

LYON 2023 — L'eau dans la ville Urban water

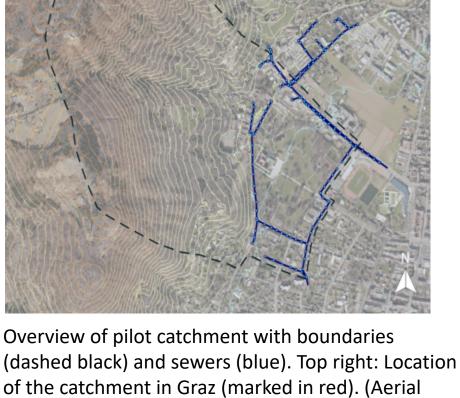
SPOLE OTHU METROPOLE GRAND LYON

Quantifying urban flash flood risk in a 1d-2d-model setup

Valentin Gamerith, Miriam Monschein, Manfred Weiss

Introduction

- Recent increase in urban flash floods
- Interreg central Europe project "Rainman"
 - development of practice oriented tools to assess and reduce risk of urban flooding
 - guideline for model based urban flood prevention
 - pilot catchment in the city of Graz, Austria coupled 1d-2d-hydraulic modelling
- Risk maps based on simulation results
 - risk classification based on risk matrices
 - link the vulnerability with the hazard of each object or area



Catchment and data

- City of Graz, Austria
- 1.3 km² catchment
 - hilly terrain (mainly woodland)
 - flattening out to the east
- Flat areas urbanized
 - drained by combined sewer system.
- Sewer model available (EPA SWMM)
- No measurement data on rainfall or runoff available for catchment or sewer system

raz

of the catchment in Graz (marked in red). (Aerial view photo and base map: <u>basemap.at</u>)

Terrain model

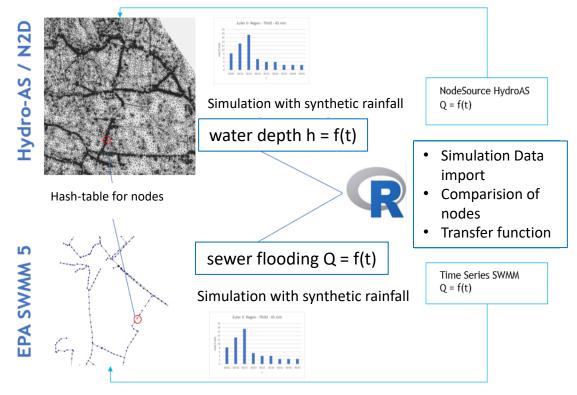
- Data
 - topography (1 m raster ALS)
 - polygons of buildings
 - aerial view photos
 - land use data
 - information on documented flooding and fire brigade operations
- Flowpath analysis in QGIS
- On-site visit
- Terrestrial survey of hydraulic relevant structures
- Basis for triangulated mesh
- Mesh nodes defined at manhole positions of sewer system

Flowpath analysis in QGIS and evaluation in on-site visit (Aerial view photo and base map: basemap.at, Photos: Monschein)

Integrated 1d-2d model – submodels

- Integrated model for runoff generation, 2d-hydrodynamic surface runoff and 1d-hydrodynamic sewer runoff
- Runoff generation calculated by SCS-CN method (US-SCS, 1972)
 - Curve Number (CN) assigned to each mesh element, based on literature values
 - calculation of effective rainfall
- Runoff concentration / surface runoff
 - 2d-hydrodynamic model based on shallow water equations (Hydro_As-2D 4.2.0)
 - input hydrograph calculated based the effective rainfall
 - Strickler roughness values define for each mesh element as water depth dependent

• Runoff in sewer system


- 1d-hydrodynamic sewer model EPA SWMM 5.1.
- only roof areas connected directly to sewer model

- Model coupling via interface Hydro-AS-2d - SWMM coded in R Project
- 2d-surface runoff model:
 - definition of inflow (surface flooding from sewer model) or outflow (surface runoff drains into the sewer system where sewer system not overloaded) in corresponding mesh node

• Sewer model:

- inflows when i) no surface flooding from the sewer system and ii) a surface runoff in the respective 2d-mesh node.
- inflow defined by Poleni formula, limited with defined maximum capacity
- Iterative simulation

Integrated 1d-2d model – simulations

• Simulation with synthetic rainfall

- return periods 10, 30 and 100 years
- based on statistical IDF curves, duration 45 min (after evaluation)
- distribution: uniform, mid-centred (DVWK), Type Euler II

• Hotspot analysis for sewer model

identification of surcharge and flooding

Local sensitivity analysis

- CN-value
- roughness coefficient (Strickler value)
- rainfall distribution of the synthetic rainfall events

Risk classification I

• Aim: create risk maps based on simulation results

Hazard analysis

- possible damage to buildings and structures based on water depth (DWA-M 119)
- personal injury hazard based on water depth and flow velocity (CHIwater, 2019)
- assigning hazard class (low, average, high and very high) via automated GIS routine

Vulnerability

- defined for each building and area based on building/area type according to the classification given in the DWA-M 119 guideline (DWA, 2016) and in Leitner et al. (2020).
- determined by aerial view photos and on-site visits and assigned to each building/area in QGIS

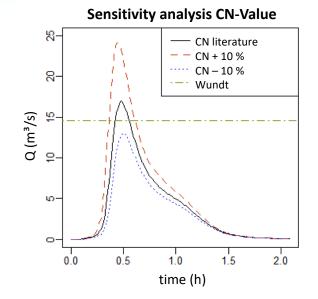
Risk classification II

nôva tech L'eau dans la ville Urban water

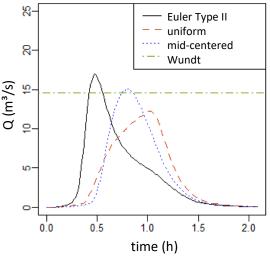
- Classification via risk matrices that link respective hazard and vulnerability
- Take probability of occurrence of the precipitation events (return period) into account
- 4 classes, colour coded

		Vulnerability (buildings)			
		low	average	high	very high
Hazard	low	low	average	high	high
	average	average	average	high	very high
	high	average	high	high	very high
	very high	average	high	very high	very high

Table 1 : Risk matrix for 30-year return period

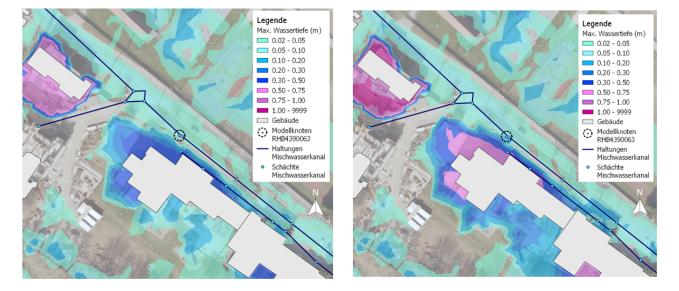

Simulation results – sensitivity analysis

• CN-value


 relatively small changes in parameter values (+/-10%) showed significant impact on the results (+ 42 / - 24%) change in the resulting peak discharge

Rainfall distribution

- choice of distribution has major impact on runoff hydrograph form and peak discharge (12 to 17 m³/s)
- Impact on risk classification



Sensitivity analysis rainfall distribution

Simulation results – model coupling

- runoff in sewer system significantly lower than the total surface runoff
- surface runoff
 - Main runoff generated on surfaces not connected to sewer system
 - Locally significant impact from sewer flooding

Exemplary results from 2d-surface runoff model. Left: first run without sewer model; Right: results from coupled model (Aerial view photo: <u>basemap.at</u>)

NÔVA TECH L'eau dans la ville | Urban water

Risk mapping

- Risk maps created for all examined return periods
 - risk classification for buildings and structures & areas with risks of personal injuries
 - risk maps for risk classification of buildings include water depth
- Discussion with stakeholders and comparison to past events
- Easily understandable and readable tool - also by stakeholders not familiar with the underlying models or assumptions

Exemplary results of risk map for return period 10 years (left) and 30 years (right) (Aerial view photo: <u>basemap.at</u>)

Conclusion

- Risk maps provide easily understandable and readable tool
- Classification of hazards, vulnerability and risk based on the automated evaluation worked satisfactorily
 - Plausibility check based on site knowledge indispensable
- Model set up: intensive work on-site and by hand
 - Structures can have significant impact on the flow behaviour
- Model coupling locally showed significant impact of coupled model vs. single models
- Large possible bandwidth for results (peak flow as well as runoff volume)
 - Direct consequence on water depth and risk classification, flood protection measures
- Sensible choice of model parameter values is crucial
 - Calibration data rarely available for similar catchments.
- Sensitivity analysis and plausibility check (e.g. with empirical runoff values, expert knowledge from prior events) advocated