: K.Kleinknecht: Teubner, 1992	Detektoren für Teilchenstrahlung						
W.R. Leo: Springer 1994	Techniques for Nuclear and Particle Physics Experiments						
G.F.Knoll: Wiley, 3rd edition	Radiation Detection and Measurement						
C.Grupen: BI Wissenschaftsverlag	<i>Teilchendetektoren</i> 993						
W.Blum, L.Rolandi: Springer, 1994	Particle Detection with Driftchambers						
Review articles: T.Ferbel: Addison-Wesley 1987	Experimental Techniques in High Energy Ph	nysics					
Other sources: Particle Data Group: Eur. Phys. J. C15, 1-878	Review of Particle Physics 3 (2000)	Please note: Most of the figures in this lecture are taken from these sources or from publicly available talk on the web, without making explicit reference to them in each case.					

R.K.Bock, A.Vasilescu: The Particle Detector BriefBook Springer, 1998 and //physics.web.cern.ch/Physics/ParticleDetector/BriefBook/ Tracking in HEP: 1

What are the Objects?

Fundamental Interactions

		Electro-w		
Forces	Strong force	Electro- magnetic force	e Weak force	Gravity
Exchanged particles	Gluon	Photon	W,Z bosons	Graviton
Magnitude	1	0.01	10 ⁻⁵	10 ⁻⁴⁰
	Nuclei Hadron Nuclear fusion Solar energy	Molecule, Atom Electronics Synchrotron rad. Aurora	Neutron decay Nuclei decay Neutrino Geothermy	Gravitation Galaxy Black Hole Stellar Pinwheel
Example Lifetime [s] ct [mm]	ρ ⁰ → π ⁺ π ⁻ ≈10 ⁻²⁴ ≈3×10 ⁻¹³	π ⁰ → γγ ≈10 ⁻¹⁶ ≈3×10 ⁻⁵	<i>K</i> ⁰ → π ⁺ π ⁻ ≈10 ⁻¹⁰ ≈30	

Detection of Particles and Radiation

The goal of experimental particle physics: measurement of

- particle properties
- reaction probabilities (\rightarrow cross sections)
- This requires determination of:
 - particle type (mass, charge, spin etc)
 - momentum / energy of particle
 - emission angles

Elements contributing to such measurements :

- \cdot position sensitive detectors
- \cdot deflection in magnetic field
- $\cdot\,$ calorimetry: total energy absorption and measurement
- \cdot mass determination
- $\cdot\,$ Cherenkov radiation or time of flight
- \cdot transition radiation

 \rightarrow position, direction

 $\rightarrow |\vec{p}|$

 $\rightarrow E_{tot}$

 \rightarrow m

 $\rightarrow \beta$

 $\rightarrow \gamma$

Examples for Major Discoveries I

Examples for major discoveries made possible by detector progress Discovery of positron by C. Anderson (Nobel prize 1936) http://prola.aps.org/abstract/PR/v43/i6/p491_1

Cloud Chamber (C.T.Wilson Nobel prize 1927)

Adiabatic expansion \rightarrow saturated vapour Charged particles \rightarrow ionisation \rightarrow condensation of droplets

- ionisation \rightarrow elementary charge
- curvature in mag.field → sign of charge + measure momentum
- energy loss in 6mm Pb (+ charge and momentum) → mass < 20 × m_e
 - \rightarrow exclude proton (2000 x m_e)

Examples for Major Discoveries II

Discovery of Ω^- at BNL (USA) \rightarrow Quarkmodel demonstrated http://prola.aps.org/abstract/PRL/v12/i8/p204_1 Bubble Chamber (D.Glaser - Nobel prize 1960) - dominated experimental particle physics until the eighties!

Fig. 1: The Gargamelle heavy-liquid bubble chamber, installed into the magnet coils, at CERN in 1970.

Liquid just below vapour pressure after passage of particle ("event") fast (1ms) expansion \rightarrow exceed vapour press.

Tracking in HEP: 1

Ξ1 unambigous: Q=-1, S=-3,m=1686±12MeV carsten.niebuhr@desy.de 10

Discovery Ω^- by a single event !!!

Transparency taken from R. Klanner, Uni HH

জন

0 D

Examples for Major Discoveries III

+ development of large volume gaseous Discovery of intermediate vector bosons W^{\pm} , Z⁰, UA1 and UA2 at CERN detector with FADC read-out in anti-p p interactions Transparency taken W → e V from R. Klanner Uni HH (1984 Nobel prize C.Rubbia, S.v.d.Meer) longitudinal pick-up CERN SPC accelev via missing p_T rator $\rightarrow \overline{p}p$ collider preamplifier filter power mplifie longitudinal kicker 1.72 mV ATTEN 18 d LINEA $Z^0 \rightarrow e^+e^$ to store sufficient anti-p with small phase space \rightarrow stochastic beam cooling

Detector Requirements for Different Accelerators

Accelerator	HERA (DESY)	ILC (Linear Collider)			
date	1992-2007	2007 - ????	2015 (?) - ????		
physics	structure proton, strong+electroweak i.a. beyond standard model	high energy reach Higgs, top, BSM, SUSY strong+electroweak i.a.	precision reach Higgs, top, BSM, SUS unification of forces		
max. E[GeV] particles	27.5 e⁺/e⁻ ⊗ 920 p	7000 p ⊗ 7000 p	500 e ⁺ ⊗ 500 e ⁻ (e γ, γγ)		
length	2 x 6.3 km (Ø)	2 x 27 km (Ø)	O (2 x 15 km)		
currents	110 mA ⊗ 55 mA	540 mA ⊗ 540 mA	10 mA ⊗ 10 mA		
bunch crossing	96 ns	25 ns	~ 300 ns		
luminosity	5x10 ³¹ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹	2-5x10 ³⁴ cm ⁻² s ⁻¹		
event rate	~ 10 kHz	1 GHz	~ 1 kHZ		
radiation dose	< 5x10 ¹² n(equ.)/cm ²	10 ¹⁵ n(equ.)/cm ²	10 ¹² n/cm ² (excl.forward)		
∆p@100GeV/c	20 %	1.6 %	0.5 %		
Δ p (μ)@100GeV/c	10 %	1.6 %	0.5 %		
∆ E(e)@100GeV	1 – 2 %	0.6 %	1 – 2 %		
∆E(had)@100GeV	4 - 6 %	5 – 10 %	3 %		
∆position@vertex	20 μm	20 μm	5 μm		
trigger reduction	10 ³	3×10 ⁶	< 100		

Tracking in HEP: 1

carsten.niebuhr@desy.de

Criteria for an ideal Detector

Because in general there can be very complex event topologies one often aims at

reconstruction of full event kinematics (background rejection)

Most important:

- high efficiency
- high resolution
- · high acceptance \rightarrow try to cover full solid angle (4 π)

also very important (partly conflicting demands):

- · particle identification capability
- \cdot fast response
- \cdot high rate capability
- \cdot small dead time
- \cdot hermeticity
- \cdot longevity of detector components
- \cdot high reliability
- good accessibility (for repairs)
- · low cost

Important Parameters characterizing Detectors

tion

tion is thus observed. (b) is the response of an organic scintillator detector. Since this material has a low atomic number Z, Compton scattering is predominant and only this distribution is seen in the response func-

Response Function of Detector

fact that response function is complicated is frequently ignored → wrong results !!
 "good detector" aims for Gaussian response (with little non-Gaussian tails)
 Calibration by N events with energy E

• mean:

rms resolution (σ):

for Gauss f.: (separate two peaks): $\Gamma = 2\sqrt{2 \ln 2} \sigma = 2.355 \sigma$ for box with width a: $\sigma = \frac{a}{\sqrt{12}}$ frequently <S> is not the best choice: e.g. Landau distribution: $\sigma \to \infty$

(median, truncated mean, are sometimes better choices !)

Calibration: $\langle S \rangle = f(E) \cong c \times E + ped$

$$\sigma = g(E), \, \sigma \not E \cong c_{calib} + \frac{c_{stat}}{\sqrt{E}} + \frac{c_{noise}}{E} \, (e.g. \text{ for energy measurement})$$

- c, ped ... calibration constants depend on position, time (T,p,V,...)
- if c(E) ... non-linear response

analogous for position-, time-, etc- measurements

Transparency taken from R. Klanner Uni HH

Example Time Response

- delay time: time between particle passage (event) and signal formation from R. Klanner Uni HH
- dead time: minimum time distance that events can be recorded separately (depends on properties of detector and electronics ("integrating" or "dead") and on resolution criteria)
- pile up effects: overlapping events cause a degradation of performance
- time resolution: accuracy with which "event-time" can be measured

- n... true interaction rate m... recorded count rate
 - τ ... system dead time

 $m \times \tau$ is fraction time detector "dead" \rightarrow rate at which true events lost: $n \times m \times \tau = n - m$ (for pulsed source - no effect if $\tau < 1$ /frequency)

M

 $-m \times \tau$

Modern Collider Detectors

Search for Rare/Forbidden Decays

Experiment in preparation at Paul Scherrer Institut (PSI, Switzerland):

- · search for lepton-number violating process: $\mu \rightarrow e \gamma$ sensitivity goal: 10^{-13} !
- \cdot needs excellent energy resolution, high event rate, but small track multiplicity per event
- $\cdot\,$ start full data taking in 2007

ALICE @ LHC

Heavy Ion Physics: this simulation shows 1/10 of all 10000-20000 expected tracks in a typical event. The separation of all these tracks puts very high demands on the position resolution and double hit separation of the device.

Real Event in STAR at RHIC

≈ 2000 tracks per event

Satellite based Detectors

Liftoff scheduled for August 2007

GLAST Gamma-Ray observatory for high energy photons in the range 20MeV to >300 GeV

Astro particle physics

- \cdot history of star formation
- acceleration mechanism of AGN's
- sources of gamma ray bursts
- nature of dark matter

Components (need highest reliability !)

- precision tracker (Si-strips)
- calorimeter (CsI(Tl))
- data acquisition system
- anticoincidence detector

Applications in Medicine

Interplay between Physics and Technology

Almost all effects used in particle detectors are based on the electromagnetic interaction only. Most modern detectors convert the absorbed energy into an electrical signal.

The detection sensitivity and detector performance depends on

- $\cdot\,$ statistical processes in the detector
- \cdot fluctuations in the electronics

To maximize detection sensitivity and resolution one must consider and optimize

- \cdot signal formation in the detector
- coupling of the detector to the readout electronics
- $\cdot\,$ noise generated in the electronics

Understanding of e.g. a modern tracking detector in high-energy physics or a medical imaging system thus requires knowledge of

- solid state physics
- semiconductor device physics
- semiconductor fabrication technology
- low-noise electronics techniques
- \cdot analog and digital microelectronics
- \cdot high-speed data transmission
- computer-based data acquisition systems

Interaction of Radiation with Matter

Coulomb-Interaction with electrons of medium → electrical signal in detector Mainly "singular" interactions, resulting in energy transfer to charged particles

Cross Section of a typical Collider Detector

Example 1: HERA ep Event with 3 Jets

Example 2: Muon Detection

Because muons do not interact strongly and because of their large mass (compared to electrons) they don't shower so easily and thus can penetrate calorimeter and iron yoke

Example 3: Neutrinos

Event MUON-2

$$P_T^{\mu} = 28 \,\mathrm{GeV}, P_T^X = 67 \,\mathrm{GeV}, P_T^{miss} = 43 \,\mathrm{GeV}$$

ν

 $\sum_{i} \vec{p}_{trans} = 43 \text{GeV}$

carried away by neutrino?

Example 4: Secondary Vertices

Some mesons containing heavy quarks (charm or beauty) only decay via the weak interaction.

example: $D^- \rightarrow K^+ \pi^- \pi^-$

Resulting lifetimes are relatively long:

 $\tau \approx O(10^{-12}s)$ or

c**τ ≈** 100 - 500 μm

With the help of high precision track detectors one can distinguish if particles originate from secondary or primary vertex:

⇒ vertex detectors [in most cases based on silicon]

Interaction of Charged Particles

There are two principal effects which characterize the passage of charged particles through matter:

- energy loss
- change of direction

both effects result from the following electromagnetic processes:

- inelastic collisions with shell electrons of medium
- elastic scattering off <u>nuclei</u>

relevant is the statistical sum of many such interactions.

In addition there are the following processes:

- bremsstrahlung
- emission of Cherenkov radiation
- nuclear reactions
- emission of transition radiation

which however in general occur much less frequent than atomic collisions.

For charged particles one must distinguish light particles (i.e. e^+ , e^-) and heavy particles (i.e. all the rest: μ , π , p, α , light nuclei, ...)

Energy Loss of Charged Particles in Matter

Several important physicists have contributed to the theoretical understanding of energy loss of charged particles in matter

- N. Bohr classical derivation of $\langle \frac{dE}{dx} \rangle$
- Bethe & Bloch quantum mechanical treatment of $\langle \frac{dE}{dx} \rangle$
- L. Landau distribution function
- E. Fermi density correction

and several other physicists

Energy Loss of Heavy Charged Particles

The exact derivation is quite involved. Here only the classical derivation, which was first performed by Bohr is given:

Energy loss mainly occurs through inelastic collisions with the shell electrons of the medium. Assuming (1) $M \gg m_e$ and (2) that the electrons before the collision are at rest => classically the change of momentum is given by: $\sim \pm \infty$

$$\Delta p = \int_{-\infty}^{+\infty} F_{\rm Coulomb} \, dt$$

Since for symmetry reasons the longitudinal component averages to 0, only the transverse component is relevant:

$$F_{\perp} = F_{\text{Coulomb}} \cdot \frac{b}{|\vec{r}|} = F_{\text{Coulomb}} \cdot \frac{b}{\sqrt{x^2 + b^2}}$$

with impact parameter b. Integration yields:

$$\Delta p(b) = \int_{-\infty}^{+\infty} F_{\perp} \frac{dx}{v} = \int_{-\infty}^{+\infty} \frac{ze^2 \cdot b}{(x^2 + b^2)^{3/2}} \frac{dx}{v} = \frac{2ze^2}{vb}$$

$$\Delta E(b) = \frac{\Delta p^2}{2m_e} = \frac{2z^2 e^4}{m_e v^2 b^2}$$

with velocity v and charge z of the moving particle Tracking in HEP: 1 32

* J. D. Jackson, Klassische Elektrodynamik, (Walter de Gruyter, Berlin, 1993) Kapitel 13.

carsten.niebuhr@desy.de

Bohr's Classical Formula

The energy transfer to shell electrons in the ring b to b+db in a layer of thickness dx is given by (with N_e = density of electrons) :

$$-dE(b) = \Delta E(b) \cdot N_e \cdot dV = \frac{4\pi z^2 e^4}{m_e v^2} N_e \frac{db}{b} dx$$

Integration over valid range of impact parameters b_{min} to b_{max} yields:

The valid limits of integration follow from the maximum momentum transfer $\Delta p = 2m_e v$ (-> b_{min}) and the minimum energy transfer $\Delta E_{min} = I$, which must at least correspond to the excitation energy I (-> b_{max}):

$$b_{min} = \frac{ze^2}{m_e v^2}$$
; $b_{max} = \frac{ze^2}{v} \sqrt{\frac{2}{m_e I}} \Rightarrow$

This yields for the classical case of inelastic collisions:

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} \frac{Z}{A} N_A \cdot \frac{1}{2} \ln \frac{2m_e v^2}{I}$$

The correct quantum mechanical result is:

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z}\right] \quad \left[\frac{\text{MeV}}{(\text{g/cm}^2)}\right]$$

where $T_{max} = \frac{2m_ec^2\beta^2\gamma^2}{1+2\gamma m_e/M+(m_e/M)^2}$

is the maximum kinetic energy, which can be

transfered to the electron in a single collision, N_A is the Avagadro number, r_e the classical electron radius and I the excitation energy in [eV].

Meaning of additional terms:

• δ density term due to polarization: important at high energies (leading to saturation of the relativistic raise)

 C/Z shell correction only relevant at low energies (when v \approx velocity of electrons in the orbit -> capture processes are important)

Range of validity of the Bethe-Bloch formula:

 $10 \text{ MeV/c} \le p \le 50 \text{ GeV/c}$

For higher energies radiative processes dominant. Tracking in HEP: 1 34

Relativistic Raise: Calculations and Measurements

Fermi's Density Correction

This parameter takes into account, that the shell electrons of the atoms of the medium shield the transversely extended field of the relativistic particle. This leads to a reduction of the effective reach-through and therefore of the energy loss.

Physically the effect is related to the fact that the electromagnetic wave gets damped in the transverse direction by the dispersion in the medium (also related to Cherenkov effect).

- density effect \Rightarrow Fermi plateau
- especially relevant in dense absorbers, e.g. iron or lead
- can be practically neglected for gases at 1 atm
- approximation for energetic particles

$$\frac{\delta}{2} = \ln\left(\beta\gamma\right) + \ln\frac{\hbar\omega_p}{I} - \frac{1}{2}$$

with plasma frequency $\hbar \omega_p = \sqrt{4\pi N_e r_e^3} \cdot m_e c^2/\alpha$ and electron density N_e

Material Dependence

Energy Loss of Electrons

In addition to energy loss by ionisation high energy particles also loose energy due to interaction with the Coulomb field of the nuclei: Bremsstrahlung

Due to their small mass this effect is especially prominent for electrons (positrons):

- $\cdot dE/dx \propto Z^2 \cdot E/m^2$
- \cdot it is useful to introduce radiation length X_0

Energy Loss of Muons

MIP = minimum-ionising particles

dE/dx Applications for different Detector Types

Gas

 \cdot ionisation \Rightarrow proportional or drift chamber

Liquid

- · local heating \Rightarrow bubble chamber
- · ionisation \Rightarrow calorimeter (Liquid Argon or Krypton)

Solid

- · excitation of electrons → conversion into light \Rightarrow scir
- creation of electron-hole pairs
- \Rightarrow scintillators
- \Rightarrow solid state detectors

dE/dx in a TPC

Measurements in PEP4/9-TPC (Ar-CH₄ = 80:20 @ 8.5atm)

If dE/dx is plotted versus momentum of particle the curves are shifted horizontally for different masses

Application: if also the momentum of the particle is known the measurement of the specific ionisation can be used for particle identification

In this example each dot represents ≈185 single measurements in a drift chamber

Ionization along the Track

Optical avalanche microdosimeter

Double gem microstrip gas chamber with CCD camera readout

The increase of ionization at the end of the range due to the $1/\beta^2$ -dependence of the energy loss is visible in all examples.

z-Dependence of Ionization

Relativistic ions in nuclear emulsion

Bragg-Peak and Medical Application

Ionisationsprofil von ¹²C Ionen in Wasser

Applications in therapy:

better targeted treatment of tumors with reduced radiation damage of tissue in front due to concentration of energy loss at the end of the range (in contrast to X-ray treatment)

Example: Proton Therapy at PSI

Spread out Bragg Peaks (SOBP) mit unterschiedlichen Absorbern ⇒ annähernd konstante Dosisverteilung im Bereich des Tumors

Landau Distribution

The Bethe-Bloch formula only gives the average energy loss. The total energy loss is the sum of many individual processes:

- thick layers $((dE/dx) \cdot \delta x \gg T_{max})$: many collisions with small $\Delta E_i \Rightarrow$ in good approximation Gaussian distributed
- for thin layers (e.g. gases) two effects are important:
 - rare collisons with large ΔE (> ionization potential) $\Rightarrow \delta$ -electrons or knock-on

electrons are liberated, which have sufficient energy to ionize themselves

- energy loss due to Bremsstrahlung
 - ⇒ asymmetric Landau distribution

$$P(\Delta E) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\lambda + e^{-\lambda})} \quad \text{with} \quad \lambda = \frac{\Delta E - \Delta E_{mp}}{\xi}$$

 ξ material constant

Alternative approaches by:

- Vavilov
- Blunck-Leisegang
- Symon
- Allison, Cobb

Example for measured Energy Loss

3 GeV electrons in a thin-gap multi wire proportional chamber(ALPEPH)

3 GeV pions in 1.5 cm gas mixture of Argon and 7% $\rm CH_4$

A given detector usually only measures the deposited energy and not the energy the particle has lost in total.

Significant differences for example occur in gas detectors, when part of the energy, which is transferred to the knock-on electron is lost for the measurement, since the knock-on electrons leaves the detector.

 \Rightarrow it is useful to introduce the so called restricted energy loss: only take into account the part of the energy loss processes with energy transfer $T < T_{cut}$

$$-\frac{dE}{dx}\Big|_{\mathbf{T}<\mathbf{T_{cut}}} = Kz^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 \mathbf{T_{cut}}}{I^2} - \frac{\beta^2}{2}\left(1 + \frac{\mathbf{T_{cut}}}{\mathbf{T_{max}}}\right) - \frac{\delta}{2}\right]$$

Note, that for $T_{cut} > T_{max}$ the standard Bethe-Bloch formula is recovered

Energy Spectrum of $\delta\text{-}electrons$

The distribution of secondary electrons with kinetic energy T , $\ I \ll T \leq T_{max}$ is given by:

$$\frac{d^2N}{dTdx} = \frac{1}{2}Kz^2\frac{Z}{A}\frac{1}{\beta^2}\frac{F(T)}{T^2}$$

F(T) is spin dependent [$F(T) = (1 - \beta^2 T / T_{max})$ for spin 0]. Integration from T_{cut} to T_{max} yields just the difference between normal and restricted Bethe-Bloch formula.

Coulomb Scattering

I mportant experimental consequence: multiple scattering often represents a serious limitation for the achievable resolution of direction or momentum measurement

Multiple Scattering

Properties of some Materials (PDG)

Material	Z	A	$\langle Z/A \rangle$	Nuclear a	Nuclear a	$\left. dE/dx \right _{\min} $	Padiati	on length c	Density	Liquid	Refractive
				collision	interactio	(MoV)		X_0	$\{g/cm^3\}$	boiling	index n
				length λ_T	length λ_I	$\left\{\frac{1}{\sqrt{2}}\right\}$	${\rm g/cm^2}$	$\{ cm \}$	$(\{g/\ell\})$	point at	$((n-1) \times 10^6)$
				$\{g/cm^2\}$	$\{g/cm^2\}$	(g/cm ²)		, , ,	for gas)	$1 \operatorname{atm}(K)$	for gas)
				[8/ •]	(8/ •)				0 /		
H_2 gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \ d$	(731000)	(0.0838)[0.0899]	I .	[139.2]
H_2 liquid	1	1.00794	0.99212	43.3	50.8	4.034	$61.28 \ ^{d}$	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128 [138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848	•	
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	$2.265 \ ^{e}$		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205[298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22[296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092[67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233[283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		
Air, (20°C, 1 a	atm.), [S	TP]	0.49919	62.0	90.0	(1.815)	36.66	[30420]	(1.205)[1.2931]	78.8	(273) [293]
H ₂ O	// L	-	0.55509	60.1	83.6	1.991	36.08	36.1	1.00	373.15	1.33
$\overline{\rm CO}_2$ gas			0.49989	62.4	89.7	(1.819)	36.2	[18310]	[1.977]		[410]

Summary Part I

- · properties of different particles require many different types of detectors
- rough classification
 - track/position detectors (non destructive) \rightarrow Part II+||| gas detectors
 - calorimeters (destructive) \rightarrow [not covered in this lecture]
- basically all detectors based on electromagnetic interaction
- \cdot detectors also more and more used for other applications (e.g. medical appl.)
- energy loss of charged particles: Bethe-Bloch describes loss due to ionisation
 - $z^2/\beta^2 \rightarrow \ln E \rightarrow$ Fermiplateau
 - minimum at $\beta \gamma \approx 3$: 1-2 MeV per gcm⁻²
 - however light particles (electrons, muons) at high energies lose energy predominantly by bremsstrahlung: $-dE/dx \propto Z^2 \cdot E/m^2$
- multiple scattering •
 - gaussian core of distribution with angular spread: $\theta_0 \sim \frac{1}{p_A} \left| \frac{x}{X_0} \right|$
- - deviation from gaussion distribution at large angles due to Rutherford scattering (nuclei)