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Abstract—This work introduces a penalty-based regularisation
to optimise the geometric parameters of a periodic frequency
selective surface. The equivalent circuit of a multi-layer bandpass
filter is used to illustrate the benefits of the approach for
wideband applications. The proposed regularisation is obtained
by convolving the frequency response and the desired thresholds
before measuring the infraction. We apply bayesian optimisation
on the unconstrained optimisation problem and assess the per-
formance of the strategy by the number of objective function
evaluations. A faster convergence is observed with the proposed
regularisation.

Index Terms—Bayesian Optimisation, Electromagnetics, Fre-
quency Selective Surface, Regularisation, Wideband Filtering

INTRODUCTION

Periodic and quasi-periodic surfaces are planar arrange-
ments of dielectric and metallic unitary elements [1]. They
have been widely used in Frequency Selective Surfaces (FSS),
reflectarrays and polarising surfaces. When impinging on a
surface with geometry x ∈ Ωx ⊂ Rd, an incident electro-
magnetic wave of frequency f ∈ Ωf ⊂ R is reflected and
transmitted with a given phase and magnitude. The S pa-
rameters are complex numbers characterising these properties
of the surface. For filtering applications, the module of the
reflexion S11 or transmission S12 coefficients must be bounded
at operating frequency bandwidths. Computing precisely the
S parameters at discrete frequencies requires expensive calls
to an electromagnetic solver. Nevertheless, some FSS can be
reasonably approximated by an equivalent circuit at normal
incidence.

Bayesian Optimisation strategies [2] are iterative global
optimisation algorithms designed to optimise expensive to
evaluate objective functions. After evaluating the objective
function on an initial Design of Experiment [3], a Gaussian
Process [4] is trained on the observations and used as a
surrogate model. The objective function is then evaluated at
the point maximising an acquisition function. The model is
then retrained with the new observation and the acquisition
function is maximised once again. In practice both regularity
and convexity of the objective function impact the performance
of the optimisation strategy.

In this paper, we formulate the design of a second order
multi-layer bandpass filter [5] as an unconstrained optimisation

problem. Using an equivalent circuit [6], we study objective
functions assessing the filtering properties of the FSS. A
natural objective function is the norm of the infraction of
thresholds at the operating frequencies. We noticed that this
formulation presents an undesirable modelling property. Due
to the resonant nature of the frequency response and the piece-
wise constant nature of the bounding constraints, the infraction
of the bounds might not capture how close we are from a
realisable scattering profile. This observation motivated our
investigations on reformulations of the optimisation problem.
We propose to penalise the objective function by a necessary
condition of optimality. This condition is obtained by applying
an autoconvolution over frequency on the bounds and on the
response before measuring the infraction.

We present the filter chosen as a case of study and formulate
the optimisation problem in the next section. We recall the
principles of bayesian optimisation in Section II. In Section
III we present our main contribution, a penalisation adapted
to wideband filtering applications. Numerical results are pre-
sented and discussed in Section IV.

I. CASE OF STUDY

A. Bi-periodic Frequency Selective Surface

The multi-layer FSS introduced in [5] (Figure 1) is used as a
case of study to formulate the optimisation problem. Operating
at f0 = 10 GHz, the surface presents two layers of dielelectric
material covered by capacitive patches arranged with a sub-
wavelength periodicity. An inductive grid is placed between
the dielectric layers. This FSS is a Chebytchev filter [7].

Fig. 1. Second order bandpass FSS from [5]



The optimisation is carried over two parameters. The first is
the periodicity D = Dx = Dy , between λ0/10 = 3 mm and
λ0/5 = 6 mm. The second parameter is the normalised width
of the grid w/D ∈ [0, 1]. We stack the optimisation variables
in the vector x ∈ R2. Other parameters of the surface are
fixed to the values proposed in [5]. The dielectric constants
of the materials are εr = 3.4 and µr = 1. The two dielectric
substrate thicknesses h1 and h2 are both equal to 0.59 mm.
The space between two patches is fixed to s = 0.15 mm.

An equivalent circuit for the patches and the grid is well
known [6]. This cheap analytical approximation is effective at
normal incidence and used in this paper to investigate different
formulations of the optimisation problem.

B. Problem Formulation

A frequency mask is defined to specify the optimal response.
The response must be upper and lower bounded by user-
defined thresholds. Here, we want the reflexion coefficient to
achieve the following specifications (Figure 2):
• 20 log10 |S11|(x, f) > −3 dB from 7 to 8 GHz
• 20 log10 |S11|(x, f) < −15 dB from 9.33 to 10.66 GHz
• 20 log10 |S11|(x, f) > −3 dB from 12 to 13 GHz

Fig. 2. Optimal response s(xopt) optimal w.r.t. the mask.

We aim to solve the following realisability problem:

find x∗ ∈ Ωx ⊂ Rd

such that l ≤ s(x∗) ≤ u
(1)

where s(x) = (|S11|(x, fi))fi∈Ωf
denotes the discrete linear

response vector of length F ∈ N. The bounds l and u are
piecewise constant functions of frequency, characterised by
the thresholds and bandwidth of the frequency mask.

II. BAYESIAN OPTIMISATION

A. Principles

Unconstrained bayesian optimisation is an iterative method
adapted to costly objective functions. In this paper, the ob-
jective function is assumed noiseless. A sparse initial de-
sign of experiment [3] X = [x1, · · · ,xn] ∈ Rn×d such as
a latin hypercube sampling or a quasi-random sequence [8]
is used to evaluate n initial values of the objective function
y = [y1, · · · , yn] ∈ Rn. At iteration k, two steps are repeated
iteratively to select the next point where the objective is

evaluated. First, a gaussian process is trained on (X,y), which
provides a surrogate model for the objective function. An
acquisition function α(x) is then maximised to obtain xn+1

where the objective is evaluated. The algorithm stops when
a budget of evaluation is exhausted. The overall strategy is
summarised in Algorithm 1.

Algorithm 1 Bayesian Optimisation
1: X ∈ Rn×d ← initial Design of Experiment of size n
2: y ∈ Rn ← associated objective function values
3: ε← precision
4: while n < budget and ybest > ε do
5: Θ̂n+1 ← optimise GP hyperparameters on (X,y)
6: xn+1 ← optimise acquisition function α(x)
7: yn+1 ← (xn+1) evaluate objective function
8: yn+1

best ← min(ybest, yn+1) update best evaluation
9: (X,y)← (X,y) ∪ (xn+1, yn+1) update database

10: n← n+ 1
11: end while

In typical Bayesian Optimisation settings, lines 2 and 7
corresponding to the evaluation of the objective function are
the most time consuming. We dedicate next sections to line
5 and 6 corresponding to gaussian processes and acquisition
functions, since both line require to solve an optimisation
problem.

B. Gaussian Process

A gaussian process [4] Y (x) is a collection of gaussianly
distributed random variables. It is fully characterised by
its mean m(x) and a positive definite covariance function
kΘ(x,x′) such as the exponential or matern kernel. With a
gaussian prior, an evaluation of the objective is seen as an
observation of Y (x). The hyperparameters of the covariance
kernel Θ are estimated by maximising the likelihood of the
observations. The posterior distribution Pn{y(x)|x,X,y,Θ}
is used to make predictions at x ∈ X . It is also a gaussian
distribution with mean µ(x) and variance σ2(x):

µ(x) = kT
xK
−1
Θ y (2)

σ2(x) = kΘ(x,x)− kT
xK
−1
Θ kx (3)

where kx is the vector of correlations between x and the
observed points in X and K is the correlation matrix. This
class of surrogate models is flexible through the choice of the
covariance function and provides not only a mean estimate for
the objective function but also an estimation of the uncertainty
of the model.

C. Acquisition Function

Minimising directly the surrogate model µ(x) to generate
the next point that should be evaluated may converge in
a local minimum. Instead, an acquisition function makes a
compromise between minimising the model and exploring the
design space in order to generate a dense sequence in the



optimisation domain. The expected improvement acquisition
function proposed in the algorithm EGO [2] is defined as:

αEI(x) = E[(y(x)− ynbest)+|x,X,y] (4)

where ynbest = min
i=1,··· ,n

yi and (z)+ = max(0, z). This

acquisition function is chosen in the rest of this paper. The next
section is dedicated to our contribution, the formulation of the
optimisation problem as an unconstrained objective function.

III. FILTERING OBJECTIVE FUNCTIONS

A. Necessary and sufficient conditions of realisability

A natural way to translate problem (1) as an unconstrained
optimisation problem consists in summing the constraints [9]
to quantify the realisability of a frequency response by a real
number. The infraction vector h(x) ∈ RF takes the form:

h(x) = max
(
0, l− s(x), s(x)− u

)
(5)

The norm of that vector corresponds to the Riemann sum
associated to the area intersecting the scattering parameter and
the bounds. For any norm || · || : RF 7→ R+ we have the
following necessary and sufficient condition of realisability:

||h(x)|| = 0 ⇐⇒ l ≤ s(x) ≤ u (6)

Objective functions of the form ||h(x)|| are often used in the
litterature, the infinite norm corresponding to the maximum
infraction of the bounds, the L1 norm corresponding to the
average infraction over the bandwidth [10] and the L2 norm
corresponding to the euclidean distance, often used in space
mapping [11]. These functions share an undesirable modelling
property, illustrated in Figure 3. A response s1 = s(x1)
resonating twice in the bandwidth is expected to be close from
the global minimum, but is more penalised than a response
s2 = s(x2) not resonating at all. This observation motivated
our investigations on reformulations of the objective function.

Fig. 3. Discrete response resonating twice in black, not resonating in grey

B. Necessary condition of realisability

In a simultaneous work carried out by Koziel [12], a multi-
band antenna is optimised to match resonant frequencies with
target locations (fr)r∈[1,R]. The objective function takes the
form max

r∈[1,R]
|S11|(x, fr) and is minimised with a trust region

algorithm. The authors observed that convergence of the local

algorithm is improved by penalising the objective function by
a necessary condition on resonant frequencies.

Our contribution follows a similar approach for wideband
applications where the target resonant frequencies are specified
through the mask. Instead of extracting resonant frequencies,
we define the infraction of the convolved response by the
convolved frame as:

H(x) = max
(
0,L− S(x),S(x)− U

)
(7)

where L = l ∗ l, U = u ∗ u and S(x) = (s ∗ s)(x) with ∗
denoting the convolution operator over frequency. We illustrate
in Figure 4 the effect of convolutions on the bounds and on
the two responses already presented in Figure 3, S1 = S(x1)
and S2 = S(x2). Clearly, we have ||H(x1)|| ≤ ||H(x2)||
while ||h(x1)|| ≥ ||h(x2)||. Moreover, the piecewise constant
bounds L and U are made continuous by the autoconvolution.

Fig. 4. Convolved response resonating twice in black, not resonating in grey

From the properties of convolutions, if 0 ≤ l ≤ s ≤ u ≤ 1
then L ≤ S(x) ≤ U . Therefore we have the following
necessary condition of realisability:

||H(x)|| = 0 ⇐= l ≤ s(x) ≤ u (8)

The condition ||H(x)|| = 0 defines a large region around the
global minimum. Problem (1) is then equivalently written as:

min
x∈X

||h(x)||

such that ||H(x)|| = 0
(9)

In next section, we solve problem (7) by penalising the
objective ||h(x)|| with ||H(x)|| and expect to improve the
optimisation process in two ways. First, designs with non-
resonating response become the most penalised, which limits
their exploration to favor resonating responses. Second, the op-
timised objective function is more regular and should therefore
be better captured by the gaussian process.

IV. NUMERICAL RESULTS

In this section, the algorithm EGO is applied to solve prob-
lem (1) formulated as an unconstrained optimisation problem.
The optimisation process starts by evaluating the response at
n = 4 initial points. We generate 100 designs of experiments
with randomised Sobol sequences [8]. The optimisation stops
when the objective function value is smaller than ε = 10−6 or



when the maximum number of evaluations reaches a budget
of 200.

We start by minimising ||h(x)||∞, ||h(x)||1 and ||h(x)||2
to assess the impact of the objective function. Since ||h(x)||1
is the best performing necessary and sufficient condition, we
penalise it with ||H(x)||1 to evaluate the benefits of the
regularisation. The mean minimum value of the objective
obtained at each iteration is presented in Figure 5 for the five
approaches.

Fig. 5. Mean minimum value of the objective function through the iterations.

With ||h(x)||∞ and ||h(x)||2 some runs of EGO exhausted
the budget. On the other hand, all the runs converged with
||h(x)||1 and ||h(x)||1 + ||H(x)||1. We observe a significant
improvement in the average convergence speed when penal-
ising ||h(x)||1 with ||H(x)||1. The percentage of converged
runs after a given budget of evaluation is presented in Figure 6.
The worst run strongly impacts the mean of the objective
function.

Fig. 6. Cumulative distribution of number of evalations before convergence.

We also optimised ||h(x)||1 and ||h(x)||1+||H(x)||1 using
Particle Swarm Optimisation [13] (PSO) algorithm. With this
evolutionary strategy, an initial positions of a population is
updated over the iterations. We heuristically chose an initial
population size of n = 20 and keep unchanged the other
hyperparameters. The median PSO run used 12 iterations to
find the global optimum for ||h(x)||1 and 11 iterations for

||h(x)||1 + ||H(x)||1. Therefore the proposed approach uses
220 evaluations instead of 240 for the median run.

Bayesian Optimisation is a more sample efficient method,
with median runs converging in 56 and 67 evaluations for
||h(x)||1 and ||h(x)||1 + ||H(x)||1. In practice, PSO is easily
parallelisable, while standard Bayesian Optimisation is not.
To parallelise bayesian optimisation, a non-myopic acquisition
function such as αqEI(x) [14] is maximised to obtain a batch
of q candidate points.

CONCLUSION

In this work, we applied unconstrained bayesian optimi-
sation to optimise a periodic multi-layer FSS over two pa-
rameters. We proposed a necessary condition of realisability
and used it to penalise the objective function. The number
of evaluations before convergence is decreased using the
penalisation.

In an upcoming work, we will propose and compare new
objective functions for wideband filtering and optimise three
FSS of growing order. The optimisation will be conducted on
HFSS numerical solver to evaluate the benefits of the approach
in terms of computational time.
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