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Abstract

Linked data provides methods for publishing and connecting structured data on

the web using standard protocols and formats, namely HTTP, URIs, and RDF.

Much like on the web of documents, linked data resources continuously evolve

over time, but for the most part only their most recent state is accessible. In or-

der to investigate the evolution of linked datasets and understand the impact

of changes on the web of data it is necessary to make prior versions of such re-

sources available. The lack of a common “self-service” versioning platform in

the linked data community makes it more difficult for dataset maintainers to

preserve past states of their data themselves. By implementing such a platform

which also provides a consistent interface to historic information, dataset main-

tainers can more easily start versioning their datasets while application develop-

ers and researchers instantly have the possibility of working with the additional

temporal data without laboriously collecting it on their own.

This thesis, researches the possibility of creating a linked data versioning plat-

form. It describes a basic model view for linked datasets, their evolution and

presents a service approach to preserving the history of arbitrary linked datasets

over time.





Zusammenfassung

Linked Data beschreibt Methoden für die Veröffentlichung und Verknüpfung

strukturierter Daten im Web mithilfe standardisierter Protokolle und Formate,

nämlich HTTP, URIs und RDF. Ähnlich wie andere Dokumente im World Wide

Web, verändern sich auch Linked-Data-Resourcen stetig mit der Zeit. Zumeist

ist jedoch nur ihr aktueller Zustand zugänglich. Um die Evolution von Linked

Datasets untersuchen zu können und wie sich Änderungen auswirken, ist es

notwendig, frühere Versionen solcher Resourcen verfügbar zu machen. Das

Fehlen einer frei nutzbaren Versionierungsplattform in der Linked-Data-Gemein-

schaft erschwert es den Veröffentlichern von Datensätzen geänderte Daten zu

archivieren. Durch die Implementierung einer solchen Plattform, welche eine

konsistente Schnittstelle zu den historischen Informationen bietet, können die

Bereitsteller von Daten leichter mit der Versionierung beginnen. Anwendungsen-

twickler und Wissenschaftler erhalten die Chance mit den zusätzlichen zeitlichen

Daten zu arbeiten, ohne sie selbst umständlich sammeln zu müssen.

Diese Arbeit untersucht die Möglichkeit der Schaffung einer solchen Linked

Data Versionierungsplattform. Sie beschreibt eine grundlegende Modellansicht

für Linked Datasets, deren Evolution und präsentiert einen serviceorientierten

Ansatz zur Erhaltung der Historie beliebiger Linked Datasets.
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Preliminaries

This work includes examples and figures that contain URIs from common name-

spaces. For readability and clarity we will use the following namespace prefixes

to abbreviate long URIs (prefix on the left, replacement right):

xsd: http://www.w3.org/2001/XMLSchema#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns

dbp: http://dbpedia.org/resource/

dbo: http://dbpedia.org/ontology/

dbpp: http://dbpedia.org/property/

umbel: http://umbel.org/umbel/rc/

v





1 Introduction

The key observation that lies at the very core of the linked data effort is that data

is useful beyond small groups of collaborating people in research and other com-

munities. Usually however, data is not made available in a way that allows it

to be referenced or queried in a consistent manner. That is mostly because data

is published in a variety of application- or domain-specific formats and proto-

cols which prevent others from using it. While the world wide web, the “web

of hypertext”, has become an incredibly important source of information today,

it lacks methods required for querying and processing information and deriv-

ing clues from it in an automated manner with proper support from software

agents. Therefore, linked data proposes a generic way to express information

and principles for structured data publishing allowing data to be interlinked

and integrated into a global knowledge graph, a “web of data”.

Much like the web of documents, this global knowledge graph is in a steady

state of flux, constantly changing. With the status quo in linked data publishing,

data is largely replaced with updated versions. Generally only the most recent

working state is kept and manipulated directly, discarding any overwritten or

removed data as updates are performed.

This practice results in a substantial loss of information that is routinely kept

in many modern web applications. Wikipedia, for instance, stores the revision

history for all of its articles.

Being able to access such histories is useful for a number of reasons:

Version References and Data Consistency In a distributed graph like the web,

where different authorities are responsible for distinct parts, referenced data

may change or become unavailable at any time without the knowledge of those
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referencing it. As common practice with software dependencies, authors may

instead wish to explicitly link to a specific revision of a resource, an ontology or

vocabulary for instance.

Change Inspection Data users may further wish to investigate deltas between

revisions, determining what kind of changes were made. For an overview, the

amount of added, removed or unchanged statements hint at how significant a

change was with regard to the overall amount of data. More detailed inspection

might reveal updated facts or changed semantics.

Data Quality Assessment The possibility of looking at the history of an in-

formation resource also opens up opportunities for assessing the quality of the

data. In particular, temporal attributes like recency, volatility, and timeliness [1]

may be evaluated based on revision information. These help data consumers

in understanding whether or not a dataset is actively maintained and whether

they should use it.

Dynamic Processes While time-series observations can be represented explic-

itly, many data sources only provide single, up-to-date values. Wikipedia pages

for companies, for instance, only provide the current numbers for revenue; coun-

try pages only give the most recent population numbers. For the same reason,

DBpedia contains just these values. In order to study dynamic real-world pro-

cesses however, being able to look at the development of such indicators is cru-

cial.

Data Dynamics Finally, understanding the evolution of the web of data itself

requires recording state changes. Only this way, we can later identify patterns

in changes and understand how they propagate, see which new resources are

referenced and how they grow.

Without preserving the histories of linked datasets many of such insights are im-

possible. Yet there is no singular established practice for versioning in the linked

data community. Most datasets only provide occasional, versioned releases in

the form of dumps, others do not have a versioning strategy at all.

From the perspective of a linked data publisher, a lot of effort goes into main-

taining the dataset itself and also the needed infrastructure. Even without the

2



Introduction

additional task of recording a revision history, a large fraction of the linked data

web suffers from poor availability and other technical problems [2]. When data

publishers go the extra mile for archiving past dataset states, different solutions

expose different, non-standard interfaces for version access, limiting their use-

fulness.

For linked data consumers on the other hand, the lack of a central repository

for past dataset states frequently means they have to gather such information

on their own. When they do, their results are not always made public. Some

will provide dumps, but those are generally not very discoverable and do not

allow granular access. You need to know how these files are organized and then

download the appropriate dump as a whole. From a data consumer perspective,

a consistent access mechanism is missing.

This thesis proposes an approach for preserving the entire state of collections of

linked data resources as the basis for retrospective investigations of the linked

data graph. In particular, this thesis introduces an approach for separating the

concerns of linked data publishing and the recording of dataset history. It specif-

ically aims at relieving dataset publishers from the task of maintaining their

own versioning solution and infrastructure. At the same time, the proposed ap-

proach provides improved discoverability of prior resource states and version

access using standard protocol mechanisms.

The open nature of the approach allows anyone to create and share recordings

of datasets. Ideally, dataset maintainers will submit changes to an official repos-

itory for their own dataset. For datasets where this is not the case, others can

push change information from existing linked data crawling and monitoring

tools.

The approach enables fine-grained access to separate dataset resource states

through time-oriented queries. To that end, it uses a consistent time-travel inter-

face for all versioned datasets that aligns well with linked data principles.

An implementation of our approach is provided as an open-source project writ-

ten in Python, with a running instance of the service readily available for try-out

and suggestions.

3
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Through the creation of an archive for historic linked dataset information, we

hope to gradually cover a significant portion of the web of data and make past

dataset states available for new applications and further research on the dynam-

ics of datasets.

1.1 Contributions

The primary goal of this work is to research the possibility of creating a linked

data versioning platform. The main contributions of this thesis are:

• An approach to versioning datasets based on linked data principles (chap-

ter 5) and an investigation of possible realization paths (chapter 6).

• A design for a linked data archival platform providing interfaces for sub-

mitting snapshots of linked data resources as well as a time-based access

protocol for resource revisions, backed by a storage model which balances

the requirements for storage space and retrieval time (chapter 7).

• An implementation of the presented design as a Python web application

which can be used to provide linked data archival as a service to dataset

publishers.

1.2 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 briefly introduces the fundamental concepts and terminology used

throughout this thesis.

Chapter 3 illustrates typical linked data publishing workflows, use-cases for

linked data versioning and issues with common versioning practice.

Chapter 4 discusses related work in the area of versioning semantic data.

Chapter 5 then develops the requirements for a linked data archival platform.

Chapter 6 documents alternative implementation approaches towards a ver-

4
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sioning service, investigates their characteristics and limitations.

A service design and working implementation is described in chapter 7 followed

by an evaluation of the created system in chapter 8.

Chapter 9 then outlines future perspectives for the developed approach before

we conclude with an overall summary of this thesis in chapter 10.

5





2 Background

This thesis develops an approach to versioning semantic data on the basis of

linked data principles. This chapter will briefly introduce the concepts and ter-

minology which form the background of our work.

2.1 Linked Data

The semantic web [3] is envisioned as an addition to the world wide web which

allows software agents to autonomously discover and interpret available infor-

mation. As such, the semantic web uses the very same internet infrastructure

but relies on explicit, structured knowledge representations to avoid human

language ambiguity and other sources of uncertainty present in common web

content.

Linked data establishes a set of guidelines for publishing and interlinking infor-

mation on the semantic web using technology standards. The goal is to enable

distributed information resources to be connected and to allow uniform access

to make the best use of knowledge worldwide.

The core principles of linked data are [4]:

1. Use URIs to name things. In linked data descriptions, abstract concepts as

well as real-world objects and living beings receive a unique URI so they

can be identified and referred to unambiguously.

2. Use HTTP URIs so they can be looked up. The use of HTTP as a transport

protocol allows web clients to retrieve a metadata description associated

with a named entity by dereferencing its URI.

7
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3. When someone looks up a URI, provide useful information via RDF (and SPARQL).
The Resource Description Framework (RDF)1 defines an abstract modelling

framework for information representations. The SPARQL Protocol and RDF
Query Language (SPARQL)2 defines another mechanism for efficient remote

queries on large RDF datasets. It is considered an extra feature in addition

to the basic linked data.

4. Include links to other URIs, so that they can discover more things. An important

part of modelling knowledge about the world is modelling relationships.

URI references help link otherwise separated resource descriptions and

provide context information.

Like the name implies, linked data focuses on integrating semantic web re-

sources into a so-called “web of data”. One of the major strengths of this web-

based approach: By using retrievable URI references, linked data allows agents

to discover and navigate related information resources.

The inherent distributed nature of this approach however means that changes to

a resource may have unintended side-effects on those referencing it. Nonethe-

less, the temporal aspect of linked data is largely neglected in practice. Preser-

vation of past states is not widely handled in a way which allows discovery and

navigation of prior resource states.

2.2 RDF

The Resource Description Framework (RDF) defines a metadata data model in-

tended for representing information about web resources. In the case of linked

data, where web resources represent abstract concepts, real-world objects and

people, RDF can be used to describe such entities as well.

RDF represents information about the world in the form of statements. An RDF
statement is comprised of three components: a subject, a predicate and an object.
For that reason statements are also represented and referred to as triples.

1http://www.w3.org/TR/rdf11-concepts/ (June 19, 2015)
2http://www.w3.org/TR/rdf-sparql-query/ (June 19, 2015)
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Background

A set of triples is called an RDF graph. It is common to interpret such a triple-set

as a labelled directed graph. The subject and object components of each triple

are used to identify graph nodes. The edges of a graph, connecting subject- to

object-nodes, are labelled by the corresponding predicate (see figure 2.1).

predicate
subject object

Figure 2.1: Visual representation of an RDF statement with subject, predicate

and object as a node and directed-arc diagram.

There may be three distinct kinds of nodes in an RDF graph:

• IRIs (Internationalized Resource Identifiers)3,

• blank nodes and

• literals.

They are collectively known as RDF terms.

An IRI uniquely identifies a particular resource by its name. A literal encodes a

specific, atomic value, e.g. a string, number or date. A blank node, unlike IRIs or

literals, only expresses that something with the given properties exists, without

explicitly naming it.

In an RDF statement,

• the subject is either an IRI or a blank node,

• the predicate is an IRI and

• the object is either an IRI, a blank node or a literal.

The RDF graph model is used as a basis for uniformly expressing information

across different fields and domains. Figure 2.2 shows an example graph con-

taining information on the city of Berlin.

3complements the URI standard, http://tools.ietf.org/html/rfc3987 (June 19, 2015)
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rdf:type

dbp:Berlin

dbo:City umbel:City

dbp:Germany

3415091dbpp:population

dbo:country

“Berliner”

rdf:type

dbo:demonym

dbp:Konrad_Zuse

dbpp:birthPlace

Figure 2.2: An example RDF graph describing the resource with the IRI

http://dbpedia.org/resource/Berlin, its properties and

relationships.

Multiple RDF graphs may be grouped together in an RDF dataset4. An RDF

dataset contains exactly one default graph and zero or more named graphs. Graphs

are named by either an IRI or a blank node. In such cases, statements are also

represented as quads (4-tuples) where the fourth, additional component denotes

the graph name.

A variety of concrete RDF syntaxes exists that allow RDF graphs and datasets

to be serialized into RDF documents so they can be exchanged between systems.

An example of the line-based N-Triples5 syntax is given in figure 2.3.

By providing a common language for information representation, RDF is one

of the core foundations of linked data. The specific properties of the RDF data

model have to be taken into account when developing a versioning system for

linked data.

4since RDF 1.1, http://www.w3.org/TR/rdf11-datasets/ (June 19, 2015)
5http://www.w3.org/TR/n-triples/ (June 19, 2015)
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<dbp:Berlin> <rdf:type> <dbo:City> .

<dbp:Berlin> <rdf:type> <umbel:City> .

<dbp:Berlin> <dbo:country> <dbp:Germany> .

<dbp:Berlin> <dbpp:population> "3415091"^^<xsd:integer> .

<dbp:Berlin> <dbo:demonym> "Berliner"@en .

<dbp:Konrad_Zuse> <dbpp:birthPlace> <dbp:Berlin> .

Figure 2.3: N-Triples serialization of the RDF graph in figure 2.2. Each line en-

codes a single subject-predicate-object statement from the graph. For

readability the prefixes defined in the preliminaries section are used.

Usually an N-Triples file would include the full URLs.

11





3 Motivation

Linked data originates from a variety of data sources. This chapter presents

common linked data management strategies and how snapshots of semantic

web resources are typically provided today.

3.1 Linked Data Publishing Workflows

Linked data specifies conventions for publishing information in a way which al-

lows for uniform access and interpretation. By encoding information according

to the RDF specification, linked data achieves interoperability between different

data sources.

Typical sources of linked data are [5]:

• RDF files served by a web server,

• RDF embedded into other document formats on the web,

• linked data views on top of databases,

• linked data interfaces to RDF datasets stored in triplestores, and

• linked data wrappers around existing application or web APIs.

Each of these strategies follows a different process for publishing linked data.

When working with a relatively small set of entities, a plain, file-oriented ap-

proach offers a low-overhead solution. RDF files may be edited manually with

a text editor or exported from a software tool. The resulting files are then pub-

lished by uploading them to a web server which serves them under a certain

URI and with the appropriate content-type etc. This approach is often used to

13
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publish personal FOAF profiles and also RDF vocabularies.

Instead of creating RDF-only documents, RDF descriptions may also be embed-

ded into other document formats on the web. This way publishers avoid hav-

ing to maintain separate resources for a machine-processable RDF description

and a graphical representation intended for human users. Embedded RDFa1

for instance may reside in static HTML files or dynamic pages generated by a

content-management system.

Another approach of publishing linked data is to define linked data views on

top of databases. A number of mapping languages and tools are available [6].

The D2R server2 for example allows clients to access the content of relational

databases as linked data.

Similarly, RDF datasets maintained inside triplestores are often exposed through

linked data interfaces. Triplestores are purpose-built RDF databases which have

their own query language called SPARQL (see section 2.1). Linked data inter-

faces like the popular Pubby3 construct linked data responses by querying a

SPARQL endpoint and generating RDF descriptions according to a configurable

mapping scheme.

Lastly, wrappers around existing application or web APIs can transform data in

a linked data-compatible manner. Virtuoso Sponger4 is an example of a middle-

ware system that generates linked data from a variety of sources.

Linked data provides an abstraction which hides the differences between all

kinds of information sources and creates a common interface to the data. In

most cases, the published data represents the current state of affairs and is con-

tinuously updated.

1http://www.w3.org/TR/rdfa-core/ (June 22, 2015)
2http://d2rq.org/d2r-server (June 22, 2015)
3http://wifo5-03.informatik.uni-mannheim.de/pubby/ (June 22, 2015)
4http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtSponger

(June 22, 2015)
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3.2 The Need for Linked Data Versioning

As data changes over time, it becomes desirable to preserve past states in order

to refer to specific revisions, compare them or assess data quality in terms of

temporal criteria.

RDF vocabularies, for instance, establish common concepts for talking about cer-

tain domains. Publishers of linked data choose suitable terms from vocabularies,

i.e. properties or classes, to express information in a way which allows others to

understand it and relate it to information published elsewhere. A variety of vo-

cabularies exists and mappings between the concepts of different vocabularies

clarify their relationships.

Like other software, vocabularies are subject to change and it may therefore be

necessary to refer to a specific vocabulary version in a dataset, another vocabu-

lary or a mapping.

Explicit version references are also useful to link to a description of a resource at

a certain time and provide metadata. From a data engineering perspective, ver-

sion references allow us to annotate exact resource states to mark inconsistencies

or errors, or when proposing patches [7].

They are further helpful when comparing descriptions of the same resource at

different points in time. For example, we may want to make statements about

the European Union and its member states before and after May 2004 in linked

data, referring to two selected snapshots of the corresponding DBpedia resource

http://dbpedia.org/resource/European_Union.

Today, a vast amount of facts on our changing world is captured as linked data:

Current population numbers, weather data, recent data on financial markets,

politics, the environment and more. The constantly updated information is very

valuable, but additional relevant insights are often derived from an understand-

ing of the underlying processes (e.g. population growth, climate change etc.).

Being able to step through past versions of linked data resource descriptions

promises a more meaningful investigation of the development of such indicators

and possible correlations.

15
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Finally, access to a resource’s history allows for a better characterization of the

resource description itself. Applications can look at how recent the given infor-

mation is, estimate its change frequency and determine when to check back for

updates. If the data has not been updated in a long time, clients may choose to

re-evaluate its trustworthiness and prefer other information sources instead.

Unfortunately, snapshots of linked data are usually not taken and published in

a way that makes them automatically discoverable and accessible.

3.3 Versioning Practice

Looking at the sources of linked data, a range of versioning strategies have

emerged. While versioning is not mandated by the linked data approach, many

dataset maintainers recognize the value of regular snapshots for recovery pur-

poses and retrospection.

When working with versioned RDF files, changes are typically tracked using a

version control system (VCS) like CVS, Subversion, Mercurial or Git. These are

well-established tools in software engineering, mainly for versioning text files,

in particular source code. Given a suitable text-based RDF serialization format,

they may equally well be used for versioning RDF data.

Preferably, a chosen RDF syntax is line-oriented and guarantees stable ordering

to accommodate how version control systems process files. Otherwise, due to

the sequential nature of files in contrast to RDF set semantics, the performance

of the versioning system may suffer significantly. When no further ordering

constraints are placed on the employed serialization algorithm, diffs can become

as large as the data itself even for equivalent graphs [8]. Storage will not be as

compact, retrieval not as efficient.

While practicable for small sets of files, the VCS-approach also has limitations

due to file-orientation and VCS characteristics. It generally does not work well

with very large files and for large numbers of files because the costs of creating

new resource revisions increase.

Even more, the central issues of version discovery and access remain. Some
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version control systems provide web interfaces for inspecting past states of files

remotely. However, the relationship between the current resource state and past

versions is not clearly stated. Looking at the published linked data, previously

available states are not explicitly identified and referenced.

On the other hand, data maintained inside databases and triplestores is typically

modified directly and overwritten or removed information is not retained. Data

manipulation language statements, e.g. in SQL or SPARQL Update5, alter the

internal state of the data store and cannot always be reversed.

Probably the most common versioning strategy in such cases are occasional

database or RDF dumps, published according to some naming scheme. Usu-

ally a version identifier or datetime is encoded in the file path.

These dumps are commonly monolithic exports of the full dataset resulting in

large downloads even if clients are only interested in individual resources. Es-

pecially when working with multiple datasets this creates a huge overhead for

version retrieval and the whole point of linked data is connecting different data

sources.

Additionally, there is no way of telling how revisions are identified and how

they relate to each other without knowing the used naming conventions. These

conventions in turn vary greatly across datasets.

For an illustration of this fact consider two real-world examples of published

RDF dumps:

1. ftp://ftp.ebi.ac.uk/pub/databases/RDF/biomodels/r26/

biomodels-rdf.tar.bz2, a release of BioModels6, and

2. http://tools.wmflabs.org/wikidata-exports/rdf/exports/

20150511/wikidata-terms.nt.gz, an export from Wikidata7.

Here, r26 denotes a release number while 20150511 encodes a date. Dates can

be encoded in various ambiguous formats. With sequential release identifiers it

5http://www.w3.org/TR/sparql11-update/ (June 19, 2015)
6https://www.ebi.ac.uk/rdf/documentation/biomodels (June 23, 2015)
7http://tools.wmflabs.org/wikidata-exports/rdf/ (June 23, 2015)
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is not apparent, when a certain version was actually created.

The former dump is not even accessible via HTTP and its URI points to a bzipped

tar bundle containing various RDF/XML8 and Turtle9 files while the latter points

to a single gzipped N-Triples file.

Access to the contained version information in dumps is not consistent like it

should be in the linked data world. The main reason being, that such dumps are

primarily intended for interested humans, not programs. You usually have to

follow a series of links on hypertext pages to find them.

Similar considerations are true for linked data wrappers for application and web

APIs. They usually generate linked data based on the current state of the un-

derlying data source and are mostly not version-aware. If snapshots are taken

from wrapper-generated resources, they are typically published in the form of

dumps, e.g. web crawlers and monitoring tools often channel results into com-

pressed archives.

All in all, today’s linked data versioning practice does not make snapshots of

past resource states uniformly discoverable and accessible, drastically limiting

their usefulness. Some common versioning approaches do not allow the recon-

struction of prior states of linked data resources with feasible effort.

The amount of work required to find, set up and maintain more advanced ver-

sioning solutions presents a serious entry barrier for many dataset publishers.

This thesis explores the idea of a linked data versioning service and how it could

improve this situation.

8http://www.w3.org/TR/rdf-syntax-grammar/ (June 23, 2015)
9http://www.w3.org/TR/turtle/ (June 23, 2015)
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4 Related Work

This chapter discusses related work on versioning in the context of linked data.

4.1 RDF Change Descriptions

We have already discussed RDF syntaxes in section 2.2. A simple strategy for

preserving dataset history is to make full copies of such descriptions and archive

them. This, however, requires a lot of storage space for data which continuously

and gradually evolves.

Another way of preserving dataset history is to describe data changes via RDF

using specialized vocabularies or through patch formats. A published series of

such change descriptions would theoretically allow clients to reconstruct prior

resource states and could be more compact than full copies.

4.1.1 Change Vocabularies and Ontologies

A variety of vocabularies and ontologies allow for describing changes to RDF

datasets. They represent update information by means of RDF itself.

Changeset1 defines a vocabulary for changes to resource descriptions using RDF

reification: An update is represented by a set of statements about statements

and whether they are added or removed. Additionally, the vocabulary includes

terms for supplying metadata on the change, in particular the date it was created

and the preceding changeset.

1http://vocab.org/changeset/schema.html (June 23, 2015)
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Gutierrez et al. [9] have proposed a temporal extension of RDF graphs for assert-

ing when a contained statement is considered valid. Their temporal vocabulary

uses reification for time-labelling each individual RDF statement in a graph.

The Graph Update Ontology (GUO)2 provides an OWL3 ontology for describing

graph changes which avoids RDF reification but requires a very different inter-

pretation. With GUO, updates are encoded as graph nodes which have proper-

ties indicating the actual target node of the update operation. These GUO nodes

further reference artificial blank nodes connecting the properties and objects to

add or remove to the target node.

The log ontology [10] was developed to describe high-level changes to aid in on-

tological engineering. It was integrated into the collaborative RDF editor Powl4

which is meanwhile discontinued.

A problem with using RDF vocabularies or OWL ontologies for versioning pur-

poses is that the change representations they yield are generally not very com-

pact. For each atomic change, a multitude of new RDF statements is created.

Ideas to encode changes diverge and tools to actually apply the described up-

dates are missing. None of these vocabularies has developed into an accepted

standard and the publication of change descriptions in RDF is not commonly

adopted.

4.1.2 Patch Formats

Patch formats are basically the syntactical counterparts to change vocabularies

and ontologies. Both Delta [8] and RDF Patch5 propose dedicated patch file for-

mats to represent differences between RDF models for change inspection and

propagation between systems.

While not as expressive as RDF, they are mostly derived from RDF syntaxes

which facilitates patch generation and processing. Patch formats tend to be

more compact than the semantic change descriptions presented in the previous
2http://purl.org/hpi/guo# (June 23, 2015)
3http://www.w3.org/TR/owl-features/ (June 23, 2015)
4http://aksw.org/Projects/Powl.html (June 23, 2015)
5http://afs.github.io/rdf-patch/ (June 23, 2015)

20

http://purl.org/hpi/guo#
http://www.w3.org/TR/owl-features/
http://aksw.org/Projects/Powl.html
http://afs.github.io/rdf-patch/


Related Work

section, making them good candidates for many practical and space-conscious

applications.

4.2 HTTP-based Version Access

Apart from finding a way of representing version information, it is also neces-

sary to provide access to stored revisions. A time travel protocol for the web

has been previously proposed by the Memento Project6 [11], which aims at mak-

ing archived web resources easily accessible via time-based content negotiation.

The protocol is natively supported by a number of web archives, such as the In-

ternet Archive7 and public libraries. It is available as an extension to MediaWiki

instances8 and a proxy implementation exists for a range of services which offer

their own version API.

The Memento approach has also been adopted in the context of linked data, e.g.

to provide access to prior versions of DBpedia resources [12]. To achieve this,

DBpedia releases were stored in a MySQL database as complete snapshots and

served through a Memento endpoint (a more detailed description of the proto-

col follows in section 7.2). The demonstrator, however, misses an interface for

creating new revisions and updates have been discontinued with DBpedia 3.9.

Nevertheless, the Memento protocol offers a version discovery and access mech-

anism that aligns well with linked data principles. It uses the HTTP standard to

communicate links to prior resource states. Clients can easily discover whether

a resource supports versioning and where to retrieve resource snapshots.

Furthermore, Memento establishes a mechanism for time-based querying. A

client does not need to download and interpret a meta description for the re-

source history before retrieving a snapshot. Instead, it specifies the date and

time it is interested in and lets the server handle revision reconstruction. What-

ever the internal representation of resource history, the client has no need of

knowing used conventions, perform ontology mapping or other complex trans-

6http://mementoweb.org (June 23, 2015)
7https://archive.org/ (June 23, 2015)
8http://www.mediawiki.org/wiki/Extension:Memento (June 23, 2015)
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formations .

This kind of separation also offers flexibility in evolving the used revision stor-

age model without requiring additional effort on the client-side.

4.3 RDF Store Versioning

Large RDF datasets are typically maintained inside specialized RDF stores. Sev-

eral projects have proposed the development of RDF stores with versioning ca-

pabilities.

4.3.1 Version Control for RDF Triple Stores

Cassidy et al. [13] have proposed a version control system for RDF inspired by

Darcs9 and its semi-formal theory of patches. Their goal is to apply source code

management strategies to the development of RDF datasets.

The system they describe, like Darcs, is entirely built around patches. Patches

are represented as named graphs containing separate nodes for each added and

deleted statement in the versioned graph. Each of these nodes has properties for

subject, predicate and object as well as the type of the change. Hence, for each

single addition or deletion from the RDF store at least four new statements are

introduced for the patch.

The authors conclude that their system for version control “is around four to

eight times slower and needs from two to four times as much space as the raw

RDF store”.

4.3.2 R&Wbase

R&Wbase [14] tracks changes to an RDF dataset within a modified triplestore

implementation. Changes to the whole dataset are encoded via context val-

ues assigned to the changed triples for each revision. These context values are

9http://darcs.net/ (June 24, 2015)
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numbers from a continuous sequence: Additions are marked by even values,

deletions receive odd values (essentially the least significant bit distinguishes

addition from deletion). In order to restore a revision, triples are scanned and

selected if the highest context value found for a combination of subject, predicate

and object is even.

R&Wbase allows querying the dataset via SPARQL and uses virtual graphs for

revision access.

It envisions a Git-like tool geared towards distributed dataset development and

reimplements traditional source code management strategies. The approach

supports advanced versioning concepts like branching and merging to form

commit graphs with multiple lines of development.

The proof-of-concept implementation is based on an outdated version of the

Virtuoso10 triplestore and is no longer actively maintained. Its branching model

incurs higher overhead for version reconstruction than needed for single-history

archival.

Finally, while R&Wbase proposes a workflow for the development of a single

RDF dataset, it does not consider the linked data aspect of the managed infor-

mation.

4.3.3 R43ples

R43ples [15] implements an RDF-versioning proxy in front of a SPARQL end-

point. It uses named RDF graphs to group additions and deletions and rewrites

client requests in order to implement version queries and updates. R43ples per-

forms version control on a graph level.

Much like R&Wbase, R43ples aims at being a development tool with additional

semantics for tagging, branching and merging. It introduces its own set of non-

standard SPARQL keywords for version control commands and querying past

states of the data.

Revisions of the data are restored by creating a temporary graph from the head

10https://github.com/openlink/virtuoso-opensource (June 24, 2015)
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revision, then rolling back changes stored in the preceding addition and deletion

graphs.

The temporary copies created for graph diffing and revision reconstruction turn

out to be rather costly. The comparably poor performance of the approach limits

its use to “medium-sized datasets” with short histories.

4.3.4 Apache Marmotta

KiWi, which is now part of the Apache Marmotta project, implements a triple-

store backend on top of a relational database, i.e. H2, PostgreSQL or MySQL.

An optional versioning module11 for KiWi can be compiled into the Java project

to enable support for change tracking.

The versioning module uses tuple versioning, assigning created and deleted

timestamps to every row in the underlying database table. Instead of physically

deleting statement information, the deletion timestamp is set to the current date

and time which allows them to be filtered at a later point. Past states of the

triplestore content can be inspected through a Memento interface in Marmotta.

Unfortunately, versioning support in Marmotta is apparently not widely used.

In their 2014 paper, Embury et al. [16] report that they “couldn’t find any pub-

licly accessible versioned data sources that used Marmotta”.

The overall data model is designed to be used within one organization, with a

group of trusted users operating on a single, shared dataset.

4.4 Versioning Services

A few versioning services exist on the web, both for common web pages and

semantic web resources in particular.

The Wayback Machine12 archives a large part of the world wide web through

its crawls, including many linked data resources. As such, it has become an

11http://marmotta.apache.org/kiwi/versioning.html (June 24, 2015)
12http://waybackmachine.org/ (June 25, 2015)
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invaluable resource of historic web data. The site’s users, however, only have

limited control over when snapshots of certain resources are actually taken.

Linked Open Vocabularies (LOV)13 focuses entirely on a small part of the semantic

web: It hosts meta information on a curated list of RDF vocabularies. Users can

suggest vocabularies which are then reviewed by a team [17]. If a vocabulary is

accepted, it will then be monitored on a daily basis to detect updates. Some past

versions of selected vocabularies are available for download.

13http://lov.okfn.org/dataset/lov (June 25, 2015)
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5 Approach

We have seen, in the previous chapter, that a number of approaches to preserv-

ing dataset history have been proposed, in particular change descriptions and

RDF store versioning. However, none of these solutions has yet seen widespread

adoption as versions are typically not stored together with the original data. If

snapshots of linked data sources are taken, they are usually not created and pub-

lished in a way which allows linked data clients to discover and access them.

For instance, when working on a small dataset in the form of relatively few

files, the overhead for operating a versioning RDF store instance is daunting for

most developers. Simpler tools are preferred for version control in the develop-

ment process, i.e. the RDF files are updated locally, maybe committed to a VCS

repository and then copied to a web server where they replace prior versions.

Usually there is no visible connection between the last, published version and

its archived states.

Even larger projects using triplestores internally to manage linked data have not

yet, to a large extent, adopted RDF store versioning solutions. Instead, we see

that they stick to publishing RDF dumps placed on static file servers. Mostly,

these are referenced through hypertext links on HTML pages for other develop-

ers to download them if they are interested, but not for linked data applications.

In parallel, there is extensive work on linked data crawling and monitoring tools

in the research community [18, 19, 20]. The Dynamic Linked Data Observatory
(DyLDO) [21] performs weekly crawls on a subset of the web of data and gathers

a huge amount of valuable snapshots of linked data resources. Unfortunately,

these are then also published as dumps and hence not accessible by linked data

clients.
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Ideally, what we would like to achieve is to create a storage platform for versions

of linked data resources, to which publishers (or observers) can easily push re-

source snapshots and reference them so they are discoverable on the linked data

web.

Data source Linked Data Archive

map track

…

Triplestore + 
Linked Data 

Interface

DBMS +
Linked Data 

View
DB

Plain RDF 
documents

Embedded RDF

TS

monitoring

RDF1

URI1

RDF2

URI2

RDFn

URIn

…

source change detection/event

t

…

Figure 5.1: Linked datasets originate from a variety of different data sources. A

versioning system receives notifications about changes to a dataset

directly from the publisher or through monitoring tools.

Different sources for linked data exist, e.g. views defined on top of relational

databases or dedicated triplestores, data published in plain RDF documents or

RDF embedded in other document formats like HTML (figure 5.1).

By approaching the problem of recording dataset history on a linked data level,

we achieve an abstraction over different sources of data and are able to establish

a consistent interface to historic states.
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5.1 A Model for Linked Datasets

While RDF concepts have been formalized to a large degree, the linked data

principles are stated in natural language. To gain a common understanding of

our interpretation of the linked data principles, we will give a brief definition of

the core ideas.

Following the linked data principles, a linked data resource is identified by an

HTTP URI and described via RDF. We mathematically represent a resource and

its associated RDF description as a pair (URI, RDF). The URI component is

the address that can be used to refer to this resource and to retrieve its RDF
metadata description.

Note that when we say RDF description, we refer to the abstract model

for the resource, not a concrete serialization in an RDF syntax. Techni-

cally, retrieving the content of a web resource may yield RDF descrip-

tions in different formats.

Now, a linked dataset is simply a set of linked data resources along with their

descriptions, a binary relation

DS = {(URI1, RDF1), . . . , (URIn, RDFn)}

in which each URI can appear at most once (ger. rechtseindeutige binäre Relation).

By definition, this relation can be equally described as a partial function from

the set of valid HTTP URIs to the set of possible RDF descriptions.

Adding the notion of time to linked datasets, a dataset may undergo changes

and evolve at certain points in time t0 < · · · < tk:

DSt0 = {(URIt0,1, RDFt0,1), . . . , (URIt0,n0 , RDFt0,n0)}

DSt1 = {(URIt1,1, RDFt1,1), . . . , (URIt1,n1 , RDFt1,n1)}
...

DStk = {(URItk ,1, RDFtk ,1), . . . , (URItk ,nk , RDFtk ,nk)}

in which case we refer to DSt0 , . . . , DStk as dataset states and RDFt0,1, . . . , RDFtk ,nk
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as resource states (as an identifier, the URI for a resource never changes and thus

resource state is encoded in the RDF description1).

5.2 Possible Changes in Linked Datasets

Based on this model view, we can identify these possible (atomic) changes be-

tween subsequent dataset states:

• The introduction of a URI-RDF description pair.

• The removal of a URI-RDF description pair.

• Changes to the RDF description associated with a URI.

Typically, such changes are not recorded. The data source is modified in place

and only the current state of the data is kept.

5.3 Querying Linked Dataset History

Q3 (index)URI

1

2

3

n

Q1 (state)

Q2 (history)

t

…

Figure 5.2: Linked dataset history consisting of individual timelines for each re-

source and a visualization of the basic types of queries.

A linked data archival system should answer the following essential queries

with regard to dataset history (in order of importance):

1http://www.w3.org/TR/webarch/, section 3.5.1 “URI persistence” (June 28, 2015)
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Q1 What was the description RDFx of URIx at time t?

Q2 When did the description for URIx change?

Q3 Which URI∗ existed at time t?

A graphical illustration of these queries is given in figure 5.2.

Q1 allows the retrieval of a past state of a specific resource, a static snapshot or

“memento” [22]. We consider this to be the most common type of query.

A client will use such a query to request a specific resource state referenced in

another linked data description or to retrieve a certain state as part of iterating

the resource history.

Q2 allows for tracing changes to a single resource through time, figuring out at

what points in time it was actually changed.

Queries of this kind could be used to analyze temporal change characteristics,

for instance, the change frequency of a resource or how recently it has been mod-

ified. In combination with Q1 queries, it can be used to further investigate con-

tent changes throughout the resource’s history, e.g. what fraction of statements

is changed or which statements in particular.

Q3 asks for an index of the resources represented in a dataset at a certain point

in time.

Finding out about all resources in a dataset may be used as a starting point for

other queries. However, we suspect that, usually, time-based investigation will

start with a specific resource, i.e. requesting it directly or through a reference.

Other, high-level queries like cross-version queries may be implemented in terms

of these basic classes of queries.
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6 Investigated Alternatives

Before arriving at our final system design, we have experimented with different

implementation approaches for our linked data versioning service. This chapter

describes attempted realization paths and issues we faced.

6.1 Triplestore Extension

An approach we investigated was extending an existing triplestore implemen-

tation to support versioning and time-based retrieval of linked data resources.

6.1.1 Native Triplestores

Early triplestore implementations were based on relational databases. More and

more projects however move towards native triplestore implementations. Two

well-known and mature open-source projects have deprecated their RDBMS-

based stores and now recommend the newer purpose-built triplestore variants:

• Apache Jena1 is moving from SDB, based on a relational database backend,

to the native TDB, promising better speed, scalability and support.

• Sesame2 deprecated its MySQL and PostgreSQL stores in favor of the new,

maintained Sesame Native Store.

Both of these native triplestore implementations, like others we have found, do

not support versioning.

1https://jena.apache.org/ (June 30, 2015)
2http://rdf4j.org/ (June 30, 2015)
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We refrained from a modification of a native triplestore with regard to breaking

changes in future updates to the original source code. Integrating versioning

support and support for multiple datasets would require widespread changes

in many of the triplestore components (data structures, persistence layer, query

engine and so forth). Given that these projects are still under active develop-

ment, it appears unlikely a heavily modified variant could benefit from mainline

improvements without conflicts.

6.1.2 Virtuoso Universal Server

Inspired by R&Wbase [14], we looked into the possibility of adapting an up-to-

date Virtuoso Universal Server3 (version 7).

Virtuoso is a middleware and database engine hybrid which incorporates the

functionality of different data store and server classes. It supports relational

databases but is also widely used as a triplestore.

Virtuoso manages RDF data through its own relational database engine. A large

triple/quad table is used to store a single RDF dataset and additional tables store

namespaces, URI-mappings and blank node identifiers. To efficiently work with

RDF data, Virtuoso has built-in support for RDF datatypes and procedures for

handling RDF terms.

The hybrid RDBMS-RDF store character of Virtuoso looked as if it would enable

us to more easily alter its quad table schema, introduce additional time and user

information. The many custom RDF extensions however made Virtuoso hard to

adapt for our purpose of implementing a linked data versioning service.

We had to identify the functions Virtuoso uses internally for handling URI, blank

node and literal encoding and bulk insertion of statements. These are natively

implemented in C and modify the RDF store directly.

Using them on our modified storage schema caused unwanted side-effects. RDF

store transactions altered rows from a previous insertion and corrupted the data

because the internal implementation of those functions relied on the conven-

3http://virtuoso.openlinksw.com/ (June 30, 2015)
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tional quad table schema.

6.2 VCS-based Implementation

Another path we investigated was basing our service implementation on a reg-

ular version control system. Such systems are primarily intended for managing

software source code. Using a textual RDF representation they may be used to

version linked datasets as sets of RDF files as well.

Version control systems usually process files in a line-oriented, sequential man-

ner, i.e. for diffing. To accommodate for this, the versioned RDF files should be

created using an RDF syntax which encodes one statement per line and applies

additional ordering constraints, e.g. sorted N-Triples or N-Quads4.

We have selected two popular version control systems, Git5 and Mercurial6 for

our experiments. Both support similar versioning functionality, but implement

different storage models. We were interested in whether one of these systems

could be used to efficiently version linked datasets.

6.2.1 Git

Git is essentially built on the concept of a content-addressable object store which

identifies and retrieves objects based on a checksum of their content [23]. Ob-

ject data is stored on the underlying filesystem in a directory structure where

the file path is derived from the content hash, e.g. an object which hashes to

d6cef2b706db6ca52192829103473c8dd99919ef is stored in a file named

.git/objects/d6/cef2b706db6ca52192829103473c8dd99919ef.

Git distinguishes three types of objects to represent repository history:

• commits,

• trees and
4http://www.w3.org/TR/n-quads/ (June 30, 2015)
5http://git-scm.com/ (June 24, 2015)
6https://mercurial.selenic.com/ (June 24, 2015)
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• blobs.

Commit objects form the backbone of the repository history. Each commit con-

tains a pointer to the commit which precedes it. They thereby form chains allow-

ing to retrace any changes to the repository. Additionally, commits store meta

information on the change, i.e. the time the commit was made, its author and

a commit message. Finally, a commit points to a tree object for the stored state

of the repository root directory. Trees represent the state of a directory within a

repository. They point to other tree objects for subdirectories, or blobs. A blob

object encapsulates the contents of a versioned file at a certain point in time,

a complete snapshot. All objects are stored according to the same filesystem

structure described above.

In an early experiment, we have evaluated Git on a sample of DBpedia re-

sources. A bare Git repository was initialized and the sample resources from

DBpedia release 3.8 were added, one file per resource description. Afterwards,

a new version for each of the resource files was committed with the content up-

dated from DBpedia 3.9.

Instead of using Git’s user-oriented “porcelain” commands, we created Git ob-

jects directly to remove the need for a working copy and reduce unnecessary

filesystem accesses (lstat(2)7 calls to determine which files have changed and

file content reads).

Git regularly stores objects in loose format, meaning each object is stored in a

separate file. Object content is zlib8-compressed but file content is not stored

as a delta against previous versions. Even if you only change a single line in a

large file, Git stores the new content as a completely new object. Git however

has a garbage collection (gc) operation which will pack loose objects into so-called

packfiles, look for similar objects and delta-compress them.

During our test run, we periodically triggered garbage collection every 100 com-

mits to keep variations in repository size within an acceptable limit. You can see

the characteristic sawtooth curve for the oscillating repository size in figure 6.1

(only the first 5,000 commits are shown). There is a steep growth in the reposi-

7http://linux.die.net/man/2/lstat (June 30, 2015)
8http://www.zlib.net/ (June 30, 2015)
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tory size as each update creates new loose commit, tree and blob objects. After

100 commits, repository size is reduced again by repacking.
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Figure 6.1: Git repository size for first 5,000 commits of the experiment, mea-

sured after each commit. Size is periodically reduced by triggering

garbage collection every 100 commits.

After all, while commits were generally fast, a limiting factor for this approach

was gc time. Figure 6.2 visualizes the time taken for the first 50 gc invocations

(across 5,000 commits) during our experiment. Measured gc time exhibited lin-

ear growth behaviour with regard to the number of recorded updates (updates

were similar in size) and continued to increase in this way until we aborted the

test run after more than 13,700 commits at which point each gc invocation al-

ready took more than one minute.

For large, changing datasets, such variations in repository size and growth in

compaction time appear impracticable for a service implementation.
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Figure 6.2: Git garbage collection time in relation to the number of commits

made (number of updated resource descriptions).

6.2.2 Mercurial

In contrast to Git’s snapshots-first storage design, Mercurial implements a stor-

age model which more commonly stores deltas between subsequent versions.

One can therefore expect a similarly compact repository size, but a more grad-

ual increase.

The core structures Mercurial uses to store repository history are called [24]:

• changelog,

• manifest and

• filelog.

In Mercurial, the changelog contains information about all changes to the repos-

itory. Each revision of the changelog identifies the author of the commit, when
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it was made etc. Just like each Git commit points to a tree object, a changelog re-

vision specifies the version of the manifest to use. The manifest, in turn, records

which files are present in that version of the project and what revision of the file

is valid. Finally, each individual file’s history is stored in a filelog.

All of these metadata structures are stored in the same format, a revlog. A revlog

encodes revisions of a file as deltas on top of a snapshot. Specific file revisions

are recreated by reading the latest snapshot and subsequent deltas. To limit revi-

sion retrieval time, Mercurial departs from the delta-only approach and creates

new snapshots when the accumulated size of deltas since the last snapshot ex-

ceeds a fixed threshold.

To test how Mercurial performs as a version control system for RDF files, we

used the same process we used to test Git. Note that we had difficulties with

committing changes to a bare Mercurial repository. The measured repository

size shown in figure 6.3 excludes the size of the working copy.

The initial on-disk size for the Mercurial repository is much higher compared

to that of Git. This is due to Mercurial allocating a separate filelog for each

individual resource and a per-file overhead introduced by the fixed filesystem

block size. Git is not affected by this overhead as much, because of packing.

While the initial values for our experiments with Git and Mercurial differ signifi-

cantly, it is apparent that the growth in repository size is less steep for Mercurial.

Mercurial appends mostly deltas to existing changelog, manifest and filelog ob-

jects instead of creating completely new snapshots. This means that repositories

tracking a fixed set of files with gradual changes will grow more slowly, even

without a Git-like garbage collection operation. The initial size difference will

diminish as soon as additional revisions of existing files are added.

The reason we chose not to continue with Mercurial is: Its implementation as-

sumes that a single file, index or manifest can be read into system memory in its

entirety9. While this assumption is probably valid for most source code projects,

it fails for projects with a lot of files (because the manifest will be large and it is

reconstructed in memory) or large files (e.g. if you try to group multiple resource

9https://mercurial.selenic.com/wiki/FAQ/TechnicalDetails (June 30, 2015)
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Figure 6.3: Mercurial repository size for the first 5,000 commits of the experi-

ment, measured after each commit. Size increases more gradually

compared to Git with no garbage collection required.

descriptions into a single file). During an experiment with a larger dataset, Mer-

curial eventually filled up the test machine’s memory and caused the process to

exit with an error.

Overall, the high memory consumption and costly reconstruction of manifests

for resource retrieval is not well suited for the implementation of a linked data

versioning service.

6.3 Summary

Even though these experiments did not yield a strong candidate for our service

implementation, we think that these results are also valuable for others who are
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interested in (linked) data versioning.

Unfortunately, all the open triplestore implementations we have found lacked

support for versioning and/or multiple datasets. Extending a native, open-

source triplestore with such capabilities would require modifications to many

interdependent system parts, which is why we chose not to pursue this ap-

proach.

For a service implementation that deals with many datasets simultaneously, we

needed a storage design which would grow predictably and which does not re-

quire fitting large files into memory. The version control systems we evaluated,

Git and Mercurial, did not fulfil these criteria. It is likely, that the same applies

to other VCS implementations.

In the end, our service implementation could not use any of the investigated

approaches directly, but we adapted some of the abstract ideas found in these

systems.

There are few more options which could be further explored and compared as

future work. We will give a brief discussion in chapter 9.
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7 Implementation

This chapter presents our implementation of a linked data versioning service.

The described interfaces and storage model have been implemented as a Python

web service on top of a relational database management system.

7.1 System Overview

The platform we created aims to provide linked data archival as a user-friendly

service. Users or organizations can register freely and create repositories for the

linked datasets that they wish to track. Generally, dataset maintainers will want

to create a repository for their own dataset, but others may choose to monitor

public datasets and submit them to the service if an official repository is missing.

Apart from a graphical web interface, which allows users to manage their ac-

counts and browse repositories, the service comprises two major HTTP APIs:

• A Push API for submitting dataset change information to the system.

• A read-only Memento API for accessing versions of stored linked data re-

sources.

The following sections describe these system APIs and the underlying storage

model for the current system.

7.2 Memento API

The idea of a time-travel interface for the web has previously been developed

and advocated by Van de Sompel et al. [11]. Their protocol-based framework,
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called “Memento”, uses standard HTTP capabilities in order to link and retrieve

past states of web resources1. The archival platform we propose applies the

concepts of Memento to linked data resources for consistent and discoverable

version access.

To begin with, the Memento approach distinguishes four types of web resources:

original The original resource is a resource that exists or used to exist, and for

which the system provides access to prior states.

timegate The timegate is the resource providing access to prior states of the

original using datetime negotiation.

memento A memento is a resource representing a prior state of the original

resource at a certain point in time.

timemap The timemap is a resource which lists URIs and time information of

the mementoes available for an original resource.

A major advantage of this distinction is that it allows for different systems to

handle requests for each resource type, i.e. original resources and past states

may be served by separate hosts.

Original

In our case, the original resources, for which we want to provide access to prior

states, are arbitrary linked data resources published on the web.

Timegate

Each repository created with our service acts as a timegate for such original re-

sources. It supports datetime negotiation for accessing prior resource states, the

mementoes. The datetime negotiation mechanism works very similar to regular

HTTP content negotiation. Except instead of a document format, a certain point

in time is requested by passing an Accept-Datetime header (Q1-type query,

section 5.3).
1http://tools.ietf.org/html/rfc7089 (July 2, 2015)
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For example, entities from the Upper Mapping and Binding Exchange Layer (UM-

BEL)2 might be tracked in a repository umbel/entities. If a client was inter-

ested in a past state of UMBEL’s PlanetPluto resource, it could request

/api/umbel/entities/http://umbel.org/umbel/rc/PlanetPluto

from the service, passing the HTTP Accept-Datetime header with an RFC

26163-compliant datetime value, e.g. Sun, 15 Aug 2010 02:14:00 GMT.

Mementoes

To a request like the one above, the server will reply with an RDF description

equivalent to that of the tracked original resource valid at the given point in

time. The response will also include a Memento-Datetime header informing

the client about when the resource was actually changed. This might be earlier

than the actual requested timestamp. In case the resource did not yet exist at

that time or was deleted previously, the server responds with the appropriate

HTTP 404 status code.

For straight-forward linking to a specific version of a resource, it is also pos-

sible to specify the desired datetime as a path component instead of a header

argument, e.g.:

/api/umbel/entities/20100815021400/http://umbel.org/...

An index of all the URIs in a dataset at any given time (Q3) may be retrieved

using the same datetime negotiation mechanism described above. For datasets

consisting of many resources, this index is split up into a number of pages. The

service provides this additional, virtual index resource as an extension to the

Memento framework.

2http://umbel.org/ (July 4, 2015)
3http://www.ietf.org/rfc/rfc2616 (July 4, 2015)
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Timemap

If a client is interested in the change history of a particular resource (Q2 query),

it can request that resource’s timemap. A timemap lists links to all of the stored

states for a resource along with their timestamps.

The service implementation supports two different timemap serializations: The

link format from the initial Memento RFC or the newer JSON timemap4, a more

common format in modern web applications.

To figure out, when the PlanetPluto resource changed and where to find the

mementoes for all of its prior states for instance, a client will request:

/api/umbel/entities/history/http://umbel.org/umbel/rc/PlanetPluto

A response to this request, using the JSON serialization, will return a timemap

object of the following form:

{

"original_uri": "http://umbel.org/umbel/rc/PlanetPluto",

"mementos": {

"list": [

{

"datetime": "2010-08-15T02:14:00Z",

"uri": "http://tailr.s16a.org/api/umbel/entities/2010

0815021400/http://umbel.org/umbel/rc/PlanetPluto"

},

...

]

}

}

4http://mementoweb.org/guide/timemap-json/ (July 4, 2015)
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Linking

The Memento framework makes use of the HTTP Link header5 for supplying
URI references between the different kinds of resources. The service memento
responses will always contain the URIs of the corresponding original resource
and timemap:

Link: <http://umbel.org/umbel/rc/PlanetPluto>; rel="original",

<http://tailr.s16a.org/umbel/entities/history/...>; rel="timemap"

For best integration, the original linked data resource should refer to the service

as its timegate by inserting an appropriate Link header on its own. Because

the service’s timegate, memento and timemap URIs can be easily constructed

from the original resource URI, a simple Apache or Nginx proxy configuration

change will suffice in most cases to achieve this explicit reference.

Summary

A major advantage in using Memento for a linked data archival platform is that

it closely mirrors linked data principles by using HTTP and content-negotiation

for version retrieval. It is a well-documented approach which offers great dis-

coverability through explicit references and is easily integrated with existing

linked datasets.

Because Memento differentiates between different kinds of resources, a service

like ours can provide prior version access for original resources hosted else-

where.

7.3 Storage Model

The current storage model of our service draws inspiration from concepts found

in existing version control systems and adapts some of their ideas.

5https://tools.ietf.org/html/rfc5988 (July 4, 2015)
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Conceptual View

There are two common model alternatives in version control systems: snapshot
storage and delta storage. With snapshot storage, full descriptions are stored for

each new revision, while a delta approach focuses on encoding transformations

that lead from one version of the data to the next.

Both of these models have different trade-offs regarding storage space and revi-

sion retrieval time. Retrieval of revisions tends to be most efficient with snap-

shot storage as there is no computational overhead involved for applying data

transformations. In contrast, a delta model is often more compact for data which

undergoes evolutionary changes (a small portion of the data changes with each

revision).

The system we describe uses hybrid revision storage to balance space require-

ments and retrieval time (cf. [25]). The history of each individual tracked re-

source is encoded as a series of deltas based on interspersed snapshots as shown

in figure 7.1. A specific revision can be either fetched directly, in case a snapshot

exists, or recreated with the help of the preceding snapshot and following deltas.

RDFt0

± ± ± … ± …

Δ(RDFt0,RDFt1)
Δ(RDFt1,RDFt2)

Δ(RDFt2,RDFt3)
RDFtk

Δ(RDFtk,RDFtk+1)

URI:

Figure 7.1: Our hybrid storage model balances revision reconstruction costs

and space requirements. Resource revisions are typically stored as

deltas on top of previous states, but from time to time snapshots are

inserted.
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repo-id* key-hash* timestamp* type len

hmap

csets

blobs repo-id* key-hash* timestamp* data

hash* value

Figure 7.2: Storage schema used to record dataset changes. A ∗ indicates a pri-

mary key component.

Model Implementation

The hybrid storage model is currently implemented on top of a relational data-

base in MariaDB6. The storage structure is designed to support memento queries.

Basic entities in the system are (see also figure 7.2):

repos Repositories are created by users and are typically referenced by name.

Conceptually, each repository encapsulates a linked dataset and its history.

csets Changesets encode information about changes to linked data resources

within a repository. There are three types of changeset entries: snapshot,
delta and delete. Each cset entry is identified and indexed by repository

id, a hash of the original resource URI (the “storage key”) and its times-

tamp. We are currently using the SHA-1 hash function, also used in pop-

ular DVCS systems like Git or Mercurial, for hashing resource URIs. It

produces 20-byte hashes but the hash-size could of course be increased

when necessary, swapping it with a different function with longer output.

hmap This auxiliary structure maps hashed storage keys back to their unhashed

value. It is only needed if support for queries of type Q3 is required (see

section 5.3). The URI hashes stored in the hmap are typically much shorter

than storing the plain URI as part of each cset redundantly. Also, queries

6https://mariadb.com/ (July 5, 2015)
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Q1 and Q2 can be answered directly without consulting the hmap because

with a well-known hash function, the storage key can be computed di-

rectly and used for querying.

blobs Blobs contain optional data associated with cset entries. In the case of

snapshots, they contain a normalized version of the resource RDF descrip-

tion. Blobs for deltas encode differences in the resource description on

top of the previous resource state (added and removed statements). No

blobs are created for delete-csets as the cset marking a resource as deleted

already captures just that information.

The csets for a resource form base+delta chains which allow reconstruction of re-

source states by time. The base is a non-delta cset (snapshot or delete) and fol-

lowed by 0 or more deltas according to their timestamps. As a general rule:

There are no deltas directly after a delete-base. A delete is always followed by a

snapshot (details below).

Reconstructing a particular resource state reads from the latest non-delta cset

(and corresponding blob) before the requested time t and applies the subsequent

deltas in the chain ordered by time. Queried cset entries for resource reconstruc-

tion may be read sequentially from a coherent range.

repo-id* key-hash* timestamp* type len

SNAPSHOT

… DELTA

… ≤t DELTA

… >t DELTA

… DELETE

… SNAPSHOT

… DELTA

t

Figure 7.3: Base+delta chain: Any resource state is reconstructed from the latest

non-delta cset prior to the requested time t and subsequent deltas.

A tuneable chain length limit avoids high retrieval costs for resources with long

histories that include many changes, i.e. a snapshot is stored if

1. The chain length for the resource is 0. When a history for a resource has not

50



Implementation

yet been recorded, we simply insert a snapshot. Hence the first cset entry

for any resource is always a snapshot. A delta would only mark every

statement as “added”.

2. The last chain entry is a delete. Similar to condition 1, when inserting a

new RDF description after a delete, all statements would be considered

“added”. It is thus more efficient to just create a snapshot cset.

3. The snapshot is smaller than the delta computed against the last revision. When

a significant portion of the RDF description changes, a delta may be larger

than a snapshot. Our system does the right thing in such cases and stores

the entry occupying less space.

4. The accumulated size of deltas from the last stored snapshot exceeds a configurable
threshold. By ensuring that snapshots are created on a regular basis, we

effectively prevent base+delta chains from growing arbitrarily long and

cap the costs for retrieving random revisions.

With this model we can efficiently store and retrieve the revision histories for

sets of resources and thus linked datasets as a whole.

A list of resource URIs existing in a repository at a particular point in time is

not stored explicitly, but can be derived by traversing csets in a repository and

joining with the hmap entries. Our model is not as efficient for this type of

query. Rather it is optimized for queries Q1 and Q2 as we assume these to be

the most common use-case. The biggest issue with Q3-type queries is: The list

of resource URIs in a dataset may be very long for linked datasets making it

infeasible to store and version it directly.

Delta Operations

Snapshot blobs contain RDF as zlib-compressed N-Quads7, data for deltas is

stored in zlib-compressed RDF-Patch format8. Both of these formats are syntac-

tically very similar, making it straight-forward to generate patches based on two

7http://www.w3.org/TR/n-quads/ (July 5, 2015)
8http://afs.github.io/rdf-patch/ (July 5, 2015)
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N-Quad representations and, reversely, reconstructing models from an N-Quad

snapshot and RDF-Patch deltas.

Computing deltas uses a hash set implementation. Sets of statements can be

diffed with an average complexity of O(m + n), where m and n are the number

of statements in the compared models. If M and N are sets of statements, the

subset A of statements added when going from M to N is simply A = N −M,

the subset D of deleted statements is D = M − N. With a reasonable hash set

implementation, each of the containment checks for elements of the subtracted

set in the base set have an average complexity of O(1). This approach to diffing

does not attempt to match blank nodes. It favors lower computational complex-

ity and ease of implementation over minimal deltas.

Similarly, applying deltas as a reverse operation is implemented in terms of

adding and removing statements from a hash set.

7.4 Push API

Once a user has created a repository, they can start versioning their dataset re-

sources. To create a new revision of a resource, they simply push the RDF de-

scription in its current state through straight-forward HTTP requests. An HTTP

PUT request introduces or updates a URI-RDF pair, while a DELETE request

marks a resource as deleted.

Push access to repositories is authorized via generated API tokens.

Here is a simple example for pushing a resource snapshot from an N-Triples file

named PlanetPluto.nt via curl9:

curl -H "Authorization: token 46af2e..." \

-H "Content-Type: application/n-triples" \

-X PUT \

--data-binary @PlanetPluto.nt \

https://tailr.s16a.org/api/umbel/entities/http://...

9http://curl.haxx.se/ (July 12, 2015)
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Clients may pass a change timestamp explicitly in their requests. If no times-

tamp is passed, the current system time is used as a default.

The API accepts various RDF formats as input further reducing the integration

effort for dataset maintainers. These formats are parsed, re-serialized and stored

in a normalized fashion. The platform stores equivalent RDF models rather than

an exact byte-by-byte copy of each RDF description. This allows for detecting

malformed input and has several advantages for the internal handling of the

data. RDF input is parsed through the Python-bindings for Redland librdf10.

7.5 User Interface

A browser-based user interface allows users to register and administrate their

accounts. Registered users can create dataset repositories and generate Push

API tokens in order to start versioning. The platform offers practical advice on

how to use the provided interfaces for dataset tracking and revision retrieval

(figure 7.4).

Figure 7.4: The platform’s web interface allows users to manage their accounts

and repositories, and provides practical hints on how to get started

with linked data versioning.

The web interface further provides search capabilities so users can find other

users and existing dataset repositories. Each repository page shows a set of
10http://librdf.org/ (July 5, 2015)
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sample resources. Users can inspect individual resource history visually as a

timeline and view prior resource states.

Internally, the user interface for resource history and prior states uses the very

same Memento API intended for linked data clients. In a similar manner, addi-

tional visualization and inspection tools may be added in the future.

7.6 Integration Points

The system we present aims to solve the problem of keeping linked datasets

versioned in an efficient way. However, we have not yet discussed how this

system might be integrated with existing linked data tools.

The best results for archiving could obviously be achieved by integrating di-

rectly with linked data editors and data sources. Through their application-

knowledge, they have a chance of instantly detecting resource changes and push-

ing updates in an event-based manner (cf. figure 5.1).

We are however aware that this approach is not yet commonly pursued.

There is a lot of existing work on monitoring web resources in general (e.g. [26])

and, more specifically, linked data resources (e.g. [27]). A range of monitoring

systems have been developed in an effort to create periodic snapshots of the web

of data. Notably the Dynamic Linked Data Observatory (DyLDO) [21] publishes

compressed dumps of their weekly linked data crawls. While a very valuable

source of historic structured data, the gathered dumps are not very accessible. If

instead resource snapshots retrieved by such monitoring approaches were con-

tributed to appropriate dataset repositories on our archival platform, they could

be inspected individually through the Memento API.

Even though the platform is only picking up service now, this does not mean

that only future revisions of resources can be recorded. Many datasets provide

exported snapshots of past versions in some way which can be checked into

repositories retrospectively (along with the appropriate date and time). For a

start, we plan on creating and pre-filling repositories for well-known datasets so

their histories are referenceable and accessible through a consistent, queryable
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interface.
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8 Evaluation

A linked data versioning service would have to serve millions of resource snap-

shots and handle incoming updates. We have conducted a series of experi-

ments to test how our implementation behaves with regard to Push API re-

sponse times, Memento API response times and storage growth.

8.1 Test setup

The selected dataset sample and testing infrastructure used in our experiments

are described here.

8.1.1 Sample Dataset

For our tests we needed a dataset which was sufficiently large and for which

we could retrieve a number of past versions. The DBpedia1 project extracts RDF

descriptions on about 4 to 4.5 million entities in its English version alone. It has

become one of the central datasets in the Linked Open Data cloud 2. RDF dumps

of past DBpedia releases are available for download.

The test dataset consists of a subset of DBpedia resources in releases 3.2 through

3.9 spanning about four and a half years (i.e. releases 3.2, 3.3, 3.4, 3.5, 3.5.1, 3.6,

3.7, 3.8 and 3.9). A random sample of 1,000,000 resources present in DBpedia

releases 3.2 and 3.9 has been selected (see table 8.1).

Descriptions for the selected resources have been extracted from the English DB-

pedia titles, mapping-based types and properties, collecting statements where
1http://dbpedia.org/ (June 27, 2015)
2http://lod-cloud.net/ (June 27, 2015)
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DBpedia Wikipedia #Resources #Statements Size tar-gzipped
Release Dump Date (MiB)

3.2 2008-10-08 1,000,000 4,123,827 99.62
3.3 2009-05-20 974,644 4,272,964 101.10
3.4 2009-09-24 962,113 4,646,814 104.99
3.5 2010-03-16 998,811 4,891,170 106.89
3.5.1 2010-03-16 998,813 4,785,816 108.25
3.6 2010-10-11 998,652 5,338,035 114.35
3.7 2011-07-22 998,503 6,443,269 124.75
3.8 2012-06-01 998,690 6,815,538 127.79
3.9 2013-04-03 1,000,000 5,387,172 123.37

total 46,704,605 1,011.11

Table 8.1: For the experiments, a random subset of 1,000,000 resources present

in DBpedia 3.2 and 3.9 was selected. Their descriptions are collected

from DBpedia titles, mapping-based types and properties in releases

3.2 through 3.9.

the sampled resources appear in the subject position.

8.1.2 Test Infrastructure

The setup for our evaluation run comprised two machines:

• The first, tailr, was a modest 2GB RAM, 2 CPU, 40GB SSD virtual private

server (DigitalOcean3 droplet), hosting an instance of our service imple-

mentation. The machine ran Ubuntu 14.04 x64 as its operating system. It

used the default Python 2.7.6 installation and a standard MariaDB 10.0.19

from the official APT package, with unchanged settings. The versions for

the Redland libraries were: libraptor 2.0.15, librasqal 0.9.33, librdf 1.0.17

and language-bindings 1.0.17.1.

• The second machine for pushing and retrieving sample resources to the

service repository API was a server hosted at Hasso Plattner Institute and,

3https://www.digitalocean.com/
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hence, featured a stable and fast internet connection. The rest of its speci-

fications are irrelevant for our measurements.

8.2 Push Performance

In a first study, we measured the time it takes to create new versions of linked

data resources.

Method

Going through the release samples in order, the description for each contained

resource was pushed to a test repository on the service host. If a resource was not

present in an intermediate release of the DBpedia, we issued a DELETE request

to the API. After the resource snapshots from all releases were submitted, the

timing data was parsed from the server logs.

Results

The response times during the test run are summarized in figure 8.1. The exact

values are given in table 8.2.

Discussion

Push requests for the first release took the longest time on average. For resources

with an empty history, hmap entries need to be created which explains the ad-

ditional overhead. After that, response times were slightly lower and increased

to a small degree with each release.

The growing base+delta chains make for slightly higher costs of reconstructing

last-known resource states before diffing. These effects are comparatively small

and also limited by chain length restrictions and re-snapshotting for longer his-

tories.
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Figure 8.1: Push API response times during the test run, uploading resource

snapshots from a sample in 9 releases of the DBpedia.

Because each resource’s history is tracked independently in our storage model,

it is further possible to parallelize pushing of resources to reduce the overall

time for submitting each release. During the test, average server CPU load was

below 15% and disk I/O averaged less than 1.5MB/s leaving plenty of room for

parallel requests and greater throughput.

For further push performance improvements, it would be possible to cache the

latest resource state and avoid reconstruction costs on resource updates. Diffing

could be performed against the cached state instead of reading the base+delta

chain.
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Rel. 99.9th 99th Average Min. Max.
percentile percentile

3.2 79.40 36.48 18.74 9.43 691.70
3.3 38.68 25.17 11.53 4.49 9882.83
3.4 45.45 27.77 13.02 4.55 18160.34
3.5 51.23 27.41 13.12 4.28 5526.19
3.5.1 35.07 23.54 11.10 4.64 369.35
3.6 47.42 26.74 12.64 4.49 404.42
3.7 47.16 29.95 13.85 4.70 9957.81
3.8 47.37 28.46 13.15 4.76 556.37
3.9 54.54 31.50 14.63 4.69 406.42

Table 8.2: Push API response times in milliseconds.

8.3 Storage Analysis

We were further interested in the efficiency of the storage model and the appli-

cability of delta encoding.

Method

After pushing the samples as described previously, the counts for the different

cset types up to each release were queried from the database.

Results

The counts for the created snapshot, delta and delete csets after pushing the

samples for each of the DBpedia versions are given in table 8.3. The last column

lists the cumulated size of the data stored in blob objects.

Discussion

As we can see, the total amount of blob data accounts for about 640 MiB, com-

pared to more than 1,000 MiB for the cumulated size of the individual com-
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Rel. #Snapshots #Deltas #Deletes Aggr. blob data
(MiB)

3.2 1,000,000 0 0 157.23
3.3 1,008,781 212,343 25,356 194.75
3.4 1,041,386 492,816 38,938 272.84
3.5 1,128,949 773,436 39,419 360.84
3.5.1 1,129,818 886,766 39,424 378.28
3.6 1,140,421 1,133,508 39,861 421.30
3.7 1,173,592 1,455,516 40,405 502.86
3.8 1,191,561 1,707,166 40,674 550.31
3.9 1,248,696 2,099,056 40,674 637.69

Table 8.3: Number of cset entries by type and aggregate size of the data stored

in blobs measured after each release.

pressed dumps in table 8.1. While the overall size of the database is of course

larger, it still provides evidence that significant space savings can be achieved

by applying delta encoding to dataset revisions, contrasting the growth in the

numbers of delta csets and snapshot entries. Though other datasets may possi-

bly change in a different way from our sample, the implemented storage model

will nonetheless leverage the benefits of delta compression if they exist.

Also, by storing resources in a database instead of compressed dump files, single

resources from a dataset can be updated and queried separately. It is possible to

add new versions of a resource without creating a completely new dump. Indi-

vidual resource snapshots can be retrieved and their timelines traced efficiently.

Such interactions are not practicable with monolithic dump files.

8.4 Revision Retrieval

Finally, a linked data versioning platform must be able to efficiently serve re-

source states. To check how our implementation responds to query load, we

performed a third study.
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Figure 8.2: Memento API response times (in ms) measured for accessing random

revisions of the sample resources.

Method

Memento API performance was measured by requesting each of the sample re-

sources stored in the previous studies in a random revision. The timing data

was parsed from the server log files.

Results

The response times grouped by DBpedia release are shown in figure 8.2. The

exact values are given in table 8.4.
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Rel. 99.9th 99th Average Min. Max.
percentile percentile

3.2 22.20 15.80 8.34 3.81 61.71
3.3 22.39 16.39 8.53 3.68 66.23
3.4 22.65 16.56 8.62 3.38 112.31
3.5 23.15 16.79 8.75 3.47 64.23
3.5.1 23.30 16.92 8.78 3.47 64.23
3.6 22.98 16.92 8.81 4.19 66.62
3.7 23.27 17.01 8.85 3.73 52.81
3.8 23.31 17.12 8.90 4.06 82.86
3.9 23.23 17.17 8.95 4.02 54.57

Table 8.4: Memento API response times in milliseconds.

Discussion

We can see a slight increase in the response times for later revisions. Again, this

is due to the longer base+delta chains resulting in higher resource reconstruction

costs. Response times are still in a very acceptable range and our re-snapshotting

strategy will limit retrieval costs for longer dataset histories.

8.5 Remarks

During our initial test runs with an earlier version of the prototype system, push

performance was largely limited by RDF parsing. About 82% of the process-

ing time was spent parsing. After switching from the pure-Python rdflib4 to

language-bindings for the C-based librdf 5, parsing time was reduced to about

26% on the same dataset.

With regard to delta compression, for datasets containing blank nodes addi-

tional space savings could be achieved by performing blank node matching (cf.

[28]). By finding an isomorphism between blank nodes of two resource revi-

sions, the system could potentially store smaller deltas at the cost of computa-

4https://github.com/RDFLib/rdflib (July 3, 2015)
5http://librdf.org/ (July 3, 2015)
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tional overhead. Many RDF tools and stores, however, already assign identifiers

to blank nodes that – given an RDF syntax like N-Triples – are transmitted to and

used by our current hash-based diff implementation.
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9 Future Work

This chapter outlines possible directions for future work on the versioning plat-

form itself and further usage of the gathered data.

9.1 Platform Enhancements

The created platform may be enhanced in different ways.

For additional performance gains, the platform could employ caches on differ-

ent levels. Prior resource states never change and thus memento responses for

frequently requested resources could be effectively cached. Similarly, caching

of the most recent states for tracked resources would allow for faster Push API

responses, as it avoids reading base+delta chains for diffing and further process-

ing.

To make pushing of complete dataset states more efficient, the platform could

offer a bulk import mechanism. A streaming push API could allow use-cases

where single resources have unusually high update frequencies, e.g. sensor

data.

At some point, distributing the platform implementation may be of interest to

accommodate for increasing loads. At the moment though that is not necessary.

9.2 Evaluation of Alternative Backends

Because none of the existing solutions we have investigated fit our intent of

building a linked data versioning platform, our approach adapted ideas from
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version control systems for our storage backend. As mentioned in chapter 6,

there are other candidate concepts which could be analyzed.

One such alternative would be to instead implement an extended quad table

schema which supports our repository concept and performs tuple versioning.

This approach likely has different characteristics that would need to be com-

pared with our current solution. The storage model we are using now is geared

towards simple linked data resource queries with evaluation happening on the

client side. A modified quad table schema could potentially answer more com-

plex queries if implemented efficiently. Care must be taken though to avoid

problems similar to those common with triplestores and SPARQL endpoints.

Another class of storage systems that could possibly support a versioning plaform

for linked data are graph databases with versioning capabilities, Neo4J1 for in-

stance. It would be interesting to see, whether and how the versioning concepts

and query constructs of such graph databases could be mapped appropriately

to our approach. If so, what are the trade-offs?

Independent of the used storage backend, the Memento API would provide the

very same interface to prior resource states. The change would be transparent

for clients.

9.3 Monitoring Service

Our current platform is primarily concerned with storing linked data resource

revisions and efficient, granular access. Though it is straight-forward to push

new resource snapshots, dataset maintainers still need to take care of this. A

complementary monitoring service could make versioning of linked data re-

sources even more convenient.

Such a service would allow developers to set a target dataset for monitoring,

e.g. by providing it with the domain/base URL of the dataset or by uploading

a semantic sitemap [29]. The monitoring service would then periodically check

targeted resources for changes and push updated resource states to the version-

1http://www.neo4j.org/graphgist?608bf0701e3306a23e77 (July 7, 2015)
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ing service.

9.4 Analysis Tools

The historic information accumulated and exposed with the help of the service

provides great potential for new linked data applications.

The aggregated knowledge about data resources and changes could be used to

analyze quality of linked datasets for instance. The resulting quality metrics

could be used by data engineers to identify problems in the data and improve it.

The influence of their changes can then be verified by comparing against prior

dataset versions in the system.

Other tools could visualize dynamic processes captured as linked data through

time and correlate that information. Such visualizations may create a better un-

derstanding of the underlying processes, explain how and why certain indica-

tors evolved over time.
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10 Summary

This work introduced an approach to versioning datasets based on linked data

principles. It specifically addresses discoverability and accessibility issues preva-

lent in today’s versioning practice on the semantic web.

The approach further aims for a separation of concerns regarding linked data

publishing and archival of past resource states. This distinction enables a service-

oriented approach towards linked data versioning. Linked data publishers can

more easily start versioning their datasets in a way which allows granular access

to individual resource histories, making retrospective investigation feasible.

We presented a design for a linked data archival platform following this ap-

proach with interfaces for submitting snapshots of linked data resources as well

as a time-based access protocol for resource revisions. The openness of the plat-

form and straight-forward APIs enable it to be integrated with existing linked

data publishing infrastructures. Explicit references from original resources to

their prior states allow clients to follow such links and inspect the resource his-

tory.

We have implemented the presented design as a Python web application which

can be used to provide linked data archival as a service to publishers of linked

data. The platform encodes resource revisions as a series of deltas based on

periodic snapshots. This model balances the requirements for storage space and

retrieval time.

Our evaluation showed, that the implementation can support large datasets,

efficiently handling the creation of new resource revisions and retrieval of past

resource states.

In the future, the service could form the basis for analysis and visualization
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tools, providing additional insights into the data by putting it into its historic

context and clarifying dynamic developments. Complementary services, based

on existing work, could offer monitoring of linked datasets to developers, using

our platform as a storage backend.

Part of this work has been submitted to the 11th International Conference on Semantic
Systems (SEMANTiCS), Research Track 2015.
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