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Glossary  

 

 
Recruitment: The number of fish added to the exploitable stock, in the fishing area, each year, 

through a process of growth (i.e. the fish grows to a size where it becomes catchable) or 

migration (i.e. the fish moves into the fishing area). 

 

Annual surplus production: The net production a population experiences, change in biomass plus 

any removals from harvest 

 

Exploitation rate: The proportion of a population at the beginning of a given time period that is 

caught during that time period (usually expressed on a yearly basis). 

 

Depensation effect: Refers to the case in which rates of population growth per capita decline 

when population sizes fall below some threshold level of abundance 

 

Collapsed: landings drop below 10% of the maximum catch. 

 

Regime shift:  A (medium- or long-term) shift in environmental conditions that impacts the 

productivity of a stock. 

 

ICES: International council of the exploration of the seas  

 

LME: Large marine ecosystem  
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Introduction  
 

I.1 Global stock condition 

 

The future of fisheries has been a serious concern since the last centuries and is even more 

nowadays. In 1884, a debate about the sustainability of stocks was ongoing. Two main views 

rose. The Thomas Huxley’s inexhaustible theory (Huxley, 1884) : … that the cod fishery, the 

herring fishery, the pilchard fishery, the mackerel fishery and probably all the great sea fisheries, 

are inexhaustible; that is to say that nothing we do seriously affects the number of fish. And any 

attempt to regulate these fisheries seems consequently…to be useless. And the more conservative 

view of the situation supported by the Ray Lankester quote (Lankester, 1984): It is a mistake to 

suppose that the whole ocean is practically one vast store-house, and that the place of the fished 

removed on the particular fishing-ground is immediately taken by some of the grand total fish, 

which are so numerous in comparison with man’s depredations as to make his operation in this 

respect insignificant. 

 

Nowadays, most scientists have rejected the Huxley hypotheses. Fish resources have 

proven to be in many cases exhaustible (Casey and Myers, 1998, Gaston and Fuller, 2007). The 

main concern now is to define what drives fish stocks abundance. Mainly two hypotheses prevail; 

the first is that the fish stock abundance is mainly driven by fishing pressure; the second is that, 

most of the abundance of the fish stocks is environmentally driven. Many reports and studies are 

in favor of one or the other hypothesis. Myers et al. (1994) think that fishing can lower the 

biomass enough to affect recruitment and therefore affect surplus production. Some other 

scientist are more in favor of the environment hypotheses, like Gilbert (1997) who proposed that 

there are successive good and bad periods of recruitment linked to good and bad environmental 

conditions. 
 

 

I.2 The Hutchings theory 

I.2.1 The non recovery issue 

 

Hutchings and Reynolds (2004) considered the decline and recovery of fish stocks. They 

found that out of 192 species examined 58% exhibited a maximum decline of 80% or more 

(corresponding to the IUCN definition of threatened (Baillie et al., 2004)). Hutchings (2000b) 

found that the population recovery is linked to the magnitude of the population decline. For 90 

marine fish stocks examined   41% keep declining after a 15 year period. 51% exhibited some 

recovery and 8% fully recovered. A second interesting result is the apparent relation between the 

family of the species and the recovery abilities. In fact; all the stocks which have fully recovered 

are clupeids (Hutchings and Reynolds, 2004). These results suggest that clupeids are more 

resilient to decline in the long run than other taxonomic groups. Several hypotheses can be made; 
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the first one being that the short life cycle of these species may help them to make up for fishing 

pressure, the second hypothesis being that fishing methods used to fish small pelagic fishes, 

usually seine or mid water trawl, are less destructive for habitats than others, like bottom trawls. 

The alternative explanation is that the economics of clupeids is such that when they collapse 

fishing is no longer profitable and fishing declines, whereas for gadids and other taxa fishing 

remains profitable and fishing pressure doesn’t decline. The declines might also be due to the fact 

that clupeids are more environmentally driven than others stocks (Casini et al., 2006). 
 

 

I.2.2 Complex mechanism explaining the non recovery 

  

These hypotheses brought Hutchings and Reynolds (2004) to the conclusion that, not only 

fishing pressure is the origin of decline and non recovery of fish stocks, but also more complex 

mechanisms beyond simple fishing may be responsible for the lack of recovery. Hutchings 

analysis (2001a), reveals no significant correlation between reduction in fishing mortality and 

rates of recovery. Nonetheless, populations seem to recover more quickly when fishing mortality 

is reduced after the collapse. Fishing pressure is part of the non recovery, though it might not be 

the only explanation for non recovery. Therefore, Hutchings and Reynolds (2004) introduced 

several hypotheses that might explain the non recovery of fish.  

 

According to these authors, societal and managerial responses influence the recovery. The 

faster the managerial response to the population collapse, the better the chances of recovery., 

However; the response is usually delayed for societal or political issues. Political authorities and 

fishermen might first reject the decision on the grounds that there is no need to take drastic 

measures, as the landings remains acceptale.  

 

Another hypothesis is related to life history traits. The common belief was that highly 

fecund fishes are more efficient in recovery. But in fact, two highly fecund fish, the North 

Atlantic cod (COSEWIC, 2003) and the Chinese bahaba (Sadovy and Cheung 2003) did not 

recover.  On the contrary, it seems that high fecundity may be associated with low recovery 

(Denney et al., 2002). Fishing changes the size and age structure of the population. Indeed, 

fishing usually selects bigger individual are the best spawners, and thus fishing lowers the 

fecundity of the population.  

 

In general, fishing selects the largest, oldest and fastest-growing individuals which trigger 

a genetic selection effect (Hutchings and Reynolds, 2004).  The genetic selection may lead to 

evolutionary changes that weaken the population, like reduction in age of maturity or reduction in 

size (Sinclair et al., 2002). For example, the North Sea plaice and the North Atlantic cod have 

both shown reduction in age at maturity and smaller body size at age (COSEWIC 2003).  Those 

modifications may increase post-reproductive mortality and smaller size at reproductive age, 

which reduces fecundity and produced smaller eggs (Hutchings and Reynolds, 2004).  

 

Another hypothesis deals with “depensation” effect. “Depensation” effect refers to the 

case in which rates of population growth per capita decline when population sizes fall below 
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some threshold level of abundance. Fishing is usually the variable leading, directly or indirectly, 

the population below this threshold.  

 

The modification in inter-species relation ships can also be a cause of non recovery of 

fish. 

 

The last hypothesis is habitat loss. Habitats are very important for all stages of 

development of fish. Indeed, fishing gears keep destroying and consequently reducing the 

available habitat (Reynolds et al., 2005). For example, bottom trawling tosses sediments and 

destroys the benthic life. Therefore, this gear may be an issue for recovery of demersal species. 

Thus, we expect the recovery to be more difficult for demersal species than for pelagics. The 

Hutchings complex mechanism is an alternative theory to the more traditional and simpler 

theories of  Thompson that fish abundance drives productivity and Burkenroad that 

environmental changes drive productivity. 
 

 

I.3 The role of environment and The Thompson-Burkenroad debate 
   

I.3.1 The Thompson-Burkenroad debate 

 

Initially, this debate was started when Michael Graham (1935) critized Thompson’s 

statement that recruitment is uniform, based on yield and the relationship between growth and 

natural mortality (Skud, 1975). At that time, Thompson was working on Pacific halibut. He 

explained that changes in abundance were linked to fisheries impacts on abundance. He tried to 

prove statistically the existence of a high correlation between effort and CPUE (Thompson and 

Bell, 1934). Burkenroad 1(948), replied that Thompson and Bell estimation of the fishing 

mortality was too high and that the changes in CPUE are far greater than it might be explained by 

fishing. These results led him to the conclusion that these changes in abundance were also 

environmentally induced. Therefore Thompson (1950) recognize the difficulty in identifying 

natural versus fisheries changes: “…So I can see that all organic life is subject to fluctuations as 

the environment on which it depends, an environment which determines the rate at which 

organisms die. Each species through its mortality rates and accumulated stocks is in balance 

with its environment and its own reproductive characteristics, and these form the essential core 

of the species. The halibut fishery disturbs these relationships, and natural factors can only be 

determined when these effects of the fishery are taken into account. The dynamics of the fished 

populations explain the major changes in the halibut stock. The changes in productivity remain to 

be explored.” (Thompson, 1950).   
 

I.3.2 Ecosystem fishing or environmentally driven  

  

From this debate rises three hypotheses, hypothesis of a change in productivity linked with 

fisheries impacts on abundance, the hypothesis of those changes linked with environmental 

conditions. And the last, which combines the ideas, the changes in productivity linked with 
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fisheries and environmental conditions. Each hypothesis has many arguments in favor or against 

them. Many studies tried to prove that fluctuations in abundance are driven by fishing. Anderson 

et al., (2008) compared  fluctuations in abundance for the targets species to fluctuations in 

abundance for non-harvested species. They figured out that of 7 exploited stocks there were no 

evidence of correlation between the variance in fishing mortality and in abundance. Nevertheless, 

Jonzen et al. (2001), discovered a positive correlation between the variance in fishing mortality 

and the variance in abundance. These results led to the conclusion that fishing mortality might or 

might not lead to variability in the stock abundance.  

 

The second hypothesis is that productivity and thus abundance variability is linked to 

environmental changes. Several publications described the hypothetical relationships between the 

size of a fish spawning stock and the consequent number of recruits present (Ricker, 1954). 

Hidalgo et al, (2008) present a study on hake assuming that the recruitment of these stocks is 

environmentally driven. They find as a result that for the adults, the abundance and biomass for 

the commercial fisheries did not reveal any fluctuation due to seasons. Whereas for younger 

individuals, for which it seems that there was a seasonal effect. Recruitment can respond to 

different environmental variation with different scales. The variability can be linked with regime 

shift or seasonal changes or climatic events like El Niño or PDO.  As for Cushing (1996), there is 

evidence for many stocks that there is environmentally driven variability in recruitment. One of 

the examples is the cod in the North Atlantic. It seems that the recruitment is linked with the sea 

temperature for stocks located on the limit of the species distribution. In the upper limit, 

increasing temperature are favorable for stocks and non favorable for stocks in the lower limit 

(Planque and Fredou, 1999).  

 

Gilbert (1997) proposed an alternative to the standard recruitment paradigm, involving the 

idea of a positive correlation between recruitment and spawning stock biomass. He presents this 

alternative introducing a new model. The main hypothesis is that time series of recruitment 

usually present successive periods of high or low values. From there, Gilbert makes the 

hypothesis that in a defined system, a stock can experiment several states of recruitment. These 

states are being driven by different environmental factors. In the model, Gilbert associates a mean 

recruitment to each period. Seemingly, the recruitment is on average determine by spawning 

stocks biomass and positively related to it at low biomass. Finally, the stock can occupy multi 

states in which recruitment varies around a different constant mean (Gilbert, 1997).  

 

It is usually hard to make a distinction between fishing mortality effect and environment 

effect. As fishing selects bigger and larger individuals it changes the age and size structure of the 

population. Therefore the population is weakened and is more sensitive to environmental 

variability. The results of the hake studies confirm this hypothesis. Hsieh et al. (2008) find that 7 

species out of 29 significatively have changed their geographical distribution, 8 species show a 

significant relation to a climate index like the Pacific Decadal Oscillation. This study concludes 

that fishing is actually the cause weakening the population by changing their spatial distribution.  
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I.4 Context of the study  
 

I.4.1 Using the North Sea as an example 

 

The North Sea is a semi-continental large marine ecosystem in Northern Europe. The 

North Sea as defined by the International Council of the Exploration of the Seas is the zone IV 

(figure 1). The climate is temperate were about 224 species of fish are found. Less than 20% 

species make 95% of the biomass (Ducrotoy et al., 2000).  

 

 The North Sea fishery has been one the world’s most active fisheries. The greatest 

landings per unit area are reached there (Ducrotoy et al, 2000). This area has been overfished for 

years especially with beam trawling and other demersal methods. However, the total biomass 

seems to remain almost stable and the landings are lightly decreasing.  

  

 
Figure 1: Fishing zone in 2001 established by the International Council of the Eploration of the 

Seas. 
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I.4.2 Fishing pressure 

 

 

For the North Sea we have stock assessments of 12 species, constituting 78% of the total 

catch.  We will use these stock assessments to assess competing hypotheses about the role of 

fishing and environment in driving the abundance of fish stocks.  

 

As the ICES report, out of these 12 stocks, 2 stocks have no management plan   

implemented. Even so, when some stocks recover, others don’t; which brings us back to the 

Hutchings question: why don’t stocks recover? Every complex theory that Hutchings presents in 

Hutchings and Reynolds, 2004 are bound directly or indirectly to fishing. We must not 

underestimate the effect of fishing on the ecosystem. Fishing is a variable increasing the negative 

effect of recovery of other variables. Presently the only way we know to reduce fishing impact is 

management strategy.  

 
 

I.4.3 Surplus production as an indicator in the Thompson-Burkenroad 

debate  

 

 

Most of the discussion and debate about the role of environment and fishing on fish stocks 

(Gilbert, 1997) has concentrated on recruitment, ignoring the important role of changes in body 

size through somatic growth, and natural mortality rate, both of which can dramatically affect 

stock size and productivity.  The annual surplus production (ASP) is the net production a 

population experiences, change in biomass plus any removals from harvest (Ricker, 1975). 

Surplus production is an interesting variable to work with for two main reasons. First, this 

variable is very informative as it is the net result of recruitment, somatic growth and mortality. 

Therefore, surplus production is a fundamental variable in fisheries science and fisheries 

management. For example, if the surplus production is negative it means that the biomass of the 

stock will decline, even with no catch. On the contrary, if surplus production is positive, the stock 

is productive. By knowing surplus production, managers have additive information on what 

exploitation the stock can handle. Second, surplus production captures environmental changes 

such as regime shift (Jacobson et al., 2001). Thus, a regime will be a period of high or low 

surplus production. 

  

 

I.5 Analytic approach  
 

In a first part we will try to determine, how fish stocks of the North Sea respond to fishing 

pressure. The second main purpose of this paper is to try and give an answer to the Thompson-

Burkenroad debate using surplus production. It means determine whether stocks are fishing 

driven, environmental driven or both fishing and environmental driven, that is to say “combine 

variable driven”. We are analyzing which of the 3 hypotheses proposed by the Thompson-
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Burkenroad debate applying 3 models that can support the 3 scenarios of fishing, environmental 

and combine variable driven surplus production. These models will give us an outlook of the 

situation of the North Sea stocks. Nonetheless, the most interesting is that finally by knowing 

how many stocks are fishing or environmental or the combine variable driven, we might be able 

to address the Thompson-Burkenroad debate, at least for the North Sea.  

 
 

II Materials and methods 
 

II. 1 Data 
 

II.1.1 Data sources 

 

The North Sea is a highly exploited ecosystem counting 299 species. In this paper, Cod 

(Gadus morhua), Sole (Solea solea), Blue whiting (Micromesistius poutassou), Norway pout 

(Trisopterus esmakii), Plaice (Pleuronectes platessus), Saithe (Pollachius virens), Sandeel 

(Ammodytes marinus), Hake (Merluccius merluccius), Mackerel (Scomber scombrus), Whiting 

(Merlangius merlangus), Herring (Clupea harengus), Haddock (Melanogrammus aeglefinus) are 

the 12 stocks of this ecosystem we have selected to run these analyses.  

 

The first step is to work with long time series and reliable data. Therefore we use data 

from two sources. On the one hand we are dealing with catch and biomass data from ICES 

(International council of the exploration of the seas) and on the other hand with catch data from 

LMEs (Large marine ecosystems). As some biomasses from ICES were missing we’ve estimated 

them with the equation (1), taken from the VPA analysis methods used in ICES (Lassen and 

Medley, 2001). 

 

 

( )( )MF
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+−×
+

=
1

    (1) 

 

where  

 

tB  is the biomass at year t 

tC  is the landings at year t 

tF  is the fishing mortality at year t  

M  is the natural mortality3 (Source fish base)  
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II.1.2 Combine stocks issue 

 

The ICES data contain, for some species, combine stocks that gathered data from other 

stocks than the North Sea. To select the proportion that is allocated to the North Sea in those 

stocks, we use the LME data. We make the assumption that the LME data and the ICES data are 

equal. Then, an allocation rate is calculated by dividing the LME data by the catch data. This rate 

will be used to calculate the Surplus production and the production rate allocated to the North Sea 

for the combined stocks.  

 
 

II. 2 Context of the North Sea 
 

 The first analyses are made with both LME and ICES data, in order to outline the main 

trends in the North Sea. From the assessments we have Biomass and Catch from 1953 to 2005. 

Over this same period, using the LME data we calculate the percentage of collapsed species using 

the definition that a stock is collapsed when landings drop below 10% of the maximum catch.  

 

 

II. 3 Analyses of the Hutchings question 

 

As the data set is operational, we can try to answer the first main question of the paper. 

Therefore, in a first stage features the biomass versus the annual exploitation fraction. This 

exploitation rate is calculated by dividing catch by the biomass.  

 
 

II. 4 Fitting surplus production model 
   

II 4.1 The SP definition 

 

We calculate the surplus production by using the equation (2) and the production rate by 

using the equation (3).  
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tSP  is the surplus production at year t 

tSPR  is the surplus production rate at year t 

tB  is the biomass at year t  

tC  is the catch at year t 

 
 

II 4.2 Three scenarios-Three models 

 

Then, we fit each model to a specific three scenarios. In order to represent the fishing 

pressure a Pella-Tomlinson model (1969) has been selected (4). In this scenario we are searching 

over the shape parameter (n), the maximum surplus production (m) and the carrying capacity 

(Binf). The m and Binf are initialized respectively with the value of the maximum surplus 

production and biomass. The n parameter is initialized for each species.  
n
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were  

 

 n is the shape parameter 

∞B  is the carrying capacity 

 m is the maximum surplus production  

 

The second model is a regime shift model (5). The first step is to calculate the average 

surplus production over the time series. Then we determine visually break points in the data set 

that might correspond to regime shifts. Those break points are delimitation for different regime 

period. Each period is associated to a coefficient (Pi) that we multiply to the average Sp in order 

to calculate the average SP in each period. Each coefficient is a estimated parameter.  

 

 

( )kPSPPSPSP ××= ,...,1      (5) 

 

 

 

where  

 

SP is the average of the surplus production on the time series 

iP   is a parameter determine for each period 

k   is the number of periods 
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The last model is the mixed model (6) combining the first two scenarios. The parameters 

are the coefficient Pi and m, Binf and n. 
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 For the three model the procedure is to find the set of parameters that minimizes the 

negative log likelihood (nll) by using a Generalized Reduced Gradient methods in excel 2003 and 

R 2.6.2. The negative log likelihood is the negative sum of the equation (7) for each year.  

 

 For all three models we consider an additive process error, εi ~ N(0,σ
2
) were σ   is a 

function of the predicted surplus production (8). In each model we estimate the slope and the 

intercept like parameters for each 12 species. 
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where 

 

 

SP  is the observed surplus production  

PS ˆ  is the predicted surplus production  

σ  is the variance   

 

 

InterceptSPSlope tt +×=σ         (8) 

  

 
 

II 4.3 Comparing models 

 

Finally, the comparison of the 3 models is done using the Akaike weights (9, 10, 11) 

(Hobbs and Hilborn, 2006). The Akaike weights will take value between 0 and 1, it can be 

interpreted as the probability that the model r emerge as the best model given many repetition of 

the model selection exercise (Royall, 1997, Hobbs and Hilborn, 2006)  
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KnllAIC 22 +=     (9) 

 

 

where  

 

nll  is the negative log likelihood at the maximum likelihood estimate 

K  is the number of parameters in the model 
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where  

 

r is the model selected  

 
 

II 4.4 Testing the reliability of the results 

 

To test what rate of variability of the data is explained by each model, we used the R-

squared calculated with the equation (12).  

 

 

( )
( )∑

∑
−

−
−=

2

2

2
ˆ

1

tt

tt

SPSP

PSSP
R    (12)   

where  

 

SP  is the observed surplus production  

PS ˆ is the predicted surplus production  

SP  is the average surplus production 
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III Results and discussion 
 

III .1 The North Sea status 

 

As for the LME data, the North Sea ecosystem counts species out of which about 224 are 

fish. On this 224 species ICES assessed 12 species that represent 78% of the total catch of the 

ecosystem (figure 2 and figure 3). In accordance with ICES data, the total biomass is around 8 

millions tons, widely dominated by Sandeel and Herring (figure 4). These two species are also the 

main targeted species of the ecosystem. In he North Sea ecosystem in 2005, one fifth of the 

biomass is being exploited (figure 5).  

 

On the one hand, using the LME data, 45% of the 299 species of the ecosystem collapsed 

(figure 6). On the other hand, if  we give a closure look to the ICES data, the total biomass has 

been rather stable around 10 millions tons since the 80’s with a light diminution since 2001, 

leveling at 8 millions (figure 4). The total landing has been since the 80’s declining from 2.5 

millions tons to 1.5 millions tons mostly because of the decrease of Sandeel catches. The other 

stocks catches have almost be constant (figure 5). Moreover, the figure 7 reveals that only 2 

stocks remains depleted out of 12, the blue whiting stock and the cod stock. Finally, when using 

the ICES data, the picture does not look as severe as it looks using the LME data.  The North Sea 

system doesn’t seem to be collapsing, but is clearly experiencing a very heavy exploitation. 

Therefore, if not collapsed, some stocks are depleted, declining or at low abundance.  

 

 Proportion (Richness) of assessed stocks in the 

North sea in 2001

287species, 

96%

12 species, 4%

assess

non assess
 

Figure 2:  Proportion of number of stocks assessed by ICES present in the North Sea ecosystem. 

This diagram was performed with LME data.  
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Proportion (catches) of assessed stocks in the 

North sea in 2001

125438617.6 T 

78%

34936107.55 T 

22%

assess

non assess
 

Figure 3: Proportion of landings for the 12 stocks assessed by ICES, present in the North Sea 

ecosystem. This diagram was performed with LME data. 
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Figure 4: Total biomass in the North Sea for the 12 ICES stocks from 1983 to 2005. This graph 

uses ICES assessment data including combine stocks. The beginning year for each stock is 

different. The data are complete from 1983 except for whiting which time series starts in 1995.  
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Landings in the North sea for 12 ICES stocks
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Figure 5: Total landings in the North Sea for the 12 ICES stocks from 1983 to 2005. This graph 

uses ICES assessment data including combine stocks. The beginning year for each stock is 

different. The data are complete from 1983 except for whiting which time series starts in 1995.  
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Figure 6:  Percentage of collapse in the North Sea, taking into account 299 species from 1951 to 

2001. This graph was performed with data landings from the LME data using the 10% standard 

definition of collapsed. 
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Figure 7: North Sea stocks  collapsed in Biomass or  in Landings between 1953 and 2005. Graph 

performed with ICES data.   
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III. 2 Surplus production, fishing, environmental, or complex process 

driven 
 

The following part has the aim of clarify whether and how surplus production is shaped. 

The different hypotheses raised here are that the biomass is influenced by fishing or is driven by 

temporal changes. The last hypothesis is that surplus production is both shaped by changes in 

biomass due to fishing and temporal changes.  

III. 2.1 Productivity Fishing driven  

 

Figure 8: Hake total biomass (red line) and catch (black histogram)(a) and recruitment (b) from 

1975 to 2005. 

 

 

Figure 9: mixed model fitting the Hake surplus production versus biomass (a), and versus time 

(b), production rate versus biomass (c).  
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Hake surplus production seems to be influenced by fishing (figure 9a). Hake is one of the 

stocks that starts with a very low biomass in these time series. Surplus production for this stock is 

quite important. It has been constant around 4000 tons from 1978 to 1995. Then it decrease to 

level at 2000 tons and since then has been increasing again.  In this case the surplus production 

follows perfectly the biomass. So, as the biomass decrease the surplus production decrease. In 

figure 8, it looks like the biomass is linked to recruitment. And that recruitment has periodic good 

year classes. This is maybe why the stock remains productive.  The production rate (figure 9c) 

was earlier at 0.4 and nowadays levels around 0.5. Meaning that out of 2 units of biomass one 

unit is produced in surplus, and so this extra unit is available for the fisheries. Therefore, this 

stock should be able to support half of his biomass being exploited. 

 
 

III 2.2 Productivity Environmental driven 

 

 
Figure 10: Saithe total biomass  (red line) and catch (black histogram)(a and recruitment (b) from 

1983 and 2005 
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Figure 11: Gilbert model fitting the Saithe surplus production versus biomass (a), and versus time 

(b), production rate versus biomass (c). 

 

Saithe is one of the species that appears to be environmentally driven. We identify one 

breaking point in the surplus production, which leads to the idea that there were two different 

regime (figure 11b).  The first period spread from 1970 to the mid 80’s. Conditions in this regime 

seem to be profitable for the productivity of Saithe stocks unlike the conditions in the 1985 to 

2005 regime.  

   

Figure 11a reveals that the surplus production is following a clock wise loop pattern. This 

loop might be induced by a very good year of environmental conditions. These conditions might 

have minimized the loss of young individuals and the recruitment and biomass therefore 

increased. Figure 10 reveals that in the mid 70’s two years good classes in recruitment triggered 

an increase in biomass. In the second period, we notice that Saithe recruitment has been somehow 

variable throughout time, but maxima recruitments are also weaker. O’Brien and Fox (2000), 

found that there were recent changes in the North Sea temperature. Since 1988 the mean 

temperature in the North Sea has been increasing. Recruitment might be affected by this 

modification in temperature. As the recruitment gets weaker, the biomass keep decreasing, just 

like surplus production. As the biomass goes down from 1 million to 200,000 tons, the surplus 

production levels down from 200,000 tons to 100,000 tons. The production rate (figure 11c) 

levels around 0.4 in the early years of the time series and lose one unit to approximate 0.3. 

Meaning that out of 3 units of biomass almost one unit is produced in surplus, and so this extra 
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unit is available for the fisheries. Therefore, this stock should be able to support one third of his 

biomass being exploited. 
 

III. 2.3 Productivity Mixed model  

 
Figure 12:  Mackerel total biomass (red line) and catch (black histogram) (a and recruitment (b) 

from 1970 to 2005. 

 

 
Figure 13: mixed model fitting the Mackerel surplus production versus biomass (a), and versus 

time (b), production rate versus biomass (c). 
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Atlantic mackerel is a pelagic, therefore we expect this stock to be environmentally 

driven. However, it is not only environmentally driven but also fishing driven. None only that the 

Atlantic mackerel stock is environmentally driven it is also fishing driven at the same time.  

 

As we well know the Atlantic mackerel stock has been intensively exploited. Thus, it is 

the mixed model that suits the mackerel surplus production (figure 13a). The baseline available 

for the Atlantic mackerel in this study is 1970. In that year the Atlantic mackerel starts with a 

moderate biomass compared to some other stocks. This, because at that time, the stock had 

already been largely exploited which might explain the reason why fishing is driven the surplus 

production. As shown in figure 13b, surplus production experiences two different environmental 

regimes. Like for Saithe the former period (1970-1978) is a more favourable than the later period 

(1980-2005), certainly linked to the temperature of the North Sea. In this case, the stock 

experienced a high recruitment in the early 70s (figure 12). This good year classes generate a high 

surplus production with a mean of 600,000 tons. In the second period, the surplus production 

leveled at 200,000 tons though there is still some high recruitment. Even though there are some 

good year classes, the biomass has been steadily decreasing, which is probably due to increasing 

fishing pressure. Figure 13c reveals that the mackerel stock can support one fifth of his stock 

being exploited whereas earlier it could afford half. 

 
 

III. 2.4 Helping the Burkenroad and Thomas debate  

   

We are comparing the 3 models in order to evaluate the power of the alternative 

hypotheses to explain the changes in surplus production.   As surplus production and catch drive 

the abundance of the stocks this question is essential.  

 

As lots of author, such as Hsieh, Reiss and Hewitt  thought, the biological dynamic of the 

species is mainly driven by complex processes including both fishing and environmental 

conditions. The AIC weighted table (Table 1) shows that for the Cod, the data provides 47% 

support for the hypotheses that both fishing and environmental drive the surplus production, 27% 

gives support for the hypothesis of abundance influenced by fishing and 25% for the hypothesis 

of temporal changes in abundance. Blue whiting, Mackerel and Whiting data give support for the 

mixed hypothesis respectively at 98%, 100% and 94%. For Blue whiting, the data provide 0.02% 

support for the hypothesis of abundance influenced by fishing and for Whiting the data provide 

0.06% support for the hypothesis of temporal changes in abundance. Mackerel is a small pelagic 

highly exploited. Small pelagics are known to depend on environment. The study reveals that this 

stock is under the influence of environment but also of fishing.  

 

Saithe, Plaice, Sandeel and Herring stocks are environmentally driven. The data provide 

respectively 100%, 77%, 58% and 95% support for the regime shift hypothesis (table 1). When a 

stock is environmentally driven the data provide 0% support for the fishing model, the 

complementary explanation is attributed to the mixed model. Two of those 4 stocks experienced a 

collapse, Sandeel and Herring. Herring did recover thanks to high recruitment years (figure 15a). 

As this stock is environmental driven we can make the hypothesis that the stock did not recover 
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mainly because of management measures, but due to good year classes. Sandeel was a stock 

maintain at good level until 2000 (figure 7), until then the stock was sustained by a really strong 

year classes occurred in 1995. Then, as the recruitment was very low, the stock started to 

collapse. The recruitment seems to be very variable (figure 15a), and to control the biomass 

variability. When the stock collapsed management measure were taken to maintain the stock. 

This decision may not have help the stock to recover but maybe helped so that the situation did 

not get worse.  Plaice and Saithe have never experienced a collapse in the North Sea. Their 

recruitment is very variable but what is interesting is Saithe and Plaice recruitment are in 

opposition of phase, which confirms that their recruitment is driven by environmental conditions.   

  

Hake is the only stock fishing driven. Hake surplus production the data provide 98% 

support for the hypothesis that abundance is influenced by fishing. The Hake is still a very 

productive stock and so is interesting for fisheries.  

 

 In conclusion, figure 14 reveals that the data suggest 14 % support the fishing hypothesis, 

whereas the data provide 40% and 46% support respectively for the environmental and the mixed 

model.  The data provide by these 12 stocks do not support the Thompson hypothesis of the 

abundance driven b fishing. Instead these data support the Burkenroad hypothesis that the surplus 

production might as well environmental induced.  

 

Ocurrence of the 3 scenarios, fishing, environmental and 

combine scenario.

14%

40%

46%

PT model

Environnement model

Mixed model
 

Figure 14: Comparison between the three models applied on the 12 main stocks of the North Sea 

using the AIC weighted  
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Table 1 : AIC weighted assigned to the alternative hypothesis of abundance driven by fishing or 

temporal changes or the by the mixed hypothesis, for the 9 stocks of the North Sea 

 Pella-Tomlinson Environment Mixed 

Cod 0.27 0.25 0.47 

Blue Whiting 0.02 0.00 0.98 

Plaice 0.02 0.77 0.21 

Saithe  0.00 1.00 0.00 

Sandeel 0.00 0.58 0.42 

Hake 0.98 0.00 0.02 

Mackerel 0.00 0.00 1.00 

Whiting 0.00 0.06 0.94 

Herring 0.00 0.95 0.05 

 

a) 

 

b) 

 
c) 

 

d)  

 
Figure 15: Herring(a), Sandeel (b), Plaice (c), Saithe (d) total biomass  (red line) and catch (black 

histogram) and recruitment (green line) from 1970 to 2005. 
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III. 2.5 Limitation in the analyses 

 

While we have framed the discussion around the three hypotheses, abundance driven, 

environmentally driven or a mixed explanation, there remains a fourth hypothesis that is that none 

of these three hypotheses explain the data.  When we look at the percentage of the variation in 

surplus production explained (table 2), we have decided to discard the Sole, Norway pout and 

Haddock from the results. None of these models explain more than 20% of the variability present 

in the data. For Haddock and Norway pout and Sole, it seems that the environment and the mixed 

model have problems to fit those surplus production data because the surplus production is 

variable around an average almost with the same variance (figure 16). The Pella-Tomlinson 

model does not capture a great deal of variability of the Norway pout and Haddock data either. 

Around 20% of the variability is explained by the fishing model for both stocks.  

  

Except for these three stocks, in general the three models capture the variability present in 

the surplus production data. Most of the models explain more than 50% of the variability of the 

surplus production data.  

 

The AIC weighted are not always in accordance with the R-squared for example the Hake 

R-spared indicates that all three models explain the same variation in the data, when the AIC 

weighted give all the credit to the Pella-Tomlinson model, this because the Pella-Tomlinson 

model have less parameters.  

 

 

Table 2: Proportion of the variation in surplus production explained by each alternative model, 

Pella-Tomlinson, Gilbert and mixed model.  

 PT model Environmental model Mixed model 

Cod 0.22 0.33 0.35 

Sole 0.00 0.00 0.00 

BW 0.52 0.03 0.74 

Norway pout 0.22 0.08 0.16 

Plaice 0.36 0.51 0.49 

Saithe 0.20 0.33 0.31 

Sandeel 0.56 0.72 0.79 

Hake 0.88 0.79 0.89 

Mackerel 0.28 0.37 0.62 

Whiting 0.04 0.45 0.75 

Herring 0.07 0.38 0.33 

Haddock 0.21 0.00 0.00 
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Figure 16: Pella-tomlinson model fitting the Sole surplus production versus biomass (a), and 

versus time (b) 

 

 

III.3 Stock recovery issue and answering the Hutchings question 

 

Hutchings thinks that, not only fishing pressure is the origin of decline and non recovery 

of fish stocks, but also more complex mechanisms beyond simple fishing may be responsible for 

the lack of recovery. In this section we will try to understand what influence decline and recovery 

and why some stocks recover when others don’t.  

 

In response to depletion and collapse of those stocks, ICES took some management 

decisions. In the end 70’s moratoria were implemented on the North Sea Herring. Other 

management decisions were taken for the Mackerel (Henrik Sparholt et al., 2007). Seems those 

harvest control rules led to the recovery of the Herring stock but were not efficient for the 

Mackerel stock. 
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III. 3.1 Herring, a successful recovery 

    

The Herring stock has been highly exploited for centuries in the North Sea. The 

exploitation rate on the Herring stock has been increasing in the 60’s and the 70’s as the stock 

was collapsing (figure 17a). The rate increased from 0.1 to 0.5 as the biomass went down from 7 

million tons to 1 million ton. A moratorium was implemented in 1978. The exploitation rate was 

decreased almost to zero but not totally due to bycatch.  Indeed, the Herring stock recovered 

rapidly thanks to a strong year classes in the early 1980’s (Bjorndal and Lindroos, 2004). The 

Herring is a clupeid, it’s a short live, r strategy pelagic. Therefore the response to a strong year 

class is pretty instant. Those results are sustained by the Hutchings paper saying that all stocks 

that were fully recovered were clupeids (Hutchings and Reynolds, 2004). Those strong year 

classes were a good stepping stone for the recovery of the stock, although the recovery was 

possible because of the moratorium. Since the moratorium, the exploitation rate of the Herring 

has been increasing to reach 0.3 and then, leveled at 0.2 nowadays. 
 

III.3.2 Mackerel, remains depleted 

    

While the Mackerel’s exploitation rate has been slowly increasing from 0.2 to 0.35, the 

biomass was at low abundance from 1.6 million tons to 400 thousand tons (figure 17b). Then as 

the rate was lowed the stock started to rebuilt. The rate has been increasing since then to reach 0.4 

in 2005, which is the highest exploitation rate the stock has suffered. In fact, if this stock has 

difficulties to recover it might be because the exploitation rate is way too high. We have proved 

that the stock can support one fifth of its biomass being exploited, so obviously the exploitation 

rate is higher than what the stock can produced.  
  

III.3.3 The Atlantic cod, a collapsed stock 

    

 The Atlantic cod (Gadus Morhua) is one of the stock that has been depleted between 

1960 and 2005. This stock abundance seemingly did not recover (figure 17c), even worse, it has 

now collapsed by the 10% standard (figure 7). The stock is well below the limit Bpa level of 

70,000t below which ICES considers productivity of the stock impaired (Horwood,et al., 2006). 

The exploitation rate was around 0.3 in the 60’s and is now stabilized at 0.45 (figure 17c). As the 

biomass levels down the exploitation rate gets a little higher which, is meaningless in terms of 

management. So, it is obvious that this rate is way too high for the stock and a recovery can 

hardly be expected.  
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a)       

b)      

c)       

Figure 17 : Total biomass (red line) and catch (black histogram) in million of tons and 

exploitation rates evolution, for the Herring (a), the Atlantic mackerel (b) and the Atlantic cod 

(c),in the North Sea, between 1960 and 2005. Exploitation rate versus biomass is represented 

with arrows from white to red as the years are more recent. 
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III.3.4 A link between high exploitation rate and collapse  

    

 Four other stocks have collapsed in the last 5 years, Sandeel, Blue whiting, Haddock and 

Norway pout. The biomass of the Sandeel collapsed in 2005 but is now recovering to reach 30% 

of the maximum biomass (figure 7). As the biomass was decreasing the exploitation rate was 

lowered so the stock starts recovering (figure 18a). The biomass of Blue whiting remains 

collapsed and, the catch that collapsed in 2002, increased slightly to reach 15% of the maximum 

catch, which is close to the threshold (figure 7). The exploitation rate applied on the Blue whiting 

(figure 18b) is actually twice higher than it was 20 years ago, which explains that the landings 

increase, even though the biomass keeps decreasing and remains collapsed. This example reveals 

that even if the landings remains at a sustainable level for the fisheries, it doesn’t mean the stock 

is in good shape. Managers could always take into account the biomass of the stock to implement 

management plans. For the Norway pout the exploitation rate had to be set down almost to zero 

so that the stock can rebuilt (figure 18c).  

    

Exploitation rate, for most stocks in the 60’s was between 0.2-0.4, after implementing 

management strategies on lots of stocks, lots of stock did rebuild. But, nowadays, exploitation 

rate is, higher than it was in the 60’s, between 0.3-0.5. Such rates may not be the only cause of the 

non recovery of these stocks; nevertheless the exploitation rate in the North Sea, for most stocks 

remains too high considering the exploitation rate and the productivity of each stock. Finally, we 

can try and give a first answer the Hutchings question: (Hutchings and Reynolds, 2004) why 

don’t stocks recover; by pointing out that in general the stocks are still fished too high. It is true 

that usually stocks surplus production is influenced at the same time by fishing and temporal 

changes, meaning that surplus production is influence by complex phenomena. But even if the 

stocks are influenced by complex phenomena, when the exploitation rates lower, the stocks start 

rebuilding.  
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a)      

b)      

c)       

Figure 18: Total biomass (red line) and catch (black histogram) in million tons and exploitation 

rates, for Sandeel, BlueWhiting and Norway pout, in the North Sea, between 1983 and 2005. The 

exploitation rate versus biomass is represented with arrows from white to red as the years are 

more recent. 
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IV Conclusion  
 

These results lead to the conclusion that, in fact few stocks of the North Sea are primarily 

fishing driven. Most of stocks are driven by both fishing and environmental conditions, which 

support the Burkenroad hypothesis. Apparently it is more difficult for these stocks to rebuild after 

a collapse.  This provides an answer to Hutchings question: why don’t stocks recover? We have 

noticed though that the exploitation rates for most of those stocks remains high. The management 

decisions might be more restrictive on exploitation rate. It might be a benefit for the stocks if the 

management plan were associated to environmental conditions. It will consist in lowering the 

exploitation rate in a bad environmental periods and allowed higher exploitation rate in good 

environmental periods. Environmental driven stocks are another issue as the status of the stock 

depends only on non control variable. In the North Sea like in other ocean of the world we are 

witnessing environmental changes that might affect the surplus production of the stocks 

positively or negatively and thus weaken the ecosystem. As the recovery is only a matter of good 

recruitment year, some stocks might not recover even if management measures are considered. 

Fishing driven stocks apparently have experienced no collapse and if they do they recover when 

the fishing pressure is released.  

 

While we have framed the discussion around the three hypotheses, abundance driven, 

environmentally driven or a mixed explanation, there remains a fourth hypothesis that is that none 

of these three hypotheses explain the data. For some stocks none of the Pella-Tomlinson, Gilbert 

or Mixed model explain more than 20% of the variability present in the data.  

  

In general the three models capture the variability present in the surplus production data. 

Most of the models explain more than 50% of the variability of the surplus production data. But 

even though the AIC weighted are not always in accordance with the R-squared. The AIC 

weighted might not represent the best what real proportion of the data support the hypothesis.  

 

The third main problem of this study is also a method problem. In fact, the environmental 

model traduces regime shifts that may or may not be link to environmental changes. Moreover as 

we find the break points arbitrarily, they might not correspond to an environmental change.  

 

First in this kind of model we could use analytic methods using the variance to determine 

the break points (Pawlowski and Cabezas, 2008). Even further, the same analyses could be run 

using an environmental model that depends on effective environmental factors like SST, or that 

corresponds to climate changes like the PDO (O’Brien and Fox, 2000).  

 

Extra analysis could be run on fishing pressure and on production rate to find tendencies 

respectively in fishing pressure and in production rate versus biomass. Concerning the Hutchings 

hypothesis, we didn’t pay too much attention at other explanation than fisheries combine with 

environmental changes. It would be interesting to integrate genetics, habitat loss into a more 

complex model and make a comparison to see which variable has more weight than the other.  

Moreover, theses results concern only the North Sea; it would be interesting to extrapolate the 

analysis to other stocks, to see whether we find the same trends. 
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