Popular Electronics

A Universal Charger for Batteries Build a \$10 In-Circuit Transistor Tester How to Use Decibels for Audio \& R-F

Space-Age Electronic Projects for Boats

Tested In This Issue

Sanyo TP1030 Record Turntable Empire EDR. 9 Stereo Phono Cartridge Lafayene BCR-101 Communications Receiver

In California, a store owner charts sales on his Apple Computer. On weekends though, he totes Apple home to help plan family finances with his wife. And for the kids to explore the new world of personal computers.

A hobbyist in Michigan starts a local Apple Computer Club, to challenge other members to computer games of skill and to trade programs.

Innovative folks everywhere have discovered that the era of the personal computer has already begun - with Apple.

Educators and students use Apple in the classroom. Businessmen trust Apple with the books.
Parents are making Apple the newest family pastime. And kids of all ages are finding how much fun computers can be, and have no time for TV once they've discovered Apple.

Visit your local computer store

The excitement starts in your local computer store. It's a
friendly place, owned by one of your neighbors. He'll show you exactly what you can use a personal computer for.

What tolook for

Your local computer store has several different brands to show you. So the salesman can recommend the one that best meets your needs. Chances are, it will be an Apple Computer. Apple is the one you can program yourself. So there's no limit to the things you can do. Most important, Apple's the one with more expansion capability. That means a lot. Because the more you use your Apple, the more uses you'll discover. So your best bet is a personal computer that can grow with you as your skill and involvement grow. Apple's the one.

It's your move

Grab a piece of the future for yourself. Visit your local computer store. We'll give you the address of the Apple dealer nearest you when you call our toll-free number. Then drop by and sink your teeth into an Apple.
800-538-9696. In California, 800-662-9238. CIRCLENO. 6 ON FREE INFORMATION CARD

A new computerized metal detector that actually selects treasure from trash may uncover America's long lost relics and precious metals.

The new breakthrough in metal detectors makes finding treasure much easier.

There's a lot of treasure right under our feet. There's also a lot of garbage.
And the problem with most metal detectors is that they're dumb. They can't tell treasure from trash.
The new Techna metal detector is different. It has both a sensing system and a brain that can tell the difference between a foil gum wrapper and a coin-between a bottle cap and a diamond ring.
The new breakthrough was made possible by the use of a "discriminator IC"-a com-puter-type integrated circuit that can compare the ferrous and non-ferrous relationships that distinguish treasure from trash.
There are discriminator-type metal detectors now on the market, but they cost between $\$ 170$ and $\$ 400$. And no matter what price you pay, the detector is usually difficult to operate.
The new Techna Discriminator represents several breakthroughs. First, it is inexpen-sive-only $\$ 69.95$. Secondly, it uses a new (patent pending) phase compensation system of metal detection, whereas other discriminators use either the off-resonance or inverse discrimination principle.
This system utilizes a microprocessor circuit which replaces the conventional electronics, mode switch, and multiple tuners that added to the cost and weight of a discriminator unit.
Finally, the Discriminator is very easy to operate and understand. You simply set it to sense treasure, trash, or both and it automatically tunes itself and starts operating. Whenever you scan treasure, a loud speaker will emit a sound and you start digging.

DETECTORS ARE BIG BUSINESS
Metal detectors are big business. When we investigated the field, we discovered an entire new sport-treasure hunting. Treasure clubs exist and conduct contests. There's a national magazine and an association, and hundreds of thousands of units are in use every day.
Treasure hunting doesn't just mean looking for buried pirate chests. There's great interest now in discovering articles of historical significance such as old coins, military buttons, and old pistols.

Long ago when people distrusted banks, they buried their valuables somewhere on their property. If they died suddenly or became
senile, their treasures were lost forever. Many treasure hunters are now visiting ghost towns or going through older sections of cities looking for both historic and valuable articles.

WORLD WAR II STARTED IT
Metal detectors first saw extensive use during World War II. Back then, they were called mine detectors and were used to uncover enemy land mines. They were heavy, often weighing hundreds of pounds, and had to be carried on the backs of soldiers along with separate and heavy power supplies.

The Techna Discriminator is light and easy to operate with only two controls to adjust.

The new Techna Discriminator is light. It weighs only $21 / 2$ pounds and is powered by two readily-available 9 -volt batteries. As you glide the sensing head over the ground, the unit remains silent until it uncovers a precious metal or whatever type metal you are searching for. An electronic sound is emitted. Then just dig in the area of the sound.

If you already own an expensive metal detector, you know that most of your "discoveries" turn out to be bottle caps or gum wrappers. With the Techna, you discover just what's worth digging up. While others are digging up bottle caps, you're covering more ground faster and are more likely to discover something worthwhile.

BREAKTHROUGH PRICE

The fully computerized Techna Discriminator is available from JS\&A for only $\$ 69.95$ complete with batteries and all components. We suggest you order one just to try it out. Try it in your back yard. Take it to a sandy beach
where many coins and jewelry are lost. See how the system can tell the difference between treasure and trash, and then after you have discovered the fun of treasure hunting and how advanced this new product really is, decide whether or not you wish to keep it.

If you feel the Techna Discriminator does not meet all your expectations for any reason, we will gladly accept the return of your unit within our 30 day trial period and even refund your $\$ 3.50$ postage and handling. If you decide to keep your unit, you will own the world's most advanced metal detector. No competitive model even comes close.

Techna is America's largest manufacturer of metal detectors in the United States, and JS\&A is America's largest single source of space-age products-further assurance that your modest investment is well protected.

Each Techna detector is backed by a solid one-year parts and labor limited warranty. We doubt if you'll ever have a problem with the unit because of its solid-state construction, but if service is ever indeed required, Techna's ser-vice-by-mail center will fix your unit and have it back to you quickly.

To order your Techna Discriminator detector, send your check for $\$ 69.95$ plus $\$ 3.50$ for postage and handling (Illinois residents please add 5% sales tax) to the address shown below. Credit card buyers may call our toll-free number below. We will promptly send you your Techna detector with batteries, 90-day limited warranty, and instructions.

Why not join the legion of treasure hunters worldwide with the world's most advanced space-age metal detector. Order the Techna Discriminator metal detector at no obligation, today.

Dept.PE One JS\&A Plaza
Northbrook, III. 60062 (312) 564-7000 Call TOLL-FREE ... 800 323-6400
In Illinois Call . . (312) 564-7000
(C) JS\&A Group, Inc., 1979

NEW! The world's only land, sea and air scanner!

We have received thousands of requests to have a scanner capable of monitoring aircraft, marine and all public service frequencies. The Bearcat 220 is one scanner which can monitor ail public service bands plus the exciting aircraft band channels. In fact, the Bearcat 220 covers seven bands, Low VHF, High VHF, UHF, UHF-T, 2-meter and $3 / 4$ meter amateur and Aircraft. Oniy the in credib/e, naw, no-crystal Bearcat 220 Scanne aircraft band - plus every FM public service fre quency - with pushbutton ease. Only the Bearcat 220 has a dual detector to scan both AM and FM transmissions in one scanner. Up to twenty chan nels may be scanned at once. Or frequencies can be arranged into two banks of ten frequencies each, allowing the listener to choose the bank of
most interest. You can mix and monitor any combination of aircraft, marine or public service channels at the same time.
Not only does the new Baarcat 220 teature normal search operation, where frequency limits are set and the scanner searches between your programmed parame pressing a single bution. These frequencies are already stored in a readoniy memory (ROM) so no reprogramming is required.
The new Bearcat 220 is a crystalless synthesized scanner and features push button programming of desired frequencies. A decimal display indicates atr chan-
nels, frequencies and operatlons that you have programneis, frequencies and operations inat you have program-
med into this computerized scanner. The lockout feature lets the listener skip irequencies not of currant interest. When the handy priority feature is activated, the frequency on channel 1 is sampled every two seconds regardless of other scanner functions. This means youcan listen to "maydays" from a jet in distress at 30,000 teet on 121.5 MHz ., while at the same lime monitor for other exciting transmissions. The listener can use a facioryse ually tune the squeich for precision adjustment. In addition, the Bearcal 220 has connectors for externa antenna, external speakers, and both $\mathrm{AC} / \mathrm{DC}$ power.

MANY IMPORTANT FEATURES
Other important Bearcat 220 features include: direct channel access for going directly to a desired channel; patented selective scan delay so scanning on desired channels is delayed two seconds after the end of transmission; and scan speed control which allows Since the Bearcal 220 uses iwo AA size batteries to mainlain channel memory for one year, if you remove the batteries, your scanner will "sell-destruct"all programmed channels when power is removed, in case your scanner falis into enemy hands.

TEST A BEARCAT 220 FREE FOR 31 DAYS Test any Bearcal brand scanner from Communications Elactronics" for 31 days belore you decide to keep it. Check out the excellent specifications and reception quality of the Bearcat 220. If you decide to keep it, yould scanner avallable. If for any reason you are not completely satisfied, we insist that you return it in new condition with all enclosed parts in 31 days, for a courteous and promp refund (lass shipping charges and rebate credits). COMPLETE NATIONAL SERVICE
With your Bearcat 220 scanner, we will send a complete set of simple operating instructions and a one-year limited warranty. If service is ever required on any Bearca! scanner purchsed from Communicattons Electronics, service centers. When you purchase your scanner from communications Electronics, you're buying from the world's leader in no-crystal, high technology scanners. We've sold more synthesized scanners than any other companyt A detailed service manual for the Bearcat 220 should be avaliable in October, 1970 ior $\$ 15.00$ postpaid.
MADE BY ELECTRA - QUALITY CHECKED BY CE
Since all Bearcal scanners sold by Communicatlons Electronics" are products of Elecira Company, a Division
of Masco Corporation of Indiana, you can be assured of of Masco Corporation of Indiana, you can be assured of our Quality Control Department further audits the quality of every Bearcat model sold by us to insure the high reliability found in all Bearcat scanners. CE has given the Bearcat 220 our quality controi rating * 2, which is a better overall rating than the Bearcat 210 but not as good as the
\$20.00 REBATEI - SAVE EVEN MORE The suggested list price of the Bearcat 220 is $\$ 378.95$. Our normal price is $\$ 299.00$. But.. if you order before August 31, 1979, you will earn a $\$ 20.00$ rebate. Aslong as your order is placed before August 31, 1979, you will
qualify for our CE direct rebate even If delivery is after August 31 st. See "the small print" for further details of our Bearcat rebate olfer.

THE SMALL PRINT
All sales are subject to avalability. Prices and apeciltcations are
subject to change without notice. No COD't please. Cashier's checks may be proceassed immediately and receive an order prority orders will be shipped in the sequence received. The special rebate offer on the bearcat 220 is good only when purchased from
Communications Electionics
 proof ol purchase invoice and special rebate coupon (enclosed with
your order) must be postmarked within 20 days of our shipping date. your order must be postmarked within 20 days of our shipping date.
Offer good in U.S.A. only. International shipments are weicome without rebate offer. Void where tixed or prohlitited by law. Olter day tree trial, rebate and shipping costs will be deducted from
refund. Resellers, companies, clubs and orgaizations (profit and refund. Resellers, companies, clubs and organizations (profit and
non-protit) are not eligible for rebates. Allow $4 \cdot 6$ weeks after rebate non-protit) are not
request for check.

INCREASED PERFORMANCE ANTENNAS If you want the utmost in pertormance from your Bearcat
220, it is essentisl that you use an external antenna. We have four base and mobile antennas specifically designed to receive all seven bands on your Bearcat 220 scanner. Order \#A60 is a magnet mount mobile antenna. Order trunk-lip mobile antenna and \#A7O is an all band base station antenna. All antennas are $\$ 25.00$ postpaid in the continental United States.

Bearcat ${ }^{\bullet} 220$

 Specifications
Fraquency Rece Low VHF Band
 Aircraft Band

2 meter amateur
High VHF Band
y/4 meter amateur band
UHF Band
UHF-T Gand
Scanner Dimenaiona
27.0 cm Wide $\times 7.8 \mathrm{~cm}$ High $\times 19.4 \mathrm{~cm}$ Deep
(10) High $\times 7{ }^{7 \prime \prime}$ Deep)

Scanner Weight
3.18 Kilograms
(7 pounds)
Power Requiremente
$117 \mathrm{Vac}, 60 \mathrm{~Hz}, 20 \mathrm{Watt}$
$13.8 \mathrm{Vdc}, \mathrm{g} \mathrm{Wetts}$
$13.8 \mathrm{~V} \mathrm{dc}, 9$ Watt
Audio Output
At least 2.0 Watts rms, 8 ohms.
10\% THD (maximum)
Antenna
Telescoping (supplied), Connector
provided for external ant. $50-70$ onms
Scan/Search Speed
Selectable 11 or 4 channels per second

R.F. Sensitivity

0.4 microvolts $32-50 \mathrm{MHz}$.
0.4 microvolts $144-174 \mathrm{MHz}$.
0.8 microvolts $420-512 \mathrm{MHz}$
$(\pm 5 \mathrm{KHz}$. deviation 12 dB SINAD
1.0 microvolt for 10 dE S N Aircrat

IF Solectivity
-55 dB © +25 KHz.
From Pand Volume (ON/OFF). Display, Keybaard,
Squelch (Auto. Squelch), Speaker
Rear Apron Connectort
External antenna, External spaaker,
117 V ec and 12 V dc receptacies.
Acceseorien
Vehicle mounting bracket and
hardware, AC \& DC power cords

> BUY WITH CONFIDENCE

The Bearcat 220 is an extraordinary scanning instrument. It provides virtually any al monitor could require. From all the tense tower talk, to monitoring the pulse of all public service frequencies. To order the world's only land, ses and alr scanner and get the fastest dellvery, send or phone your order directly to our Scanner Distribution Center. Mail orders to Communications Electronles" Box 1002, Ann Arbor, pilus $\$ 5.00$ for U.P.S. U.S. shipping for each plus $\$ 5.00$ for U.P.S. U.S. Shipping for each coupon will be packed with your scanner. U.P.S. air shipping is even faster and is $\$ 9.00$ per scanner. Becuase this is the most lantastic scanner that CE has olfered and due to the unprecedented demand for this between 6 to 12 weeks for dellvery. ll you have a Master Charge or Visa card, you may call anytime and place a credit card order. Dial toll free 800-521-4414. International orders are invited at slightly higher cost. If you are outside the U.S. or in Michigan, dial 313-994-4444. If you order by credit card,
your account will be billed about 15 days your account will be billed about 15 days Dealer inquiries invited. All order lines at CE are stalled 24 hours.
Since this is our most exciting scanner we have ever offered, you must place your
order today at no obligation to assure a order today at no obligation to assure a prompt order confirmation and delivery. excitement, your journey ends at communications Electronics:
 Copyright ${ }^{\circ} 1979$ Communications Electronics

Bearcat ${ }^{\oplus} 220$ Features:

20 Channala/2 banke-Scan up to 20 frequencies al the same time. Activate 10 channels at one keystroke.

- 7 Band Coverage-Includes Low and High VHF bands, UHF, UHF-T, the entire 2 meter and $3 / 4$ meter amateur bands in addtition to the aircraft band. With special programming techniques, this unit can monitor dditional frequencies nof published in factory
specilications.
- Automatic Search-Seek and find new and exciting frequencies.
- Communications Electronics"-quality control approval rating \#2. Our second highest quality grade monitoring equipment
- Self-Destruot-Since the Bearcat 220 uses two AA size batteries to maintain channel memory, il you erase all programmed channels, in case your scanner ralls into enemy hands.
- Scrambler/Tape Audlo Output-Top secret cryptographic mesaages may be received and decoded by connecting the Bearcal 220's external speaker jack to a correctily keyworded decrypting device, even if it utilizes the National Bureau of Siandards, Data Encryption Standard.
- Small Sizo-The Bearcat 220's small physical size lends itself to government monitoring applications. When used wh a batrery mower supply and a lape attache case ior unattended, unobtruslve surveillance.
- UL Listed/FCC Certified-In addition to the \#2 rating from Communicetions Electronics"' the UL Ilisting and FCC certification assures you of quality design and manufacture.
- Alreraft Search-Push one button to automatically search the entire alrcraft band.
Marine Search-Push one button to automatically search marine frequencies.
- Priority-Samples programmed prlority frequancy on channel 1 every 2 seconds regardless of other scanner operations-important for professionals who must monitor a cerlain frequency.
- Umit-Sets the upper and lower frequencies of the user controlled search range.
Speed-Choice of either 11 or 4 channels per second scan speed for closer monttoring of frequencies.
- Automatic Lockout-Locks out channels and "akips" Irequencies not of current intereal.
- Selective Scan Delay-Adds a two-second delay on desired channets to prevent missing transmissions when "calls" and "anawers" are on the same frequency.
- Simple Programming-Simply punch in on the - keyboard the frequency you wish to monitor.
- Decimal Display-The large decimal display shows channeis and frequency as weil as features selected.
Patented Track Tuning-Recelve frequencies across the full band without adjustment. Circuitry is automatically aligned to each frequency monitored.
- Cryatalless-Without ever buying a crystal, you can select from all local frequencies by simply pushing a few buttons.
- Automatic Squelch-Factory-set squalch
automatically blocks out unwanted noise.
- Direct Channel Acceat-Move directly to desired channel without stepping through all channels.
- Deluxe Keyboard-Makes frequency and feature selection easy for simply programming.
- Space Age Circuitry-Custom integrated circuits... a Bearcal tradition in scanning radios.
- Roliting Zeros-This Bearcat exclusive tells you which channels your scanner is monitoring.
- AC/DC-Operates at home, office or in your vehicle.

854 Phoenix C Box 1002 D Ann Arbor, Michigan 48106 U.S.A.
Cell TOLL-FREE (800) 521 -441 4 or outaide U.S.A. (313) S04-4444

This Ifst is a sample of the many radlo services thet mey be received on the

Beercet 220 scanner:

Army

Automobille Emargency Broadcasting
Buresu of Indian Alfsir Bureau of Recla mation
Citizone Eand (Cless A) Clivil Ar Patrol
Coat Guard Conat Guard
Copatal Servicas
Connervation Ser Consarvatlon Servicse
Corps of Enginears
Cusioms
Cusioms
Departme
Dopartment ol Transportation
Domostic Public Land Mobile
Domestic Public Land Mobile
Earth Exploration Satellise
Energy Resaarch
Environmantal Protection Agency
Execultive Eranch
Executive Branch
Foderal Avibtion Administration
Federal Burtau of Invesilgotion
Foderal Buresu of Investlqgition
Federal Communicalions Commission
Federal Protective Senvice
Feder
Fire
Flish

Fire Fishing Boats Fixed Satellte

Fixed Stationi
Filght Services Stations
Firest Producte
Foront Products
Forest Senice
Forses Sonles
Geodetic Sarvios

Government Servees Adminiatration

Highway Maintenance
Imigration and Nafuralization
Imigration and Naturaliz
Intelifgence Agsencies
Intell gence Agen
Land Moblle

Local Governme

Marine Corps
Marine Corps
Martime Mobiles Motorological Alde
Meterological Satellita

Moble Satollte Mobile Stations

Motion Pleture
Motor Carrier
Natonal Park Sarvice
Natlonal Weather Service
Navy
NORAD
Oll and Enargy Exploration
Paging
Petrolaum
Pollce
Pontice
Pownt
Radio Common Carrier
Radioiocailon
Radonavigation Satellite
Relay Press
Rolay Pros
fintrond
Satelitite
Saterite Service
Sherlf!
Sherlff
Soldiert
Soidiart
Space Operations
Space
Space Research
Special Emergency
Specisi Industrial Specis Mduatrial
Standerd Frequency Satelite
State Depart thent
Telephone Maintenance

Tolocators

Tresesury Departmont
Unicoms
Utillity Companies

羯

We're first with the best. ${ }^{\text {sm }}$

About the cover:
Useful electronic circuits can perform sensing, processing and displaying functions aboard your boat to make it safer and more convenient to operate,

Cover Art by George Kelvin

coesmp n. MEEACS

Publisher

ARTHUR P. BALSBERG Editorial Director
LESLIE SOLOMON Techuical Director
JOHN J. MeVEIaH Technical Editor
JOHM R. Rtags Managing Editor
NAROLD A. RODGERE Serior Editor
ALEXANDER W. BURAWA Features Editor
EDWAMD I. BUXPAUM Art Director
ambaE Duzant Technical Illustrator
CAgnem VELAzQUET Production Editor
RUTH POLSKY Editorial Assistant
Contributing Editors Hal Chemberiln, Low Garner, Olonn Hzuser Jullan Hirsech, Ralph Hodees, Forrent Mims
JEFF NEWMAN Assistant to the Editor
LImba Blu Advertising Seroice Manager
MARIE MAESTRI Executive Assistant
EDQAR W. HOPP思A Publishing Director

Feature Articles
HOW TO DETERMINE ANTENNA GAIN/Harry J. Miller 43
A DB PRIMER/John C. Battle 44
How to use decibels in hi-fi and communications.
POT QUIZ/ Robert P. Batin 56
Test your knowledge of how potentiometers are used in various circuits.
Construction Articles
SPACE-AGE ELECTRONIC PROJECTS FOR BOATS, Part 1/ Harold Wright 38
UNIVERSAL CHARGER FOR SEALED RECHARGEABLE BATTERIES/Don Schneider 50
BUILD AN IN-CIRCUIT TRANSISTOR TESTER FOR $\$ 10$ / Jules Gilder 54
LOW-COST ADOITION FOR MUSIC BOX PERIPHERAL/ Robert Briggs 55
Produces randomly generated music without a computer.
57
8-TRACK TIMER SIMPLIFIES RECORDING/ Doug Farrar
64
BUILO THE POOR MAN'S SERVANT/ Hal Lefkowitz
Controls appliances at the clap of your hands.
BUILD AN ENVELDPE MODIFICATION UNIT/ James J. Barbarello 65
Varies attack, sustain, and decay of an electronic instrument.
Columns
STEREO SCENE/ Raiph Hodges 21
Being Re-Created Equal.
EXPERIMENTER'S CORNER/ Forrest M. Mims 68
LED Bargraph Display Chips.
HOBBY SCENE/ John J. McVeigh 71
SOFTWARE SDURCES/ Leslie Solomon 78
COMPUTER BITS/ Hal Chamberlin 80
Audio Cassette Recording Formats. 82
AMATEUR RADIO/ Karl T. Thurber, Jr.
Setting Up Your Station.
PROJECT OF THE MONTH/ Forrest M. Mims 90
High-Current LED Puiser.
Julian Hirsch Audio Reports
SANYO MODEL TP1030 DIRECT-DRIVE TURNTABLE 24
EMPIRE EDR. 9 PHONO CARTRIDGE 26
ACE AUDIO MODEL 4000 SUBSONIC FILTER 30
Electronic Product Test Reports
72
NAKAMICHI MODEL T-100 AUDIO ANALYZER
LAFAYETTE BCR-101 AM/CW/SSB RECEIVER 76
Departments
EDITORIAL/ Ar Salsberg 4
Unsung Electronics inventors.
LETTERS/DUT OF TUNE 6
NEW PRODUCTS 8
new Literature 14
TIPS \& TECHNIQUES 86
ELECTRONICS LIBRARY 88
OPERATION ASSIST 105
PERSONAL ELECTRONICS NEWS 110

ZIFF-DAVIS PUBLISHING COMPANY Editorial and Executive Offices One Park Avenue, New York, New York 10016 212-725-3500
Joseph E. Mesics (725-3568) John J. Corton (725-3578) Bonnie B. Kaiser (725-3580) Midwestern Office Suite $1400,180 \mathrm{~N}$. Michigan Ave., Chicago, iL 60601 (312-346-2600) Midwest Representative: Buz Vincent Western Oftice 9025 Wilshire Boulevard, Beverly Hills. CA 90211 213-273-8050;
Western Representative: Norm Schindler 7050 Owensmouth Ave., \#209 Canoga Park, CA 91303 (213-999-1414)
Japan: James Yagi, Dji Palace Aoyama: 6-25. Minami Aoyama, 6 Chome. Minato-Ku, Tokyo. 407-1930/6821. 582-2851

ZIFF-DAVIS PUBLISHING COMPANY Philip B. Korsant. President furman Hebb. Execulive Vice President Phillip T. Heffernan. Sr. Vice President Edward D. Mullifetd. Sr. Vice President Philip Sine. Sr. Vice President, Secretary Lawrence Sporn, Sr. Vice President, Circulation and Marketing Baird Davis, Vice President, Production George Morrissey, Vice President Sydney H. Rogers, Vice President Sidney Holtz, Vice President Alberl S. Traina, Vice President Paul H. Chook. Vice President Edgar W. Hopper, Vice President Robert N. Bavier, Jr., Vice President Selwyn Taubman, Treasurer
W. Bradford Briggs, Vice Chairman

ZIFF CORPORATION
William Ziff, Chairman
1. Martin Pompadur, President
Hershel B. Sarbin, Executive Vice President

POPULAR ELECTRONICS. July 1979. Volume 16, Number 1. Published monthly at One Park Avenue. New York. NY 10016. One year subscription rale for U.S. and Possessions, $\$ 13.00$: Canada, $\$ 16.00$; all other countries, $\$ 18.00$ (cash orders only. payable in U.S. currency). Second Class postorders oniy. Nay York NY and at additional mailing offices. ge paid at New York. NY and at addto Pal mailang olices. Authorized as second ciass mail by the Post Oifice Depart menl, Ollawa, CancT, and mor pamenl of postage in cash. POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in the Reader's Guide to Periadical Literature.
COPYRIGHT (C) 1979 BY ZIFF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.
Ziff-Davis also publishes Boating. Car and Driver. Cycte, Flying. Popular Photography. Skiing, Stereo Review, Elec ronic Experimenter's Handbook. Tape Recording \& Buying Guide, Stereo Directory \& Buying Guide, and Communications Handtook
Material in this publication may not be reproduced in any form withoul permission. Requests for permission should be directed to Jerry Schneider. Rights and Permissions, Ziff Davis Publishing Co.. One Park Ave., New York, NY 10016.
Editorial correspondence: PDPULAR ELECTRONICS. 1 Park Ave., New York, NY 10016. Editorial contributions mus, be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility
els.
Forms 3579 and all subteription correspondence: POPULAR ELECTRONICS, Circulation Dept. P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address. Include your old address, enclosing, if possible, an address label from a recent issue.

The publisher has no krowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue

Editorial

UNSUNG ELECTRONICS INVENTORS

Names of today's innovative developers of electronic devices and products are hardly household words. Where are the modern Edison's, Marconi's, de Forest's, et al? Buried in corporate research laboratories, where, in concert with teams of others and bolstered by many millions of dollars, they work in virtual anonymity. Unlike electronics "stars" of the past, they are not heads of our present-day corporations. Consequently, the corporation generally takes credit for new, outstanding developments. The only exception that comes quickly to mind is Bell Labs' famous trio which was credited with inventing the transistor-Bardeen, Brattain, and Shockley. These scientists earned a Nobel prize.

Isn't this shameful? After all, money isn't everything. So let's have a big "hurrah" for, say, Hans Camenzind. Hans who? Well, he's the guy who invented the ubiquitous 555 timer over at National Semiconductor. And how about a "rah, rah" for Bob Widlar for the 708 and 741 chips out of Fairchild. And a big hand for Texas Instruments' Jack Kilby who, in 1959, devised the idea of making component elements in one package by semiconductor processes (the result was what we call an integrated circuit). And a round of applause for Bob Noyce's innovative spearheading of the planar semiconductor while at Fairchild (he's now head of National Semi), which separated and interconnected circuit elements electrically. (This technique was patented by Kurt Lehovec at Sprague Electric.) Theo Staar of Belgium can take a bow, too, as he developed the standard cassette jointly with Philips.

There are some inventors around who received a few semipublic accolades, of course. Among them are John Kemeny, Dartmouth College's prez, who co-developed the computer language, BASIC; Marvin Camras, for his patent on binaural magnetic recording; and IBM's Kenneth Iverson, who developed APL-A Programming Language. (Note: Ray Dolby is president of his own company, Dolby Laboratories, so we won't count such a rare bird.)

Must someone win a Nobel Prize to be accorded at least a semblance of fame beyond that of his co-workers' circle? I'd certainly like to hear from readers who know of modern-day electronics developers who changed the course of the electronics field, but whose contributions are virtually unrecognized by electronics enthusiasts.

Don't take our word forit.

"We can heartily recommend the Superboard II computer system for the beginner who wants to get into microcomputers with a minimum of cost. Moreover, this is a 'real' computer with full expandability."

Popular Electronics March, 1979
"(Their) new Challenger 1P weighs in at $\$ 279$ and provides a remarkable amount of computing for this incredible price."

Kilobaud Microcomputing February, 1979
"Over the past four years we have taken delivery on over 25 computer systems. Only two have worked totally glitch free and without adjustment as they came out of the carton: The Tektronic 4051 (at $\$ 7,000$ the most expensive computer we tested) and the Ohio Scientific Superboard II (at \$279 the least expensive) . . . The Superboard II and companion C1P deserve your serious consideration."

Creative Computing January, 1979
"The Superboard II and its fully dressed companion the Challenger 1P series incorporate all the fundamental necessities of a personal computer at a very attractive price. With the expansion capabilities provided, this series becomes a very formidable competitor in the home computer area."

Interface Age April, 1979
"The graphics available permit some really dramatic effects and are relatively simple to program... The fact that the system can be easily expanded to include a floppy means that while you are starting out with a low-cost minimal system, you don't have to throw it away when you are ready to go on to more complex computer functions. Everything is there that you need; you simply build on to what you already have. You don't have to worry about trading off existing equipment to get the system that will really do what you want it to do. At $\$ 279$, Superboard II is a tough act to follow."

Radio Electronics June, 1979
"The Superboard II is an excellent choice for the personal computer enthusiast on a budget."

C1P MF $\$ 995.00$
The first floppy disk based computer system the world has ever seen for under \$1,000. 8K BASIC-in-ROM, 12K RAM. Expandable to 32K RAM.

Byte May, 1979

Complete with enclosure and power
supply. All features of Superboard II. Easy to expand to more memory and floppy disk.

Letters

MINIWAVE NOTES

I thoroughly enjoyed "A Personal Microwave Communications Syslem: The Mini-Wave" (October and November 1978 and January 1979). A few interesting things came to mind as I read it, An i-f of 100 MHz can be used if the experimenter is interested in fust an audia link. Therefore, an ordinary FM receiver can be teamed up with the Gunnplexer. It may be necessary to inserl a gain stage ahead of the FM receiver, however. It is also possible to use a 55.25 - or $61.25-\mathrm{MHz} \mathrm{i} \mathrm{i}$, which corresponds to TV channels 2 and 3. respectively. Once again. preamplification may have 10 precede the receiver. It might also be necessary to introduce afc.

For flawless video. you should strive for a 48-dB S/N. When dealing with an audio link, a lower S / N can be tolerated. We can, of course, reduce the bandwidth of the receiver and transmitter to improve S / N. In some cases, line-of-sight communication may not be possible. This problem can be circurnvented by using buildings, water lowers, and other structures as reflectors. Like all electromagnetic waves, microwaves can be made to bend when propagated through different media. $10.0-\mathrm{GHz}$ tropo anyone? It is also interesting to notice the scattering effects microwaves exhibit under varying conditions. Thanks for the great atticle. See you on $10.2-\mathrm{GHz}$ simplex! -Carton Davis, Newark, DE

DF ${ }^{\circ}$ F AND ${ }^{\circ} \mathrm{C}$

The ${ }^{\circ} \mathrm{F}$ equivalents of the ${ }^{\circ} \mathrm{C}$ temperature rises (not the temperature points) . in "The imponance of Power-Handling Capacity" (March 1979) are in error. A $20^{\circ} \mathrm{C}$ rise from, say, $+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$ to $+40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$). tor example is a $36^{\circ} \mathrm{F}$ rise-not $68^{\circ} \mathrm{F}$, as would be obtained from a table of ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ equivalents. The extreme example of this would be to consull a table for a $0^{\circ} \mathrm{C}$ (no change) rise and concluding it is equal to a $32^{\circ} \mathrm{F}$ change. Therefore, the values of rise cited, 20°, $68^{\circ}, 90^{\circ}, 105^{\circ}$, and $155^{\circ} \mathrm{C}$ are equal to $36^{\circ}, 122^{\circ}, 162^{\circ}, 189^{\circ}$, and 279° F, respectively. This is just a nit, however, when balanced against the high level of interest and information contained in the anticle. Keep up the good work. - Lou Cortina, Pormona, CA,

SWL BOOSTER

Just a short note to tell you how much I enjoy Popular Electronics. As an SWL, I panicularly like Glenn Hauser's column and all articles on shortwave listening. -Bob Lowe, Kingsburg. CA.

IRONING OUT LINEARITY

I built the ac converter circuit featured in "Build A Mulliple-Choice Digital Multimeter" (February 1979) to use as the front end of a dedicaled digital panel meter. Linearity was too poor for use with a $31 / 2-$ digit meler, however. Alter much experimenting, I came up with the revised circuit shown.

The $47 \cdot \mu \mathrm{~F}$ capacitors are not critical, but they should be fairly large and equal in value. The $1-\mu \mathrm{F}$ capacitor on the output can be considerably reduced in value, especially at higher frequencies. This will help the output to settle faster. The CAL potentiometer should be a 10 -turn precision device.

This circuit gives accurate ac conversions through a range of 10 mV to 2.0 volls, correct to three decimal places, verified by a calibrated 5 . digit DMM. - Joe Sharp. Orange, VA.

NOTES ON CRUISEALERT OPERATION

The "Cruisealert" (February 1979) operates properly on an automatic transmission at higher speeds, but the alarm will sound on each shift with a manual transmission if one is shitting properly. The alarm will also sound on an automatic transmission if the Cruisealert is set for a low speed. For a manual transmission with overdrive, the project would require constant adjustment, depending on the cruising gear chosen. The way it is designed, the Cruisealert would be best used as an RPM "red-line" alarm for manual transmissions. -Ken W. Pavlicek, La Grange, IL.

The Cruisealert was primarity intended for automatic transmissions (although it can certainily be used on manual transmissions), and for the speeds normally encountered on highways. It can aiso be adjusted to sound an alarm at the proper shitt points for manual transmissions.

Out of Tune

[^0]$90-7$
Solderless saves time like you wouldn't believe. Our Proto-Board solderless breadboards put everything you need to get your circuit up and running on an aluminum backplane that lets you work at frequencies from DC to half a GigaHertz. Three Proto-Board models feature built-in regulated power supplies-and one of them's a build-it-yourself kit!

CSC solderless breadboards save energy, too. Especially yours. Because circuit building becomes a simple plug-and-chug process, straight from an idea to a working circult.

That's why we've become the easiest-to-find solderless breadboards in the world-available ot more stores than anybody else in the business. Because people who know solderless best insist on CSC.
Save time and energy. Get a head start with CSC.

There are 9 Proto-Boards ${ }^{8}$ in all. manufacturer's suggested U.S. resale prices from $\$ 15.95$ to $\$ 124.95$.

70 Fulton Terrace, New Haven, CT 06509 (203) 624-3103, TWX 710-465-1227 OTHER OFFICES: San Francisco: (415) 421-8872, TWX 910-372-7992
Europe: CSC UK LTD. Phone Saffron-Walden 0799-21682, TLX 817477

* Suggested U.S. resale. Available at selected local distributors.

Canada: Len Finkler Ltd., Ontario
1-800-243-6077
Call toll-free for details
CIRCLE NO. 12 ONFREEINFORMATIONCARD

New Products

Additional information om new prodacts covered in this section is available from the manufacturers. Either circle the item's code number on the Free Information Card or urite to the manufactiter at the address given.

Heath Small-Engine Tune-Up Meter

Heath's Model CM-2045 small-engine tune-up meter is designed for use on garden tractor, lawn mower, snow blower, molarcycle, snowmobile, outboard motors

and car engines with four or fewer cylinders. It can be used with all 2- and 4-cycle engines, including those from Briggs and Stratton. Test parameters include 0 to 20 volts dc, resistance to 100,000 ohms, engine RPM to 3000 and 15,000 full-scale, and dwell. The last is on four scales: 90° to 360° for one-cylinder engines, 40° to 180° for two cylinders, 30° to 120° for three cylinders, and 20° to 90° for four cylinders. Color coding is used on the meter for easy reading. A snap-on inductive pickup makes connection to the engine's sparkplug lead. Power is from three C cells (not included). \$44.95.

CIRCLE NO. 90 ON FREE INFORMATION CARD

Small-Craft CB Antenna

A new marine CB antenna, designed especially for "bass boats" and other small craft, is available from Antenna Specialists Co. The 4^{\prime} fiberglass whip is a halfwavelength design said to operate without the necessity of a ground plane. A rust-

proof plastic swivel-ball mount allows installation on sloping decks or on the side of a super-structure. It's supplied with all mounting hardware and 6^{\prime} of coaxial cable terminating in a PL-259 connector. $\$ 29.95$.

CIRCLENO. B9 ONFREE INFORMATION CARD

Crown Digital FM Tuner

The FM-1 tuner from Crown features a quartz-crystal referenced LSI digital controlier, with numerical display of station frequency. In addition an analog indicator shows the approximate location of the station in the band. Frequencies for as many as five stations can be stored in memory. where they are retained even after power loss and can be called into active use at the touch of a button. Tuning can be done manually or by an automatic scanner that gives a seven-second preview of each station whose signal is sufficiently strong. Mono stations can be excluded from the search on command. Sensitivity for $50-\mathrm{dB}$ quieting is rated at 36 dBf in stereo, with stereo THD 0.09% at $65 \mathrm{~dB} \dagger_{\text {, alternate }}$ channel selectivity of 75 dB in mono, and mono capture ratio of 2 dB .

CIRCLE NO. 91 ONFREE INFORMATION CARO

TRS-80 I/O Interface

Interfacer 2 from Alpha Product Co. is designed to allow the Radio Shack TRS-80 microcomputer to control and sense a variety of external devices. Of the eight outputs provided, two are SPDT relays and the others are TTL level. The eight inputs accept either contact closure or TTL level

logic signals. Two inguts are opto-isolated. Inputs and outputs of the Interfacer 2 , which plug directly into the 40 -pin edge connector on the rear of the TRS- 80 interface, are controlled by level II Basic INP and OUT statements. \$88. Address: Alpha Product Co., 85071 79th St., Woodhaven, NY 11421.

Dual Semiautomatic Turntable

The newly announced Dual 7140 singleplay. semiautomatic turntable features a tonearm that has a specified effective mass of only 8 grams when equipped with the Ortoton ULM 60E cartridge designed especially for it. (Other cartridges can be used with the arm, but effective mass is

then higher.) The platter is directly coupled to the motor, whose speed is controlled by a quartz oscillator system that allows up to 11% variation in pitch on command. The turntable also incorporates a front-panel, solenoid-operated cue control, four-point gimbal tonearm suspension, lead-in groove sensing, and a spring-operated stylus force mechanism. It is supplied with base and dust cover, but without cartridge. $\$ 480$.

CIRCLENO, 92 ONFREEINFORMATION CARD

President AM Mobile CB Rig

"Thomas $\mathrm{J} "$ is President's top-ot-the-line mobile AM CB transceiver. It teatures separate microphone-gain, r-f gain, tone, and delta-tune controls; digital numeric channel display; PA, blanker/ani-override, dimmer, and instant channel-9 access switches: and $\mathrm{S} / \mathrm{r}-\mathrm{f} /$ modulation/SWR me ter. Specifications include: 4 watts $r-f$ output; $0.5-\mu \mathrm{V}$ or less sensitivity for 10 dB $(S+N) / N ; 60-d B$ spurious and adjacent-

ANNOUNCNG
AMERICAS ONIY
LAND,SEA AND AIR
SCANNER.

Only the incredible, new,

 no-crystal Bearcat 220 Scanner tunes in all the real excitement of the entire AM aircraft band-plus every FM public service frequency-with pushbutton
channel rejection; and $-65-\mathrm{dB}$ or better spurious and harmonic suppression. The noise blanker is described as a full r-f type with manual override. Size is $8.3 / 4$ " $\mathrm{D} \times$ $75 / 6^{\prime \prime} \mathrm{W} \times 23 / /^{\prime \prime} \mathrm{H}(22.2 \times 18.6 \times 7 \mathrm{~cm})$ and weight is $5 \mathrm{lb}(2.3 \mathrm{~kg})$.

CIRCLE NO. 93 ON FREE INFORMATION CARD

Mini-mike for Pocket Recorder

Designed as an accessory for Pearlcorder D series Microcassette Recorders, the DM-1 Uni-Directional Microphone from Olympus Optical Co., Ltd. is said to provide the directivity needed to record in classrooms and theaters, for outdoor interviews, and at conferences. Like other units in the D System, the DM-1 screws to the base of the D Series recorder, which makes all necessary mechanical and electrical connections. In use, the telescopic boom is extended as far as necessary and the mike aimed at the desired source of sound. A wind screen is provided for outdoor use. \$79.95.
CIRCLE NO. 94 ON FREE INFORMATION CARD

B\&K-Precision Power Supply

A new lab power supply capable of funclioning as three separate power supplies and featuring an automatic tracking circuit has been introduced by B\&K-Precision.

The Model 1650 supply offers a 5 -volt dc at 5 -ampere and two separate (A and B) 25 -volt dc at 0.5 -ampere outputs. The automatic tracking circuit allows the B output to track voltage changes of the A supply. Tracking is controlled by means of a pulse-width-modulated proportional control signal. This design permits complete electrical isolation of both supplies in the tracking mode. Also featured are automatic current limiting and short-circuit protection on all ranges and outputs. All output connectors are color-coded six-way heavy-duty binding posts. $\$ 275$.

CIRCLE NO. 95 ON FREE INFORMATION CARD

Morse-A-Word Code Reader

An eight-character Morse code reader for SWL's and ham operators has been intro-

duced by Microcraft. The unit accepts audio CW signals from the headphone jack or loudspeaker output of a communications receiver and displays corresponding characters sequentially in a moving chain. A front-panel control adjusts for code speed from 5 to 35 words per minute. Also included are a built-in code practice oscillator and monitor speaker. \$250. Address: Microcraft Corporation, P.O. Box 513, Thiensville, WI 53092.

Kenwood

Three-Way Speaker System
The new Kenwood LS-408-B speaker system, top of a new line of high-efficiency speakers, has a $12^{\prime \prime}$ woofer, $43 / 8^{\prime \prime}$ mid-

range, and $13 / 4^{\prime \prime}$ cone tweeter. Power handling capability is said to be 20 to 160 watts, and sensitivity is 92 dB with one watt at one meter. Crossover frequencies are at 2000 and 5000 Hz ; impedance is 8 ohms. The system uses a ported bass reflex design. $\$ 300$.

CIRCLE NO. 96 ON FREE INFORMATION CARD

Lightweight Isolation

Transformer

The latest member of the Isotap line of isolation transformers from VIZ Manufacturing Co. is the compact Porta-Isotap, which weighs just 8 lb . The unit is meant to be an aid in servicing solid-state TV receivers designed without power transformers. The Porta-Isotap has two fused outlets, one isolated and rated at 150 VA continuous, the other direct and rated at 500 VA . The

direct outlet is intended as a convenience in powering test instruments, a soldering iron, etc. \$44.95.
CIRCLE NO. 97 ON FREE INFORMATION CARD

Static Suppressor for Records

Permostat, newly introduced to the U.S. by Stanton Magnetics, is a liquid spray said to permanently eliminate static from any phonograph record to which it is applied, with no loss of sound quality, frequency response, or freedom from noise. Airborne dust attracted to the surface of a disc by

static electricity contributes to wear of both the stylus and the disc and adds surface noise. Stanton reports that Permostat causes less wear on a treated disc played 100 times at 3 grams vertical tracking force with an elliptical stylus than on a similarly played untreated record. Each kit is capable of protecting about 25 records. \$19.95.
CIRCLE NO. 98 ON FREE INFORMATION CARD

Electro-Voice Microphone Shock Mount

The Model 313A shock-mount microphone

A system with remote for less than the other people charge for just a telephone answering machine

This ad's a test. A kind of consumer survey. With a special Free Offer. To see if the low price of the new Call Jotter remote telephone answering system can turn one of the biggest selling business items into one that's successful with consumers, too.

Ordinarily, information like this comes from a consumer panel. Focus groups. But the manufacturer wasn't about to commit for the enormous sum required based on talk. He wanted facts. And came to us, as one of the largest mail merchandisers, for help. Because orders are facts he could act on.

Quality Features

For our part, we tested the Call Jotter thoroughly. And can tell you it's exceptionally well made. (It has to be to get our guarantee.) With solid state, microprocessor technology and plug-in simplicity. It's F.C.C. approved. And delivers the freedom and convenience you get with systems selling for $\$ 299.95$-which is the going price, as you know, for remote telephone answering machines.

One thing we did tell the manufacturer: something extra should be given to those who participate in this test. He agreed. So, you'll receive with your order a FREE professionally recorded tape that answers and records 30 messages ... a FREE blank tape for recording your own messages or for when you're using the machine as a cassette recorder and player ...plus a FREE adapter for connecting the Call Jotter to your telephone jack.

An Extraordinary Convenience

Now, we ask you, how much would it be worth to you, to your wife, even your teen-age children to never miss or worry about a phone call again? And to get your messages without having to wait until you get home-from any phohe, anywhere in the world. Resetting the machine to take 30 more messages by touching a button on the Tele-Key remote control.

Of course, you'll use your Call Jotter to answer the phone when you're working outside and when you're in a part of the house where there's no telephone.

How much would you spend for an answering machine when the phone rings and you're up on a ladder painting the house? It's trueisn't it-the phone always seems to ring at exactly the wrong time. Like the critical moment in your favorite show and whenever you're taking a nap.

Think of the time you've spent just waiting for someone who's promised to call. And what value do you place on your privacy... on working without interruption?
Because your Call Jotter has a monitoring system that lets you listen without answering, you can go back to what you were doing the instant you know it's a nuisance call or for someone who's out of the house. Naturally, you can take any call that's important.

Two For The Price of One

For additional value, Call Jotter works with a single cassette, like a pocket recorder or dictating machine, so you'll use it to listen to your favorite tapes and for recording your own tapes, for dictating letters and memos to be transcribed at the office.

Save $\mathbf{\$ 1 3 0 . 0 0 !}$

You'll use your Call Jotter, then, when you're away-whether it's running to the corner store or spending a month in Europe.

Still-we agree, you probably wouldn't want to spend $\$ 299.95$ for something that isn't business related. With Call Jotter, though, you save $\$ 130.00$! And that's a different story.
At $\$ 169.95$ (plus $\$ 4.35$ shipping and handling) Call Jotter's the lowest priced remote telephone answering machine you can get. (Without the remote, it's even less, only $\$ 99.95$ plus $\$ 4.35$ shipping and handling.)
Now, we invite you to discover the convenience and freedom it brings-especially if you're an active family-without risking one cent.

You can order either model with any national credit card simply by calling the toll free number below at any time. If you prefer, send your check to Douglas Dunhill at the address below. (lllinois residents are required to add the sales tax.)

Call 800-621-5554

Illinois Residents Call 800-972-5858 In operation 24 hours, 7 days a week
Remember, the low, down-to-earth price includes the Tele-Key remote control and the two FREE tapes plus the FREE adapter that fits your telephone jack. (If you don't have a phone on a jack, the telephone company will install one for a modest, one time charge when your system arrives.)

You Must Be Satisfied

Use your Call Jotter for 30 days. If you're not completely satisfied return it to us for a complete refund, no questions asked. Simply use the carton it comes in and follow the simple procedure in the directions we send you.
If this test is successful, the manufacturer will go into full production and you'll be seeing the unit in stores everywhere in six to nine months. You'll have played a part in this success-for which we thank you. Meanwhile, we'll be filling orders while we can from the supply on hand.

- Approved for connection in accordance with telephone company filed F.C.C. regulations
- Uses standard 60-minute cassettes
- Plugs into any phone on a jack with adapter supplied free
- Dynamic microphone, full fidelity speaker, pushbutton tape controls, call light, recorder-player operates on standard A.C. current
- Tele-Key complete with 9 V battery for remote control from any phone anywhere in the world ($2^{\prime \prime} \times 3^{\prime \prime}$ $\times 1^{\prime \prime}-4 \mathrm{oz}$.)
- Hi-fi styling. Black and walnut color. Just $91 / 2^{\prime \prime} \times$ $101 / 2^{\prime \prime} \times 23_{4} 4^{\prime \prime}$
The convenience and freedom you want. . . At the price you've been waiting for.

ロロu!

Dept. 50-2377

Ten Douglas Dunhill Drive, Oak Forest, IL 60452 (C) Douglas Dunhill Inc. 1979

THERE ARE A LOT OF WAYS TO BUILD A RECEIVER THAT SELLS FORUNDER $\$ 400$.

PIONEER DID ITTHE RIGHT WAY.

It seems that our competitors think they've mastered the art of building a moderately priced high fidelity receiver.

Unfortunately, most competitive receivers appear to be the work of cost reduction engineers, rather than high fidelity engineers.

At Pioneer, our philosophy is somewhat different.
We build a receiver that sells for under $\$ 400$

Meral shields our SX-780 from spurious noise. with the same care given to a receiver that sells for over $\$ 1000$.

A perfect example is the SX-780.

A STRONG CASE FOR THE METAL BOTTOM.

If you turn over our SX-780, you'll notice the bottom is made of heavy gauge metal. Not flimsy press board. It's designed that way to shield the tuning section from spurious noise and CB interference.

Then there's our special ventilating system that reduces FM drift due to overheated tuning elements and increases the life expectancy of the circuitry.

If not eliminated, this signal tends to create an extremely high pitched sound (hum) when combined with lower audible frequencies.

But instead of using standard high band filters like the others, Pioneer created a special integrated circuit that eliminates this pilot signal without affecting the music. So that you're assured of hearing everything the musicians had intended you to hear. Nothing more. And nothing less.

Obviously, the SX-780 is the only receiver in this price range that offers you this feature. The others offer you the noise.

WATTAGE METERS THAT LETYOU SEE WHAT YOU'RE HEARING.

A pilor signal canceling circuit that lers you. hear only music and nothing more.

Wattage meters give you an accurate picture of exactly how much power is going through your speakers. So they not only help prevent unnecessary damage due to overloading, but help you make cleaner FM recordings.

You won't find them on any other moderately priced receiver.

Of course, the SX-780 has another virtue that's conspicuously absent from our competitors' models.

A built-in wood grain cabinet, which others give you the "option" of paying extra for.

But what really separates Pioneer's SX-780 from other receivers isn't a matter of wood cabinets, wattage meters, metal bottoms, DC power, or even price.

It's our commitment to giving you a quality high fidelity receiver, no matter how much, or how little you plan to spend.

So if you're planning to spend less than $\$ 400$, you couldn't ask for more than the SX-780.

QPIONEER

We bring it back alive.

A PILOT SIGNALCANCELING SYSTEM THAT'SALL BUT UNHEARD OF IN THIS PRICE RANGE.

All stereo FM stations in America broadcast their music over a pilot signal of 19,000 hertz.

POWER: 45 watts per channel min. at 8 ohms from 20-20,000 hertz with no more than .05\% total harmonic distortion.
FM SENSITIVITY: Stereo; 37.0 dBf
S/N RATIO: Stereo; 72 dBt

CAPTURE RATIO: 1.0 dBr
POWER METERS: 2 SPEAKERS: A. B, AB TONE CONTROLS: Dual TAPE MONITORS: 2

clamp from Electro-Voice was designed to hold a mike with an approximate $3 / 4^{\prime \prime}$ barrel diameter. A hinged metal latch is provided to hold the microphone in four replaceable urethane bands for temporary shock mounting. When used with a set screw, the 313A becomes a semipermanent shock mount for applications that don't require frequent mike changes. $\$ 23$.

CIRCLE NO. 99 ON FREE INFORMATION CARD

Universal Designer for Digital ICs

Paccom's FTK 6100 Universal Designer is offered as an aid to assembling experimental circuits with digital ICs. It is capabie of plugging into breadboards from Continental Specialties, AP Products, or E \& L

Instruments. Powered by a 6-volt battery, it contains two bounceless pushbuttons, two readouts with BCD inputs, four switch oulputs, eight LED monitors, two variable clock generators, and two decade counters. $\$ 35$, kit; $\$ 45$, assembled.
CIRCLE NO. 100 ON FREEINFORMATION CARD

"Powerless" Cassette Tape Eraser

Operating independently of external power or internal batteries, and without moving parts, the Cassette Tape Eraser from Trans Globe Trade Enterprises is said to erase a recorded cassette in one second. The device contains powertul built-in magnets that are claimed to last practically indefinitely and to be capeble of restoring a cassette to original tone quality while leaving minimal tape hiss. $\$ 17.95$. Address: Trans Globe Trade Enterprises, P.O. Box 24797, Los Angeles, CA 90024.

New Literature

PTS ELECTRONICS TUNER CATALOG

The 1978-79 Tuner Replacement Guide \& Parts Directory from PTS Electronics contains 182 pages of technical information and diagrams for TV tuners and modules as well as comprehensive descriptions of PTS products and services. Included in the catalog are sections on module repair, a list of rebuilt and exchanged modules, a module cross-reference guide, troubleshooting information, sections on PTS test instruments, tools and chemcats, and a list of tuner replacements by manufacturer. Iniormation about uhf and vhi tuners for all major domestic and foreign brands occupies 83 pages of the publication. Sectio' is on replacement tuner parts, antenna coils, and tuner shafts, and price lists are also included. Address: PTS Electronics, Inc., P.O. Box 272, Bloomington, IN 47401.

B \& K-PRECISION DMM SELECTION GUIDE

A six-page brochure from Dynascan Corporation describes the B \& K-Precision line of digital multimeters, detailing features, applications and specifications for all models. Among the DMMs listed are Models 2830 and $281031 / 2$ Digit DMMs, both with autozeroing, and Model 283 31/2 Digit Lab DMM with high-intensity LED display for maximum readability, plus the Model TP-28 Solid-State Temperature Probe. Address: B \& K-Precision, 6460 W. Cortland St., Chicago, IL 60635.

WANG IMAGE PRINTER BROCHURE

A six-page brochure from Wang describes the Intelligent Image Printer, an output device for Wang office information and computer systems said to be 50 times faster than an electronic typewriter. Using fiber optics technology to fuse light into images, the Image Printer produces collated, typewriter-quality pages at the rate of 18 per minute, and permits the mixing of type faces within documents. Address: Wang Laboratories, Inc., One Industrial Avenue, Lowell, MA 01851.

TI BUBBLE MEMORY DATA BOOK

The 48-page LCC4430 data book from Texas Instruments contains specifications on the TIB0203 magnetic bubble memory and an 8page discussion of the fundamentals and advantages of magnetic bubble memories. Also contained in the manual are specification sheets for the interface integrated circuits designed for use with the TIB0203, including the SN74LS361 function timing generator, the SN75281 sense amplifier, the SN75380 func-
tion driver, and the SN75382 coil driver. Data sheets for standard devices which can be used in bubble memory system design, such as the TSP102 thermistor and the VSB53 Schottky-diode bridge, are included as well. Address: Texas Instruments Incorporated, Inquiry Answering Service, P.O. Box 225012, MS-308 (Attn: LCC4430), Dallas, TX 75265.

MOUNTAIN WEST SECURITY SYSTEMS

This 72 -page catalog contains more than 1200 security and alarm systems. Equipment ranges from magnetic door switches, locks, alarms, and bell systems to radar, ultrasonic and infrared detectors. Product catagories include residential and commercial alarm controls, fire systems, fire and intruder detectors, remote controls, signaling devices, silent phone connections, telephone dialers, power sources, locks, tools and books. The catalog also includes information on system design, alarm application, and installation procedures with connection diagrams, as well as specifications. Address: Mountain West, 4215 N . 16th St., Box 10780, Phoenix, AZ 85064.

OHIO SCIENTIFIC FULL LINE CATALOG

The 1979 Full Line Catalog from Ohio Scientific consists of a 310-page paperback handbook supplemented by a 16 -page price list, and tells "Everything you've always wanted to know about personal and small business computers." The catalog contains a series of technical reports, a review of available software, and a description of personal and small business computer applications, including capability of upgrading systems for future expansion. Send $\$ 1.00$ to: Ohio Scientific, Publications Dept., 1333 South Chillicothe Rd., Aurora, OH 44202.

GTE VOICE SECURITY TERMINAL

General Telephone \& Electronics offers an eight-page brochure describing the Mark IV VST-6000, a voice security terminal that protects speech transmitted over standard telephone lines while providing voice recognition. With the aid of block diagrams, the brochure explains how voice is encrypted and how secure conterence calls can be established. It also provides operating modes, data rates and dimensions of the equipment. Address: Michael Thurk, GTE Sylvania Inc., 77 " A " St. Needham Heights, MA 02194.

RADIO SYSTEMS TECHNOLOGY CATALOG

The 16 -page 1979 catalog from Radio Systerns Technology describes the company's line of aircraft avionics and test equipment kits. Products include transceivers, intercoms, microphones, headsets, antennas, tools and other supplies of interest to general aviation aircraft owners and pilots. The cata\log features several new products including a 6 -channel aircraft radio band transceiver kit and two voice-actuated intercom kits. Address: Radio Systems Technology. Inc., 10985 Grass Valley Ave., Dept. P79. Grass Valley, CA 95945.

All that's new and unique in quality electronic kits you can build

SEE THEM IN THE LATEST HEATHKIT ${ }^{\text {b }}$ CATALOG-

The world's largest selection of easy-tiobuild, money-saving electronic kits for home, hobby or business

Learn to service 2-way radio, microwave systems, AM/FM transmitters,

with NRI's Complete

Learn installation and maintenance of commercial, amateur or CB communications equipment.

There are more than 25 million CB sets out there, millions more two-way radios, walkie-talkies, and other communications apparatus in use by business, industry, government, police and fire departments, and individuals. That means a lot of service and maintenance jobs... and NRI can train you at home to fill one of these openings. NRI's Complete Communications Course covers all types of two-way radio equipment. . AM and FM transmission
and reception, television broadcasting, microwave systems, radar principles, marine electronics, mobile communications, and aircraft electronics. And NRI guarantees you will pass the exam for the commercial FCC Radiotelephone License you need to perform most servicing work, or your tuition will be refunded in full. This money-

back agreement is good for six months after completion of your course.

Learn on your own 2-meter,

 digitally synthesized VHF transceiver.You'll learn to service all types of communications equipment as you assemble your own VHF transceiver. NRI engineers have designed it, not only as a commercial-quality, highperformance unit, but as a unique "power-on" training tool to give you actual bench experience with the principles needed to service commercial, CB , and amateur equipment.

Then we help you get your FCC Amateur License so you can go on the air.

The complete course includes 48 lessons, 9 special reference texts,
and 10 training kits. Included are your own electronics Discovery Lab, ${ }^{(8)}$ antenna applications lab, CMOS digital frequency counter, and 7-scale AC/DC volt-ohm meter. You'll learn at home, at your own convenience, getting the training you need for your FCC License and the communications field of your choice.

CB specialist course also offered.

If you prefer, you can concentrate on the big field of CB radio with NRI's special course in CB servicing. You get 37 lessons, 8 reference texts and plenty of "hands-on" training with your own 40 -channel CB, AC power supply, and multimeter. Also included are 14 coaching units to make it easy to get your commercial Radiotelephone FCC License...required for you to test and service communications equipment.

Communications Course.

Orget into TVand audio servicing.
 NRI can train you at home to

NRI instructor/engineers

Each NRI student is assigned his own course instructors, there to help you over any rough spots, explain problems, and give you the advice you need as you progress toward your future. And each one knows what he's talking about, because he.was more than likely involved in the design of your course or some of the NRI equipment you use. NRI instructors are practical, experienced people who really know their field and do their best to pass their knowledge on to you.

You get more for your money from NRI.

NRI employs no salesman, pays no commissions. We pass the savings' on to you in reduced tuition, topquality professional equipment, and reliable testing instruments necessary for a successful career. You can pay hundreds of dollars more at other schools, but you can't get better training.

Free catalog...
 No salesman will call.

Get your free catalog and discover why NRI is the leader in home technical training. In 65 years of service, we've helped over a million students start to build new careers. Mail the card today and get started on your new future. If card has been removed, write to:

NRI SCHOOLS
McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Washington, D.C. 20016
service TV equipment and audio systems. Choose from courses to meet your needs and budget, with our complete Master Course in TV/Audio/ Video Systems Servicing covering the entire field of electronic home entertainment. You learn to install and repair stereo systems, PA systems, car radios and tape players, musical instrument amplifiers, video tape and disc units, AM/FM radios, black and white and color TV. You get practical bench training as you build your own $25^{\prime \prime}$ (diagonal) solidstate color TV complete with computer tuning that lets you program an entire evening's entertainment. You also assemble your own solid-state stereo and professional test instruments.

It's the kind of training that's already helped thousands of pros. Send card for free catalog.

Learn compułer electronics.

Now! Build your own microcomputer as you train.

Train to become one of the new breed of computer technicians...at home with both the equipment hardware and the programming software. Over two years and one-half million dollars in development, the new NRI course in Microcomputers and Microprocessors covers this exciting new opportunity field thoroughly and
completely. As you learn, you get "hands-on" experience, building test instruments you use and keep, proving theory in the unique NRI Discovery Lab ${ }^{\text {® }}$ and assembling the exclusive NRI designed-for-learning microcomputer. This unique "teaching" machine demonstrates and clarifies concepts from the very first stages of construction. Finished, it's a completely functional dual-language unit, ready to go to work as your personal microcomputer or basis for a commercial system. It's all part of the most up-to-date, complete home study course ever offered. Mail the card for full facts.

Many amps can deliver pure sound. The Sansui AU-919 delivers pure music.

Today's audio engineering has reached the point where you can select among a number of affordable high-power amplifiers that have virtually no "total harmonic distortion." That's good. But THD measurements only indicate an amplifier's response to a pure, continuously repeating, steady-state test signal (below, left). They don't tell you how the amp responds to the never-repeating, rapidly-changing transient waveforms of real music (below, right). And only an amplifier designed to reproduce the demanding dynamics of music signals can satisfy the critical audiophile. An amp like the Sansui AU-919.

SINE WAVE

DYNAMIC MUSIC SIGNALS

Because low THD without low TIM is like sound without music, the Sansui AU-919 is designed to respond well to both simple sine-wave test signals and also to handle the jagged, pulsive edges required for realistic reproduction of musicwithout imparting that harsh, metallic quality known as "transient intermodulation distortion" (TIM).

The Sansui AU-919 sounds better than conventional amps because Sansui developed a unique (patent pending) circuit that is capable of achieving both low THD and low TIM simultaneously.

Our DD/DC (Diamond Differential/DC)* circuitry provides the extremely high drive current necessary to use proper amounts of negative feedback to reduce conventionally-measured THD (no more than $0.008 \%, 5 \mathrm{~Hz}-20,000 \mathrm{~Hz}$ into 8 ohms at 110 watts, min . RMS) without compromising our extraordinary $200 \mathrm{~V} / \mu \mathrm{Sec}$ slew rate, ensuring vanishingly-low TIM, as well. The power amplifier frequency response extends from zero Hz to $500,000 \mathrm{~Hz}$.

Since ultimate tonal quality depends on more than the power amplifier alone. Sansui also uses its DD/DC* circuitry in the phono equalizer sectionwhere current demands are also particularly high to prevent TIM. ICL (input capacitorless) FET circuits are used throughout the AU-919, and a "jump switch" is provided that will let you run pure DC from the Aux. input to the output.

Visit your authorized Sansui dealer today, and he'll show you a lot more that the AU-919 has to offer. Like twin-detector protection circuitry and our Penta-Power Supply system. Two-deck monitoring/recording/dubbing facilities. And a high-performance ICL/FET pre-preamp for moving-coil cartridges.

Then listen to the AU-919 with the most demanding music you can find. You'll hear the way the music should sound. Like music. Not just like sound.
-The Diamond Differential/DC. Sonsui's (patent pending) totally symetrical double ended circuitry with eight transistors, is named for its Diamond-shaped schematic representation.

SANSUI ELECTRONICS CORP.

Lyndhurst, New Jersey 07071 • Gardena, Ca. 90247
Sansui Electric Co., Ltd., Tokyo, Japan
Sansui Audio Europe S.A. Antwerp, Belgium In Canada: Electronic Distributors
 Stereo Scene

By Ralph Hodges

BEING RE-CREATED EQUAL

PROPONENTS of equalizers tend to regard them collectively as the greatest boon to come along since electrical recording, while skeptics take quite another view of them. My own experience with equalizers-which dates back to the Blonder-Tongue multi-band unit of the 1950's-has been mixed. I started out like a house afire, all but convinced that the hitherto impossible dream of flat frequency response from. say, 30 to $15,000 \mathrm{~Hz}$ lay literally at my fingertips, only to founder time and again on obstacles that, while little understood, were all too perceptible in terms of their musically excruciating effects. Hindsight has pinpointed misunderstanding as the chief element in my failures; a recounting of them may help others avoid the same pitfalls.

How I Tuned My Loudspeakers. Equipped with one of the first-generation octave-band equalizers of the early 70's and a pair of highly regarded but not-quite-flat omnidirectional speaker systems, I set out some nine years ago to make these speakers flat once and for all. Beginning systematically, I first acquired a sound-level meter on which a calibration curve had been taken, and a test record.

A record spanning the audio range in discrete one-third-octave bands is appropriate for this application. I used the record distributed by Altec, which is generally suitable except for its high level of vertical rumble, which should be cancelled by switching the amplifier to mono. Soundcraftsmen and $A D C$, among other equalizer manufacturers, offer suitable records, but the Soundcraftsmen record is meant to be used in a by-ear test, and hence has built-in loudness compensation, which will show up on a meter in the form of accentuated response at the extreme bass and treble. This is no problem for the midrange
region, however. The Warble tones on the Stereo Review test record, also loudness compensated, can be useful too, although meter fluctuation with the warble should be expected.

Seated in my usual listening location, the meter held out in front of my face, I plotted the response from both speakers, subtracted the meter's calibration curve, and (surprise!) the resulting response curve was within a dB or two (above about 500 Hz) of the curves made by Hirsch-Houck Labs. (At lower frequencies, predictably, room modes caused wide variations in response, but I could live with these if I could get the midrange smoothed out.)

This was both encouraging and disturbing: encouraging because it suggested that measurements on loudspeakers really could be carried out with some hope of agreement between testers; disturbing because the curves plotted for the two speakers were very similar, whereas the speakers did not sound very similar at all. Presumably, their different positions in the room, which were far from acoustically symmetrical, gave them different sonic characteristics. At least it was true that when the right speaker was substituted for the left, it sounded very much as the original left speaker had and produced (within the bounds of instrumental and procedural accuracy) identical measurements.

Ignoring this puzzle for the moment, I decided to equalize the speakers to what the meter said was flat response. The appropriate corrections seemed to involve tilting up the extreme high end, filling in a sharp depression in the upper midrange, and suppressing a bump in the midbass that seemed to be a real parl of the speakers' response, independent of their placement in the room. Although the midrange depression measured only a few dB below the reference "zero" level, the full 12 dB of boost nom-
inally available from the equalizer was not enough to iron it out, while adjacent frequencies were highly exaggerated.

Finally, I struck the best compromise I could and sat down to listen. After excerpts from about five recordings I couid no longer deny that the sound was horrendous. Fine-tuning by ear did not help much, except to demonstrate that the closer I came to removing the equalizer from the system altogether, the better the sound. Even the midbass sounded better with the bump left in. (I kept it equalized out for several days just to make sure I wasn't being seduced by the corpulent richness it lent to the sound.) Thus ended Experiment One.

How I Tuned My Room. At this point, I thought I understood the flaw in my equalization procedure so I devised another approach. I set up a high-quality omnidirectional microphone at my listening position and fed its output to a tape recorder. Through the speakers I played an organ recording with sustained chords spanning a wide frequency range. By recording a few minutes of this and comparing the tape and the original record, I was-in theory, at least-able to hear the effect of the lis-tening-room acoustics on the reproduced sound. The idea was to adjust the equalizer so that the tape with the equalizer in sounded exactly like the record with the equalizer out. In that way I could subtract the room's contribution to the sound heard at my listening position and leave only the sound laid down by the record producer.

That didn't work either. No matter what I did I could not adjust the equalizer to make the tape sound much like the original disc recording. I did find, however, that the best adjustment my ear could find gave a better sound than a setting determined by instruments. This tape-recording technique eventually proved excellent for isolating certain acoustic problems in the room (best corrected by acoustic treatment of the walls) that had escaped direct detection but still nagged at me during normal lis-tening-but that is another story. Meantime, I was still no happier with the equalizer in the system than with it out.

How I Tuned My Records. Soon afterward, acquaintances began telling me how useful their equalizers were in taming certain problems on records. Being a lifelong enemy of ear-piercing sibilance, bloated or absent bass, wiry vi-
olins, and overblown midrange, I found this of great interest. I had pressed my equalizer into combat against these undesirables before, and now did so again. The result was the same. Octave-band corrections were too broad to subdue sibilance and harsh violins without losing the bite of the brass and the sheen of the cymbals. Treble above about 8,000 Hz (that's really only an octave, and it is hence governed by only one control on an octave-band equalizer) could be helped out somewhat, and bass, spanning about four octaves, could be contoured quite satisfactorily for many recordings. But most adjustments attempted in the midrange wound up sounding unnatural.

At this point, a certain insight struck me, and a few visits to my acquaintances' homes confirmed its accuracy. They were all using their equalizers to introduce broad, gradual lifts or descents in system response at the frequency extremes. In short, they were duplicating the functions of a set of bass and treble controls. No doubt their equalizers afforded greater flexibility in determining the precise contour of the response slope being introduced, but I suspect that simple tone controis with variable turnover points would have served the purpose just as well.

Conclusions. Astute readers will have long ago spotted the errors in my experiments. The moderate upper midrange dip registered by my sound-level meter in Experiment One was probably a deep dip confined to a narrow range of frequencies, resulting from an acoustic interaction between loudspeaker drivers. The third-octave-band test signal, by averaging the speaker's output over a wider range of frequencies, made it seem less pronounced than it was. But trying to eliminate it with an octave-band equalizer was hopeless. In fact, the dip's effects were probably almost inaudible, and it would have been best left alone.
Had I been totally unable to restrain my native fussiness, a one-third octave or, perhaps even better, a parametric equalizer would have been the tool of choice. With the former I could have made some correction in the offending one-third-octave band without side effects elsewhere: the latter could have been tuned virlually to the exact frequency that needed to be boosted. Octave bands are too coarse for some ap-plications-but I didn't know that then.

When I tried to adjust the equalizer so
that the recording made in the listening room sounded like the original organ recording. I had hoped that my ears could ignore the reverberation time added by that same listening room. They couldn't-and what is known of the earbrain mechanism suggests that they never could.
In correcting for the frequency response of a recording that offends, no objective standard is possible. You either like the audible result or you don't. My belief is that the use of an equalizer will give much more satisfaction to a pop/rock listener than a classical-music listener, simply because exaggeration is very much a part of the pop/rock business to begin with, because the background instrumentation is probably very basic in its harmonic structure, and because the recording studio often provides no acoustic environment to a recording other than what is injected artificially by various signal processors. In my opinion, when a recording contains a good dose of the acoustic in which the performance took place, the effects of anything more than moderate post equalization are all the more likely to sound artificial.

I hasten to point out that my difficulties in using equalizers with success is in no way intended as an indictment. In many applications-especially professional ones-they have proven aimost indispensable. And, although there are sound systems that do not seem to benefit much from equalization, there are undoubtedly others that would if it were applied correctly.

In the professional sphere, equalizers are used widely for at least two purposes: adjusting the response of monitor speakers in recording-studio control rooms and suppressing feedback in sound-reinforcement systems. Studio monitor speakers are likely to be fairly directional, and the acoustics of the control room fairly dead. Under these circumstances, it is the sound that comes directly from the speakers that really counts; reflections from the room do not get very much involved. It has proven practical and effective to equalize monitor speakers for whatever response is desired right where the engineer will be sitting during a session. in other seats, the audible result may not be quite as favorable, and it is difficult to predict exactly what would happen with speakers not quite as directional. But in this application, equalization can be a great boon. Audiophiles who own fairly directional
speaker systems such as full-range electrostatics also report that equalization yields great satisfaction.

In sound-reinforcement work, the equalizer is used to keep the microphone, which is inevitably picking up sound from the speakers, from responding to resonances in the auditorium and driving the system into acoustic feedback. Forlunately, the sound system usually "takes off" at pretty specific frequencies, which is why the squeal you hear from a PA installation going into feedback has a definite pitch.

The well-equipped engineer will use a real-time spectrum analyzer and an equalizer that offers control over very narrow frequency bands-one-third octave or so. With the microphone on, and with the system reproducing pink noise, he will raise the gain until the system breaks out into feedback. The analyzer will immediately indicate the approximate frequency involved, and the equalizer is used to reduce the system's output at that frequency to the point where feedback stops. Once more the gain is raised until another frequency takes off and another equalizer control is brought into play. In the end, any further increase causes feedback at almost all frequencies. When that condition is reached, system equalization is complete. The result is a system that can play much louder and usually sound much better than a comparable unequalized system.
l've not yet had the opportunity or instrumentation to try this adjustment lechnique in a home setting, but the experiment would be worth trying, if only for the knowledge gained. If you are willing to spend hours rather than minutes, the job could possibly be done without a real-time analyzer. This would limit your necessary acquisitions to a high-quality microphone; interstation noise from your tuner wiil provide an adequate test signal, provided that you subtract 3 dB per octave to allow for the fact that it is qua-si-white, not quasi-pink. By reducing any feedback tendencies you discover in your system, you'll presumably be compensating for the room resonances that give rise to them.

That is the sum total of advice I can offer on the systematic use of equalizers. The rest depends on you and on the specific characteristics of your room and sound system. If you really work at it, there's a good possibility you'll come up with some effective adjustment procedures of your own.

Look how soft you can have it with a Compucolor II personal

 computer:
Julian Hirsch Audio Reports

Sanyo Model TP1030 fully automatic direct-drive dc servo turntable

Sanyo's Model TP1030 fully automatic, single-play record player is operated by a di-rect-drive brushless dc servo motor at $331 / 3$ or 45 rpm . Its silver-colored motorboard contrasts attractively with a walnut-veneer wooden base. A hinged, clear plastic dust cover tops the unit, which is supported on four softly sprung feet to provide isolation from conducted vibration.

Overall size, with cover lowered, is $185 / /{ }^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D} \times 57 / \mathrm{s}^{\prime} \mathrm{H}(47.3 \times 38.1$ $\times 14.9 \mathrm{~cm}$), and weight is 14 lb 2 oz (6.4 kg). Suggested price is $\$ 170$.

General Description. The record player's principal operating controls are four pushbuttons, two of which are for adjusting the tonearm's set-down point for $7^{\prime \prime}$ or $12^{\prime \prime}$ records. When the START/Cut button is pressed lightly, the motor and tonearm are activated and play begins. At end of play, the tonearm returns to its rest and the motor shuts off. A second touch of the START/CUT button at any time during play initiates the shut-otf cycle. The
remaining button, labelled REPEAT, latches in place when pressed and causes the record to be repeated indefinitely until cancelled by the start/cut button.

The 12 " aluminum-alloy plaiter has four rows of stroboscope dots cast into its rim, where they are illuminated by a neor lamp. Two small buttons, each with a thumbwheel vernier speed control nearby, select the operating speed. A red LED near each control indicates the speed in use at that particular time.

The tonearm, an S-shaped aluminum tube, is fitted with the standard Japanese four-pin plug-in head shell. It is balanced by a threaded counterweight that also carries the stylus force scale, calibrated from 0 to 3 grams at 0.25 -gram intervals. A small lateral balance counterweight extends from the lonearm's pivot support, at right angles to the main axis of the arm. It is to be adjusted so that a frontrear till of the record player does not cause the tonearm to drift in either direction. An antiskating dial and cueing lever are on the motorboard near the base of the arm.

Laboratory Measurements. We installed a Shure M95ED cartridge in the tonearm for our tests. Cartridge installation instructions state that stylus overhang (beyond the center of the turntable spindle) should be set to 19/32" (15.1 mm) for minimum tracking error. We found it impossible to do this with the required accuracy by purely visual means. We eventually used an external styfus protractor to check the tracking error as the position of the cartridge in the shell was varied. The final setting was with the stylus 50 mm from the reference surface where the headshell contacts the arm. (This is a more or less standard dimension in tonearms of this type and is much easier to set up than using the method called for in Sanyo's instructions.)
When properly adjusted, the tonearm has a very low tracking error, which did not exceed $0.5^{\circ} / \mathrm{in}$. over the playing surface of a 12 " record and was typically not more than $0.3^{\circ} / \mathrm{in}$. With the tonearm balanced according to instructions, the calibrations of the tracking-force scale on the counterweight were within 0.05 gram of the actual force at all settings.

At the lowest normal tracking forces, on the order of 1 gram, antiskating compensation was not sufficient to give identical waveform clipping in the two channels on heavily modulated passages, even when set to full scaie. Increasing the tracking force by 20% or so should solve the problem, however. A second minor nuisance is that the tonearm cueing device allows the arm to drift excessively when raised and lowered again. With care, the error can be held to 3 or 4 second's worth of repeated music, however, the cueing is but marginally useful. In addition, since the rest does not restrain the tonearm from lateral motion unless the locking clip is in place, it is possible to send the stylus skidding across a disc or the empty platter.

The effective mass of the tonearm, less cartridge, was 20 grams, a typical figure for this type of arm. Capacitance to ground in each signal channel was about 120 pF and interchannel capacitance was 5 pF . These figures indicate that the tonearm is wellsuited for use with almost any car-

Performance Specifications

Speecification	Rating	Measured
Speed control range	$\pm 4 \%$	$\begin{aligned} & +5.2 \% \text { to }-6.2 \% \text { at } 331 / 3 \mathrm{rpm} \\ & +4.2 \% \text { to }-4.8 \% \text { at } 45 \mathrm{rpm} \end{aligned}$
Wow and flutter	0.03\% wrms	0.06% wrms $\pm 0.08 \%$ weighted peak
S/N ratio	60 dB	
Rumble	-70 dB DIN "B"	-34 dB unweighted NAB -55 dB ARLL
Tonearm tracking error	$\pm 1.5 \mathrm{deg}$	Less than $0.5^{\circ} / \mathrm{in}$.
Stylus pressure force range	0 to 3 g	Confirmed (error less than 0.05 g)
Overhang	15 mm	See text

tridge, since additional capacitance can be supplied if required.

Turntable speeds could be adjusted over a range of $+5.2 \%$ to -6.2% at $331 / 3 \mathrm{rpm}$ and from $+4.2 \%$ to -4.8% at 45 rpm . The speeds did not change detectably with extreme line-voltage shifts. Turntable rumble was -34 dB (unweighted NAB) or -55 dB with

ARLL weighting. Weighted rms flutter was 0.06% and weighted peak flutter was 0.08%.

Operation of the record player was smooth and quiet, and the automatic cycling times were considerably shorter than we have observed on many automatic turntables. Time from touching the START button to cartridge
set-down on the record's surface, was about 8 seconds, and automatic shutoff time was 9 seconds.

Isolation afforded by the soft mounting feet was about average for a di-rect-drive turntable. Moderate transmission resonances were found at 27 , 64 , and 190 Hz , but isolation was complete above 300 Hz .

User Comment. The TP1030 offers an impressive array of features for a budget-priced turntable. These include direct drive, vernier speed control, automatic operation, repeat operation, and a laterally balanced tonearm. Its most apparent weaknesses, the inaccurate antiskating compensation and cueing device, will prove unimportant to many users and have been encountered on much more expensive record players as well. Its virtues, which include smooth, convenient automatic operation and very good overall performance, combine with its strikingly low price to make the TP1030 a fine value.
CIRCLE NO. 101 ON FREE INFORMATION CARD

Empire Model EDR. 9 extended dynamic response phono cartridge

Empire's new top-of-the-line phono cartridge is the "Extended Dynamic Response" Model EDR.9. Although it is a varia-ble-reluctance moving-iron cartridge like others in Empire's line, the EDR. 9 features a new inertial stylus damping
system and has been designed to be relatively immune to capacitive loading effects. In addition to its low-inductance coils and "tuned-stylus" system, the cartridge has a "Large Area of Contact" (L.A.C.) stylus tip that is Empire's equivalent of Shibataderived styli originally developed for playing CD-4 discs and is now used
by most manufacturers in their top cartridges. This type of stylus offers an attractive combination of outstanding high-frequency tracking ability and reduced record wear for stereo use.

The EDR. 9 has a swing-away stylus guard on its replaceable stylus assembly. It is elaborately packaged - with a stylus brush, vial of styluscleaning fluid, small screwdriver, and mounting hardware in a handsome clear-plastic cylindrical holder. The whole is contained in a black leather case. Suggested retail price is $\$ 200$.

General Description. Like other Empire cartridges, the EDR. 9 has four magnetically shielded coils embedded in its plastic body. Three fixed magnets channel flux through the pole pieces of the coils. The rear portion of the aluminum stylus cantilever's tube is attached to a low-mass hollow ferrous tube that fits between the four pole pieces. As the stylus follows the groove modulation, the iron armature modulates the flux between the pole pieces, inducing voltages in their coils. The coils are connected in two series pairs to form the stereo-channel electrical outputs.

A distinctive feature of the EDR. 9 is its low-inductance (about 250 mH) coils that make its frequency re-

YOU ASKED FOR IT YOU GOT IT DSI QUIK-KIT® 50 HZ - 550 MHZ COUNTER KIT 95\% ASSEMBLED
 100\% TESTED Performance You Can Count On

FREQUENCY COUNTER APPLICATION:

- Ham Radio - Two Way Radio - CB
- Audio Amplifier \& Recelver Repair
- Computer Maintenance \& Construction
- A Must for TV - PLL \& VTR Repair

\$9995

MODEL 3550K
includes built-in
Pre-Amp \& Prescaler

DSI OFFERS THE BEST OF TWO WORLDS . . .

An unprecedented DSI VALUE . . . in a high quality, LSI Design, 50 HZ to 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes all competitive makes, both in price \& performance.
With 95% of the assembly completed by DSI, you are only one hour away from solving all of those difficult bench problems, from adjusting 60 HZ clock-time bases to setting the frequency of a 468 MHZ Mobile Radio.
TOLL FREE ($800-854-2049$)
(800-542-6253)

Every 3550 QUIK-KIT® PC board is factory assembled and tested before shipment.

The problems of bad LED's, IC's, and Capacitors are a thing of the past. NACl manufacturer except DSI offers a 550 MHZ frequency counter with . . . 8 digits, .5 in. LED's, TCXO, 1 HZ resolution and a one year warranty on parts for under $\$ 100.00$. We do not know how long we can hold this low, low'price.

Model	Price	Frequency Range	Accuracy Ovar Temperature	${ }_{146 \mathrm{MHz}}^{@}$	${ }_{220 \mathrm{MHz}}^{@}$	${ }_{450 \mathrm{MHz}}$	Number of Readouts	Size of Readouls	Power Requiremenis	Size
3700	\$269.95	$50 \mathrm{~Hz}-700 \mathrm{MHz}$	Proportional Oven $2 \mathrm{PPM} 0^{\circ}-40^{\circ} \mathrm{C}$	10MV	10MV	50MV	8	. 5 Inch	$\begin{aligned} & 115 \text { VAC or } \\ & 8.2-14.5 \mathrm{VDC} \end{aligned}$	$3^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{D}$
3600A	\$199.95	$50 \mathrm{~Hz}-600 \mathrm{MHz}$	Oven . 5 PPM $17^{\circ}-37^{\circ} \mathrm{C}$	10MV	10MV	50MV	8	. 5 Inch	$\begin{gathered} 115 \text { VAC or } \\ 8.2-14.5 \mathrm{VDC} \end{gathered}$	21/6"H $\times 8$ " ${ }^{\prime \prime}$ W \times 5"D
3550 W	\$149.95	$50 \mathrm{~Hz}-550 \mathrm{MHz}$	TCXO 1 PPM $65^{\circ}-85^{\circ} \mathrm{F}$	25MV	25MV	75MV	8	. 5 Inch	115 VAC or 8.2 - 14.5VDC	$21 / 6^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{D}$
3550K	\$ 99.95									

1 HZ Resolution to 55 MHZ - 10 HZ Resolution to 550 MHZ • . 1 and 1 Sec . Gate Time - Auto Zero Blanking

T-101 Ant.iti. 3.95
AC-9 AC Adp. 7.95
Shipping, Handling, lins....... 10.00

DSI INSTRUMENTS, INC.
7924 Ronson Road, Dept. G San Diego, California 92111

CIRCLENO. 18 ON FREE INFORMATION CARD

Composite response and crosstalk for left and right channels.
sponse relatively independent of load capacitance. Most magnetic cartridges have 500 to 750 mH of inductance, which inevitably resonates with the capacitance of the interconnecting cable and amplifier input to modify the frequency response in the uppermost audible octave. Cartridge designers usually use this electrical resonance to equalize the mechanical resonance of the stylus system and obtain a reasonably flat overall frequency response. This results in a more or less critical dependence on a specified load capacitance, which is not always under the control of the user, if one is to obtain the rated frequency response of the cartridge.
Another departure from conventional practice is the EDR.9's "tunedstylus" system. Mechanical resonance of the stylus is unavoidable, occurring as it does between the compliance of the vinyl material of the record and the effective mass of the stylus, referred to the tip. If it is left unmodified, a response peak is produced at some high frequency. This resonance is normally damped by a rubber-like elastomer that supports the stylus' cantilever and often serves as its pivot. However, if enough damping is used to flatten out the response, transient performance of the cartidge may be impaired. Another problem is that the characteristics of these damping materials can change with time and variations in temperature.

Empire has designed a miniature inerlial damper into the EDR.9's stylus cantilever system. It is analagous to the tonearm damping systems used by many manufacturers where the counterweight mass and support compliance forms a resonant "trap" that can greatly reduce the amplitude
of the low-frequency resonance of the tonearm/cartridge system between total system mass, referred to the styIus tip, and the compliance of the stylus cantilever system.

There is a miniature iron bar at the rear of the cantilever. It is coupled to the aluminum tube by a compliance that permits it to resonate at a frequency that reduces the amplitude of the main cantilever's resonance, without employing excessive damping. The damping characteristics of the cantilever have been chosen to give the desired flatness in overall response without a critical dependence on electrical circuit resonance. (Electrical resonance should occur well above the audio range because of the cartridge's low inductance.)

Finally, the stylus tip is shaped to provide a large area of contact with the side of the groove wall, while retaining a very small radius along the direction of groove travel for good high-frequency tracking ability. A nude diamond is mounted to the hollow aluminum cantilever to minimize the effective mass of the tip.

Laboratory Measurements. We tested the cartridge in a tonearm whose mass was 20 grams and low-frequency resonance was between 7 and 8 Hz , with an amplitude of about 5 dB . We used the $100-\mathrm{pF}$ load capacitance in parallel with 47,000 ohms of resistance on which the cartridge's performance specifications are based. We also measured frequency response with a total capacitance of 335 pF , which is typical of actual operating conditions in many record-playing systems. The only effect of the higher capitance was to increase the cartridge's output by about

2 dB at frequencies above $10,000 \mathrm{~Hz}$.
The response with the CBS STR100 test record confirmed Empire's test data. There was a moderate, broad rise of about 2.5 dB in the response curve, centered at 10,000 Hz . Relative to the $1000-\mathrm{Hz}$ level, the frequency response of the cartridge was within $\pm 2 \mathrm{~dB}$ from 20 to 20,000 Hz . Channel separation was very good, measuring typically 25 to 30 dB or more in the midrange, 20 to 27 dB at $10,000 \mathrm{~Hz}$, and about 15 dB at $20,000 \mathrm{~Hz}$. Very similar frequencyresponse measurements were obtained using B\&K 2009 and JVC 1007 test records. Since the EDR. 9 is rated to respond out to $35,000 \mathrm{~Hz}$, we tested its response with a JVC 1005 record, which sweeps from 1,000 to $50,000 \mathrm{~Hz}$. The output was flat within $\pm 2 \mathrm{~dB}$ up to about $40,000 \mathrm{~Hz}$, where separation was about 12 dB .

When the cartridge was operated at its 1.25 -gram maximum rated force, it was able to track the 80 -micron level of the German Hi Fi Institute record as well as $30-\mathrm{cm} / \mathrm{s}, 1000-\mathrm{Hz}$ tones. Very high-level, low-frequency tones could be tracked at the 0.75 -gram minimum rated force. Measured with the CBS STR160 record, the vertical stylus angle was a relatively high 30°. The output of the cartridge, using the 3.54cm / s standard-level bands of our STR100 record, was $3.75 \mathrm{mV} /$ channel with the channels balanced to within 0.8 dB .

Tracking distortion was measured with Shure's TTR102 and TTR103 test records. The TTR102 is an IM test record, with frequencies of 400 and 4000 Hz . IM distortion measured a low 2.2% at $6.7 \mathrm{~cm} / \mathrm{s}$, which is very close to the residual on the record. It increased linearly with velocity to 11% at $27 \mathrm{~cm} / \mathrm{s}$. The TTR103 tests high-frequency tracking ability with specially shaped $10,800-\mathrm{Hz}$ tone bursts. The distortion was a low 0.7% at $15 \mathrm{~cm} / \mathrm{s}$, which increased linearly to 2.5% at $30 \mathrm{~cm} / \mathrm{s}$. Although it is difficult to correlate these distortion measurements with audible effects, this gradual increase in distortion is preferable to the condition where it remains low up to some critical velocity where mistracking occurs and distortion increases sharply. The EDR. 9 never exhibited any severe mistracking in our tests.

Response to the $1000-\mathrm{Hz}$ square waves on the CBS STR112 record was consistent with the measured fre-

Eve findity foutno d oersond It's not surprising COInOTE It's a totally-integrated 8080A system (2) with full color graphics display, built-in 51 K

 ratio available in a personal computer.The complete system is only \$1495* And that price includes 8K user RAM, RS-232C compatibility and random access file capabilities.

Our 8 foreground and background colors will boost your comprehension, while introducing you to an exciting new dimension in BASIC programming. The vector graphics have 16,484 individually-accessible plot blocks. And the $13^{\prime \prime}$ diagonal measure screen gives you 32 lines of 64 ASCII characters. You also have the flexibility that comes with 16 K lixtended Disk BASIC ROM.

Compucolor II offers a number of other options and accessories, like a second disk drive and expanded keyloard, as well as expandability to 32 K of user RAM. Of course we also have a whole library of low-cost Sof-Disk ${ }^{\text {TM }}$ programs, including an assembler and text editor.

Visit your nearest computer store for details. And while you're there, do some comparison testing. With all due respect to the others, once you see it, you'll be sold on the Compucolor II.

Warctow hacl phateof wreen
tlos. Denurestic price

Performance Specifications

Specification	Rating	Measured
Frequency response	$20-35.000 \mathrm{~Hz} \pm 1.75 \mathrm{~dB}$	$20-35.000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$
Separation	20 dB at $20-500 \mathrm{~Hz}$	
	30 dB at $500-15,000 \mathrm{~Hz}$	Confirmed
	20 dB at 15-20,000 Hz	Contirmed (see graph)
Compliance	$28 \times 10^{-6} \mathrm{~cm} /$ dyne	-
Tracking	$38 \mathrm{~cm} / \mathrm{s}$ at 1000 Hz and 0.9 gm	Not checked
Channel balance	0.75 dB at 1000 Hz	0.8 dB
Tracking angle	20°	30° (STR160)
Load impedance	47.000 ohms	-
Load capacitance	100 to 150 pF	Confirmed
Output	$0.9 \mu \mathrm{~V} / \mathrm{cm} / \mathrm{s}$	$1.06 \mu \mathrm{~V} / \mathrm{cm} / \mathrm{s}$
Inductance	250 mH	-

Separation

Compliance
Tracking
Channel balance Tracking angle Load impedance Output Inductance
$20-35,000 \mathrm{~Hz} \pm 1.75 \mathrm{~dB}$ 20 dB at $20-500 \mathrm{~Hz}$ 30 dB at $500-15,000 \mathrm{~Hz}$ 20 dB at $15-20,000 \mathrm{~Hz}$ $28 \times 10^{-6} \mathrm{~cm} /$ dyne and 0.9 gm
0.75 dB at 1000 Hz 20°
47,000 ohms
$0.9 \mathrm{~V} / \mathrm{cm} / \mathrm{s}$
250 mH

$20-35.000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$
Confirmed
Contirmed (see graph)
Not checked
0.8 dB 30° (STR160)
Confirmed
$1.06 \mu \mathrm{~V} / \mathrm{cm} / \mathrm{s}$

quency response of the cartridge. Except for a single cycle of ringing at a relatively low frequency of about $10,000 \mathrm{~Hz}$, the square wave was reproduced perfectly. The high-frequency "ringing" that appears throughout the entire square wave is a characteristic of this record, and can only be seen with a cartridge whose response extends to $40,000 \mathrm{~Hz}$.

User Comment. As we interpret our frequency-response measurements of the Empire EOR.9, the tuned-stylus system has the expected effect of replacing the normal single high-frequency cantilever resonance by two lower amplitude peaks, above and below the original resonance frequency. The cartridge's inductance and load capacitance roll off the upper peak, but the lower peak remains to some degree and can be seen as the
rise in response at $10,000 \mathrm{~Hz}$.
Because of the rather low amplitude (about 2.5 dB) of this rise, no significant coloration of the sound is produced. We played the CBS STR140 Pink Noise test record with this cartridge and with another whose response was virtually fiat up to 20,000 Hz , and could not hear any differences in tonal balance or high-frequency emphasis. The EDR 9 has the smooth, effortless sound that is a hallmark of a flat-responding cartridge with high tracking ability.

When we played Shure's "Audio Obstacle Course" records, the EDR. 9 had no difficulty at level 4 of each of the sections of the ERA III and ERA IV discs. At the maximum 5 level of most of the bands on both records, we began to hear traces of strain, indicating the onset of mistracking, although the bass drum of ERA III and the flute and
harp solos of ERA IV were played at level 5 without difficulty. This behavior is consistent with our tracking distortion measurements.

The cartridge does not suddenly mistrack and distort at some high recorded level. Instead, its distortion increases gradually and imperceptibly, until one is finally aware of it only as a strain rather than a harshness. Since few, if any, music records have the extreme velocities found on the test records, it is probably safe to say that the EDR. 9 will never be driven even close to its limits by any commercial music record.

In our opinion, the Empire EDR. 9 sounded as good as, though not necessarily better than, any other cartridge we have used. We made comparisons against several competitive cartridges (in the same and higher price range) without hearing any definite points of superiority or inferiority from any of them.

If sound, per se, is not a deciding factor, the EDR. 9 still offers a distinct advantage over most other movingiron cartridges. For all practical purposes, it is not affected by changes in load capacitance. One need have no special concern with using lowcapacitance cables (most record players today are so equipped), nor is there any need to add capacitance to the phono inputs of an amplifier to flatten out the cartridge's response. The EDR. 9 cartridge should perform in anyone's music system just as it does on the test bench, and that is not an insignificant feature.
CIRCLE NO, 102 ON FREE INFORMATION CARD

Ace Audio Model 4000
subsonic filter

30

Ace Audio has developed a simple active subsonic filter that is available in both kit form and factory wired. Called the Model 4000, it is powered from its own built-in ac power supply, which can be connected for use on either 120 - or $240-$ volt, $50-$ or $60-\mathrm{Hz}$ power. It has unity gain and very low distortion and noise and is designed to be inserted into an amplifier tape monitoring path or between the preamplifier and power amplifier. The filter has a negligible effect on response in the audible frequency range of the system in which it is installed. It attenuates frequencies below 20 Hz at a rate of 18 dB /octave.

The Model 4000 is housed in a metal box that measures $61 / 8^{\prime \prime} \mathrm{W} \times 43 / /^{\prime \prime} \mathrm{D}$ $\times 21 / 4^{\prime \prime} \mathrm{H}(15.6 \times 11.1 \times 7.7 \mathrm{~cm})$. Prices are $\$ 59.25$ for the kit and $\$ 89.50$ for the factory-wired versions.

The active filter circuits are built around a dual operational-amplifier IC (Texas Instruments TL 072CP). A few discrete passive components make up the remainder of the circuitry. To ensure the correct cutoff characteristics, the capacitors in the filter circuit have 5% tolerances and the metal film resistors are 1% tolerance.
There are no controls to adjust on the filter. The only external features of the Model 4000 are the four phono jacks for the inputs and outputs of both channels and an ac receptacle on one side of the chassis.
The filter we tested was built from the kit. Assembly was simple and straightforward, involving about 25 steps. Assembly took $11 / 2$ hours.

Laboratory Measurements. The filter easily met its specifications and in most cases surpassed them by a wide margin. Our tests were performed with a standard IHF load on the outputs (a 10,000-ohm resistor, shunted by a $1000-\mathrm{pF}$ capacitor). Although we had no indication that the filter's specifications were derived with this type of load, the load appeared to have no effect on the high-frequency response or other characteristics.

Our frequency-response measurement was limited to 5 Hz at the low end. However, this was sufficient to confirm the 18 dB / octave slope rating. The response was down 15 dB in the octave between 10 and 5 Hz and was down only 2 dB at 20 Hz . It was flat within $\pm 0.2 \mathrm{~dB}$ from 50 to $50,000 \mathrm{~Hz}$ and dropped to -2 dB at $200,000 \mathrm{~Hz}$.
The filter's gain was exactly 1.0, as specified. At 1000 Hz , the input impedance was 66,000 ohms (rated at 47,000 ohms), shunted by 50 pF . The unweighted hum and noise were too low to measure, being less than $100 \mu \mathrm{~V}(-80 \mathrm{dBV})$ at the output.

The distortion of the filter at 20 Hz was essentially that of our signal generator, or about 0.023% up to 5 volts output. Only at the maximum rated output of 8 volts could we measure any increase, at which point it was 0.034%. The $1000-\mathrm{Hz}$ distortion was less than 0.008% up to 5 volts and 0.0088% at 8 volts. At $20,000 \mathrm{~Hz}$, we noted the first signs of a measurable

Portable refrigeration breakthrough makes

 ice chests obsolete!Your ice chest is a nuisance. You have to buy ice every day (if you can find it.) Throw away the spoiled, soggy food. Drain repeatedly. Conventional portable refrigerators, on the other hand, are heavy, noisy, drain your battery too fast and need to be kept level.
Now there's a dramatic advance in refrigeration for outdoor use that outmodes all existing methods.
USES AEROSPACE RE. FRIGERATION MODULES
The Koolatron portable cools electronically with miniature thermoelectric modules no bigger than your watch. No coils, compressors, motors - just a quiet fan to dissipate the heat. These same powerful solid-state modules are used to cool critical space satellite components - because they're absolutely reliable...with. stand shaking, jolting, tilting ...are small, lightweight, cause minimal battery drain.

IDEAL FOR CARS, BOATS, VANS, RVS Ideal for fishing and hunting - now bring your catch back really fresh! Take the unit on car trips, to drive-in movies, auto races, grocery shopping, and more. With an inexpensive battery charger, use it at home or on vacation as a portable bar or patio fridge. Many use it on the job - to carry refrigerated samples, film, on long-distance hauls, etc.
Koolatron is the ultimate in portable

Koolatran portable keeps 40 lbs . of food at household refrigeration femperafure Only $21^{\prime \prime} \times 16^{\prime \prime} \times$ $16^{\prime \prime}$, weighs lust 15 ibs. Adjusp. able thermosta? model F1A shown.
in your vehicle or boat or operate it from a 12 -volt battery charger on 110 volt AC power. Only draws about 2 amps average at $70^{\circ} \mathrm{F}$. - never more than 4 amps.
CHÉCK THESE QUALITY FEATURES:
Rugged ABS case, efficient foam insulation. - Non-rusting hinge, latches, fasteners. - 9 -foot cord to plug into cigaret lighter. - Terminals for use with battery charger on AC power. - Reverse polarity warning light and buzzer. - Do-it-yourself fan replacement - no other service should ever be required.
Complete instructions...helpful hints. 1-YEAR GUARANTEE plus no-risk trial offer.

KOOLATRON PORTABLE PAYS
 \section*{FOR ITSELF}

If you are regularly using ice, your Koolatron portable will pay for itself with the money you save on ice, spoiled food and fish catches, restaurant bills and gasoline used hunting for ice. So don't waste another dollar on ice... Phone your order in now collect to

(705) 737.0842

Or mail this order coupon today to Koolatron Industries Limited,
56 Harvester Ave., Batavia, N.Y. 14020 In Canada: 230 Bayview Dr., Barrie, Ont. L4N 4 Y8.
refrigerators. Maintains the same 40°. $45^{\circ} \mathrm{F}$. temperature as your home refrigerator - even in torrid $95^{\circ} \mathrm{F}$. weather. Holds over 40 beverage cans or 40 lbs. of food. Plug it into the lighter socket

- INDLSTAIES LIMITED

Dept 646
56 Harvester Ave., Batavia, N.Y. 14020
(Canada: 230 Bayview Dr., Barrie, Ontario L4N 4Y8)
Send me
\qquad Koolatron fixed temp. model F1 (10) $\$ 159.00$ (Canada $\$ 179.00$) $+\$ 7.00$ each handling/ delivery (N.Y. \& Ont. residents add sales tax).
For an additional $\$ 10.00$ you can order the Koolatron portable with an adjustable thermostat - order Model FiA.
\square I want model F1A and have added $\$ 10.00$.
I understand I may return either item undamaged within 21 days and get a tull refund if i am not satisfied. I enclose my
check money order for $\$$
Or, please charge my
\square Visa Mastercharge \square American Express. Acct. No.

Expiry date

- Send brochure only

Signature
(necessary to ship merchandise)
Name
Address
City
State \qquad Zip
\qquad

Many people concemed with "real worid" system aspects of high-fidelity music reproduction recognize the problems created by record warps, which are always present to some extent-they can introduce huge infrasonic signal components into the amplifier.

Aside from the effects on sound quality of warps, the result being a function of the tonearm and cartridge, infrasonic signals can easily overdrive a power amplifier. Even if the amplifier can handle these signals, the cone of a woofer can easily be driven into its nonlinear operating region. In extreme cases, when a very powerful amplifier is used, it is possible to damage the speaker with this unwanted energy. Similar effects can occur from turtiable rumble, tonearm and cartridge
resonance, or simply by dropping the pickup onto a record with the amplifier's gain turned up.

A practical approach to the problem requires that the system response be limited to the audible range to avoid difficulfies. But dor't be misled by a lowcut fitter: they're often mislabeled "subsonic." These fitters usually have a slope of 6 dB/octave below cutoff. If such a filter is to provide a worthwhile attenuation in the frequency range below 10 Hz , where most warp energy is concentrated, its 3 -dB-down response frequency must be well up in the midbass region. As a matter of fact it is not uncommon for an amplifier's frequency response to be affected at frequencies as high as 150 or 200 Hz . This is clearly undesirable. Using
such a filter is akin to "throwing out the baby with the bath water."

Some of the more sophisticated filters use more complex circuits that give slopes of 12 or even 18 dB/octave. If properly designed, such a filler can indeed be highly effective in removing the effects of rumble or record warps with no effect on audible rumble content.

In the Ace Audio Model 4000 active filter, each channel uses one half of a Texas instrument TL 072CP FET op amp. A direct wire connection from output to inverting input establishes the circuit gain at unity. The feedback network, using precision capacitors and resistors, provides a true $18 \mathrm{~dB} / o c t a v e ~ c u t-o f f ~ s l o p e ~$ with very low distortion and noise in the audible band.
distortion level, which increased smoothly from 0.01% at 1 volt to 0.075% at 8 volts. The measured intermodulation (IM) distortion was the 0.002% residual of our Crown IM analyzer at most output levels. It rose to 0.005% at the rated 8 -volt output. These measurements confirm that the Model 4000 is a truly distortionless component with relationship to the rest of the audio system.

User Comment. We connected the Model 4000 into the tape-monitoring loop of an amplifier and used it for listening tests with a number of records.

During our listening tests, we noted that the filter contributed absolutely no audible noise to the system. There was also no evidence of turn-on thumps or other transients. To see as well as hear the effects of the filter, we removed the speaker grilles and played some heavily warped records, which caused the woofer cones to move in and out rather alarmingly. At maximum listening volume, the amplifier's power meters indicated that we were driving it to its full rated output of 50 watts and sometimes beyond. The sound was muddy and occasionally broken up by the over-

Performance Specifications

Specification	Rating	Measured
Gain	Unity	1.0
Frequency response	$\begin{aligned} & -2.5 \mathrm{~dB} \text { at } 20 \mathrm{~Hz} \\ & -1.0 \mathrm{~dB} \text { at } 100 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & -2.0 \mathrm{~dB} \text { at } 20 \mathrm{~Hz} \\ & -0.6 \mathrm{~dB} \text { at } 100 \mathrm{kHz} \end{aligned}$
Slope	$18 \mathrm{~dB} /$ octave	Confirmed
Harmonic distortion	0.025% at 2 V out, $20-20000 \mathrm{~Hz}$ (typically 0.02%)	Confirmed
1 M distortion	0.025\% at 2 V out	0.002\% at 2 V out
Slew rate	$8 \mathrm{~V} / \mu$ s typical	Not measured
Input impedance	47,000 ohms	66,000 ohms, 50 pF
Output impedance	150 ohms	3 ohms
Output voltage	$8 \vee$ max.	$10.3 \vee$ max.
Output load	2000 ohms min.	Confirmed (very conservative)
Hum \& noise	-90 dB (no ref level)	Less than -80 dB re 1 volt, unweighted
Line voltage	120 or 240 volts, 50 or 60 Hz ac	-
Power consumption	3 watts	-

loaded amplifier. When we switched in the filter, the visible cone movernent ceased and the sound cleaned up dramatically. (There was no change in listening level.) The power meter readings also dropped from 50 watts or more to less than 10 watts, a vivid demonstration of how much amplifier power was being wasted in amplifying infrasonic noise.
In spite of its impressive effectiveness in eliminating infrasonic noises, the Model 4000 was of no value in preventing acoustic feedback when playing records. This is because such feedback normally occurs only in the audible range, where speaker systems can deliver enough acoustic power to vibrate the record player. In that range, the filter has no effect.
The Model 4000 Subsonic Filter is one of the more useful accessories one can add to a phono system if the amplifier does not presently include a sharp-cutoff low-frequency filter (very few do). It is the kind of device one can plug in and forget. Even if no switched outlet is available on the amplifier, the 3 -watt consumption of the Model 4000 makes it practical to plug it into a powered outlet and leave it on.
If you have a number of warped records that are trackable by your cartridge, adding this filter to your hi-fi system should give them a new lease on life. Convince yourself of its action first by watching the speaker cones (or amplifier power meters if your amp has them) without the filter and observe the effect when it is switched in. Then forget it and enjoy the music!
CIRCLE No. 103 onfree information card

And we sure did! First, we cut off the dealer's mark-up. Then we shaved off the overhead costs of national sales offices and warehouses. Finally, as if that wasn't enough, we even cut out the high labor costs of factory assembly lines.
All in all, we cut over $\$ 100$. worth of corners! But not a single one that affected the quality and performance of our new DMM.

Don't let our low price fool you!

Because Sabtronics sells factory-direct without all the hidden charges a dealer would track on - we can offer the superior 2010A DMM kit for a surprisingly low $\$ 69.95$. Surprising because you get the accuracy, features and performance you'd expect from the high priced units.
The 2010A offers you the long-term accuracy of a laser-trimmed resistor network, an ultrastable band-gap reference element and single chip LSI circuitry - all in a compact, rugged, human-engineered housing. With 31 ranges and 6 functions, you can measure $A C$ and $D C$ volts from $100 \mu \mathrm{~V}$ to $1000 \mathrm{~V} ; \mathrm{AC}$ and DC current from $0.1 \mu \mathrm{~A}$ to a surprisingly high 10A; resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Typical DCV and Ohms accuracy is $0.1 \% \pm 1$ digit. And you see these precise readings on a bright, $31 / 2$-digit

LED display with automatic decimal placement and large, 9 mm numerals.
Of course, that's what you'd expect from a quality DMM. But we've even added more features for extra convenience, flexibility and reduction of human error.

- Unique X10 Multiplier Switch - gives you convenient push-button selection to the next higher decade range. Hi-Lo Power Ohms capabiliry gives you three high-ohms ranges that supply enough voltage to tum on a silicon junction for diode and transistor testing. For in-circuit resistance measurement without turning on a semiconductor junction, you use the three low-ohms ranges.
- Wide Frenquency Response -40 Hz ro $40 \mathrm{kH}_{2}$ bandwidth lets you measure audio through ultra-sonic $A C$ signals.
- Touch and Hold Capability - with optional probe, retains readings for as long as you wish. You can make measurements in hard-

to-reach places without taking your eyes off the probe tip or stopping to record data.
- Plus More - Auto Polarity, Auro Zero, Overrange indication and fully overload protected on all ranges.
And, although designed for benchrop use, the sleek, compact 2010A is powered by 4 " C " cells (not included), bringing wide-range lab performance to the field when you need it.

You save either way.

Your 2010A DMM kit comes complete with easy-to-follow assembly instructions, all parts (including high-impact case), and test leads. You can complete assembly in a single evening. However, for a slight additional fee, Sabtronics will ship your 2010A factory-assembled and calibrated: at $\$ 99.50$ it's still an incomparable value!
Whether you're a professional or hobbyist, if quality and accuracy are important - and padded prices aren't - you should inspect the 2010A DMM for yourself. If you're not completely satisfied, return it in its original condition within 10 days for a prompt and courteous refund of purchase price. Call us with your MasterCharge or Visa order today, or simply fill out the convenient order form.
Making Performance Affordable -2

13426 Floyd Circle M/S 24 - Dallas, Texas 75243 Teiephone 214/783-0994

Brief Specifications

DC Volts: $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges AC Volts: $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges DC Current: $0.1 \mu \mathrm{~A}$ to 10 A in 6 ranges $A C$ Current: $0.1 \mu \mathrm{~A}$ to 10 A in 6 ranges Resiatance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges Dlode Teat Current: $0.1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 1 \mathrm{~mA}$ ACV Frequency Response: 40 Hz to 40 kHz Input Impedance: 10 M 2 on ACV and DCV
Overioad Protection: 1200 VDC or RMS on all voltage ranges except 250 VDC or RMS on 200 mV and 2 VAC ranges. Fuse protected on ohms and mA ranges.
Power Requirement: 4.5 to 6.5 VDC (4 " C " celis) optional NiCd batteries or AC adapter/charger Display: $0.36^{\prime \prime}(9.2 \mathrm{~mm})$ Digits reading to ± 1999 Slze: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm})$ Welght: $1.5 \mathrm{lbs} .(0.68 \mathrm{~kg}$.) excl. battery

To: Sabtronics international, Inc. 13426 Floyd Circle M/S 24, Dallas, TX 75243
Please send me.
__ Model 2010A Digital Multimeter kit(s) @569.95 plus $34.00 \dagger$ shipping and handling each Model 2010A Digital Multimeter Assembled @ $\$ 89.50$ plus $\$ 4.001$ shipping and handling each \# AC-115 AC adapler/charger(s) @ $\$ 7.50$ each
If NB-120 NiCd Battery sel(s) @ $\$ 17.00 / \mathrm{set}$ For delivery in Texas. add 5\% Sales Tax
1 enclose \square check O money order for
TOTAL

or, please charge to my UVisa \square MasterCharge: Code $=$
Account No \qquad Expiration Date:

Name

shop girotinnd.

When you do, you'11 probably pick CIE. Yon can't afiord to settle for less when it comes to something like clectronics training that conld affect your whole life.

When you shop around for tires, you look for a bargain. After all, if it's the same brand, better price - why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

* * *

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type - with serious career goals in electronics take a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries -on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\text {® }}$ Lessons. Each lesson takes one or two principles and helps you master them-before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do-and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get your "hands-on" training...

With CIE's

 Experimental Electronics Laboratory...you learn and review the basicsperform dozens of experiments. Plus, you use a $3-\mathrm{in}-1$ precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHz TriggeredSweep, Solid-State Oscil-
loseope you take your first real professional step. You use it as a doctor uses an X-ray machine - to "read" waveform patterns.. . lock them in ... study, understand and interpret them!

When you get your
Zenith 19-inch Diagonal Solid-State Color'TV you
simply this:
All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's govern-ment-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the government-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around...but send for CIE's free school catalog first:

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalogplus a complete package of independent home study information!
For your convenience, we'll try to have a representative contact you to answer your questions.
Mail the card or couponor write: CIE, 1776 East 17th St., Cleveland,
shooting! You learn to trace signal flow. . . locate malfunctions . . . restore perfect operating standards-just as with any sophisticated electronics equipment!
 you work with a completely Solid-State Color Bar Generatoractually a TV signal transmitter - you study up to ten different patterns on your TV screen. . . explore digital logic circuits... observe the action of a crystal-controlled oscillator!
Of course, CIE offers a more advanced training program, too. But the main point is

OH 44114.
apply your new skills to some real on-the-job-type trouble-

Pattern simulated

SPACE-AGE
 ELECTRONIC
 PROJECTS
 FOR
 BOATS part one

MODERN electronics can make operating a power boat a safer, more pleasurable experience. Various sensors, distributed around your boat, permit monitoring a number of things from a single, strategically located display panel. Among the things you can keep a check on are engine rpm and temperature, fuel level and flow, battery and alternator (or generator) status, sterndrive/rudder position, gas and fume build-up below decks, fluid levels, etc.

In this two-part article, we will be describing several projects particularly suitable for marine monitoring tasks. Each project is independent of the others, which allows you to select the arrangement that best suits your needs. All projects utilize a conventional 10 -volt dc regulator to provide power from the boat's 12-to-14-volt unregulated generator/alternator output.

Voltage Monitor. The circuit shown in Fig. 1 employs 11 LEDs to display battery and alternator/generator charger voltage. The display indicates battery failure, operating status of the generator/alternator charging system, and bat-
tery overcharge. (If undetected, an overcharge condition can cause the battery to "cook." damaging the plates and producing potentially explosive hydrogen gas. Excessive voltage from the charging system can also damage other electrical/electronic equipment connected to the power line.)
The circuit is built around National Semiconductor's LM3914 dot/bar driver IC as a basic expanded-scale voltmeter. It has a range of 4.4 to 5.6 volts. Adjustment of R3 produces a displayed range of from 11.35 to 14.5 volts on the 10 LEDs associated with IC1. Most manufacturers recommend a "normal" output of 14.5 volts for a properly charging generator/alternator.
The overvoltage warning indicator uses an 18 -volt zener diode, D1, to trigger Q1 into conduction if this potential is exceeded on the unregulated power line. When Q1 conducts, overvoltage LED11 comes on. If desired. LED11 can be replaced by a flasher circuit such as that shown in Fig. 2, or Q1 can be used to drive a Sonalert No. SC628 or similar audible alarm.

The unregulated dc voltage from the

> A variety of electronic indicators to improve safety and convenience

D 1-18-V, I-W zener (1N3026B or similat) ICI-LM3914 dot/bat driver (National) tC2-10-V, I-A posizive voltage regulator (LM340T10 or similar)
LED1, LED2. LED3, LED1I-Discrete red LED
LED4,LED5,LED6-Discrete yeliow LED LED7.LED8.LED9.LED10-Discrete green LED
QI-2N2222 transistor
RI-200-vhm, pe multiturn trimmer pol
R2-1200-ohm, 1/2-W resistor
R3.R5- 1000 -ohm, pe multiturn trimmes pot
R4-3400-ohm, 1/2-W resistor
R6- 470 -ohm. $1 / 2$-W resistor R7-100-ohm, 1/2-W resistor R8-10.000-ohm, $1 / 2-$ W resistor
Misc.-Perforated of printed-circuit board: suitable enclosure; IC sockets (optional);
light hood: red filter; etc.

PARTS LIST (Fig. 2)

CI- $-1.7-\mu$ F. $15-\mathrm{V}$ electrolytic
$\mathrm{C} 2-0.01-\mu \mathrm{F}$ dise capacitor
!C3-555 imer
R9-1000-chm, 1/4-W resistor
R10-100, (000-6hm, ל/2-W resistof
R6, R7, R8, DI, LED1 1, QI-Same as Fig. I

PARTS LIST (Fig. 3)

$\mathrm{C} 1-0.601-\mu \mathrm{F}$ disc eapacitor $\mathrm{C} 2-0.05-\mu \mathrm{F}$ dise capacitor IC1-LM 1830 fluid detector (National) LED I-Bright red LED RI-470-ohm, $1 / 2$-W resistor
Mise-Suitable stainless probe; cable; 10-V regulated de source; etc.
boal's eiectrical system is maintained at 10 volts by IC2. This potential was selected so that regulation occurs whether the boat's engine is running or stopped. The regulator can be used as the 10 -volt source for all circuits described in this article. A GE-MOV V27ZA60 or similar suppressor can be installed between the

Fig. 2. Overvaltage indicator has a flash rate of 1.5 Hz .
regulator's input and ground for voltagespike protection.

A color-coding scheme should be used for LED1 through LED10 to simplify interpreting the display. Therefore, LED1, LED2, LED3, and LED11 should be red to gain your immediate attention. Since LED4, LED5, and LED6 indicate "caution" conditions, they should be yellow. Safe voitage levels are indicated by LED7 through LED10; hence, these LEDs should be green.

Circuit construction is neither critical nor complicated. Except for the LEDs. all components can be mounted on perforated board or on a printed-circuit board of your own design. In elther case, it is a good idea to use sockets for the ICs. The 11 LEDs should be mounted on a separate panel, with each LED identified according to the voltage it represents. (LED11 should be identified by the legend over or ov for overvoltage.) The display panel itself should be hooded and faced with a neutral-density filter to permit seeing it in daylight. Incidentally , since $/ \mathrm{Ct}$ can deliver up to 30 mA . smail incandescent lamps can replace the LEDs for better visiblilty.

Lead dress is not critical, but to avoid any possibility of oscillation, all ground leads should go to pin 2 of IC1.

Once the project is assembled, connect a precision dc voltmeter between pins 4 and 6 of $I C 1$ and adjust R1 for a reading of 1.20 volts. Then connect the voltmeter between pin 5 and ground and adjust $R 3$ for a reading of 4.94 volts. Adjust R5 until LED5 comes on.

Fig. 3. Low-level detector flashes LED when probe in tank is exposed.

Now, using an adjustable dc power supply, set its output voltage to 14.5 volts and make sure that IC2 is delivering 10 volts at its output. Adjust R3 until LED10 (14.5 volts) comes on. As the input to the project is varied from 11 to 14.5 volts, the LEDs shouid progressively light. Set the input to 18 volts and verify that LED11 (or optional flasher) comes on or the audible alarm sounds.

Fluid-Level Indicator. Fluid level monitoring is important in a boat. You should always know, for example, the water level in the expansion tank of the engine's heat exchanger, the level in the galley's fresh-water tank and in the bilges, elc. The circuit shown in Fig. 3 is suitable for low-water-level monitoring. The IC contains a voltage regulator, oscillator, detector, and an output transistor capable of driving a LED, audible alarm, or low-current relay.

Conventional water tanks are usually metal-cased and grounded to the electrical system, which simplifies the job of sensing water levels. As shown in Fig. 3. when the probe tip is immersed in the water, the circuit is in a static state. However, when the water level drops and exposes the probe tip, the probe-to-ground circuit opens. This couples IC1's internal oscillator signal to its internal detector via C2, presenting an output at pin 12. Frequency of oscillation is determined by the value of $C 1$, which with the value shown is about 6000 Hz .

If the water tank is metal, only one probe is required, since the metal tank serves as the other element of the probe. This circuit can be used with the expansion tank of a closed systern as illustrated in Fig. 4. As long as the water system is full, the outpul remains off. If the water level drops below the probe tip, the alarm turns on. (Note: glycol-type coolant is not electrically conductive. which precludes the use of this device where antifreeze is used.)

Four detectors can be used to keep tabs on the level in the galley's freshwater tank as shown in Fig. 5. The probe is fabricated from a length of plastic U channel, with the probe elements themselves made from stainless-steel screws that protrude through the channel at suitable intervals. The wiring is laid flat in the U channel and secured in place with epoxy cement or silicone-rubber adhesive.

The actual detector used for the multiple probes is illustrated in Fig. 6. In this circuit, when each probe tip is covered by the water, its associated detector out-

Fig. 4. Low-level warning device for closed system. Washers und hag should be covered with silicone rubber. Leakage here would produce a "fult-tank"indication.

Fig. 5. Fresh water tank guape that displays liquid tevel on a set of $L E D$ readouts.
put goes high and sends its transistor into conduction to cause its LED to light, Hence, with a full lank of water, all the LEDs are lit. As the water level drops, the probe lips are successively exposed and extinguish each LED in lurn. The EMPTY LED is optional. Its probe should be located in the plastic U channel so

PARTS LIST (Fig. 6)

$\mathrm{Cl}-\left(0.4 \mathrm{H}_{2}-\mu \mathrm{F}\right.$ dise capacitor
C2-0.05- $\mu \mathrm{F}$ dise eapacior
C3-10- $-1 \mathrm{~F}, 15-\mathrm{V}$ electmatic
ICI-L.MI830 fluid detector (Nationai)
L.EDI-Bright red LED

Q1-2N2222 (ransisfor
R1-2200-ohm. 1/2-W resistor
R2-470-0hm. $1 / 2$-W resisior
Misc $-10-\mathrm{V}$ de regulator, interconnecting catile: ete.

Fig. 6. High-water detector for grounded metal tank.

Fig. 7. Full sewage holding tank warning system. Alarm sounds when sewage touches stainless steel probes.

Fig. 8. Rudder/stern drive position indicator uses same LED readout as Fig. 1. LEDs are mounted in are to indicate position.

Fig. 9. Diagram showing how to make mechanical connection between rudder arm and slide potentiometer.

PARTS LIST (Fig. 7)
Al-Sonalert Model SC268 (or similar) alarm $\mathrm{CI}-0.002-\mu \mathrm{F}$, dise capacitor $\mathrm{C} 2-0.05-\mu \mathrm{F}$ dise capacitor
$\mathrm{C} 3-10-\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic
SCl-LM1830 fluid detector (National)
R1-2200-ohm, $1 / 2-\mathrm{W}$ resistor
Q1-2N2222 transistor
Misc.-Stainless probe tips; interconneeling cable; $10-\mathrm{V}$ regulated de source: erc.

PARTS LIST (Fig. 8)

ICI-LM3914 dot/bar driver (National) R1-5000-ohm, pc multiturn (rimmer pot R2- 1000 -ohm, pe multiturn trimmer pot R3-1000-ohm, linear-laper, slider-type pot Misc.-LEDs (see Fig. 1); 10-V regulated dc source; three-conductor waterproof interconnecting cable; etc.
that the LED comes on when there is a small safety reserve of water left.
The probes are designed to be removable. This permits you to periodically remove built-up mineral deposits that can produce a conductive path and lead to false indications.

Sewage-Tank Indicator. If you do your boating in an area where the law requires a sewage holding tank, the circuit shown in Fig. 7 will prove to be a handy liquid-level indicator. It employs an audible alarm instead of a LED.

Rudder-Position Indicator. The circuit in Fig. 8 can be a valuable asset to any stern-drive or inboard-engine boat. It allows the person at the wheel to always know the angular position of the rudder or stern drive. The LED display is basically the same as tha! shown in Fig. 1. except that there is no LED connection to pin 10 of the IC. The LEDs are best arranged in an arc, as shown in Fig. 8. The arc originates at the stern post of the rudder/stern drive that is painted on the enclosure.

The IC is wired as a basic 0 -to- 5 -volt meter and is calibrated by R1. Before installation, R1 must be set so that there is about 1300 ohms of resistance between the terminal that connects to pin 7 of the IC and the wiper, with the remaining 3700 ohms between wiper and ground. The slide-type potentiometer used for R3 is installed near the rudder and connected to the IC via a length of waterproof three-conductor cable. Its control tab is mechanically connected to the rudder through a short length of stif rod, as shown in Fig. 9. Because the rudder arm moves in an arc, the rod must be able to pivot slightly where it connects to the rudder and potentiometer.

After assembling the electronics package, connect everything but pin 5 of the IC. Connect a 12 -to-14-volt dc source to the unregulated input (before the regulator IC in Fig. 1) and a 5 -volt dc source between pin 5 of the IC and ground, with +5 volts going to pin 5 . Carefully adjust R1 until LED9 just lights. The brightness of the LED will change slightly as this adjustment is made because R1 controls LED current. This is why R1 had to be adjusted before applying power. An incorrect setting could pump more than 30 mA into the LEDs, possibly damaging them. Once R1 had been calibrated. complete the connection from pin 5 of the IC to R2 and temporarily connect R3 into the circuit. Set R3 to its center position and adjust R2 until LED5 comes on. This point represents dead center for the rudder during final installation.

As the slider of R3 is moved to its positive end, LED6 through LED9 come on progressively. Moving the slider toward the grounded end of R3 causes the LEDs to come on in descending order.

Referring to Fig. 9, the pivot point for the drive rod must be carefully chosen. When the rudder arm is hard right or hard left, it must not place mechanical stress on the potentiometer's slider. The range of slider movement should be slightly less than that of the pickup point on the rudder arm.

Care must be taken to prevent the slider of R3 from going all the way to its stop at either end. If the arm pushed the slider all the way to the ground end of R3, LED1 would extinguish because a small voltage is required to operate the first comparator in IC1. This can be accomplished by making distance D_{Y} in Fig. 9, traversed by the rudder arm pivot point, slightly less than distance D_{x}. If this is done, when the rudder arm traverses the full swing from hard left to hard right, R3's slider will move only distance D_{z}, which is the working range of the potentiometer.

Distance D_{z} can be found during calibration. Move the slider toward the ground end and note the point just before LED1 extinguishes. Repeat the procedure to locate the point at which LED9 just extinguishes at the other end of $R 3$. Some minor trimming might be required to produce a guard band at both ends of the potentiometer.

Coming Up. This completes Part 1 of this article. Next month, we will cover a novel engine tachometer, a bilge-water alarm, and protection for your equipment from transient voltage spikes. \diamond JuLY 1979

How to DETERMINE ANTENNA GAIN

Gain figures must have a common reference.

CONFUSION often arises when antenna gain is being discussed. This happens because gain is dependent on a reference-a given antenna will have varying amounts of gain, depending on what it is being compared to. Normally, the gain of an hf antenna is measured by comparing it to a horizontal, half-wave dipole, In vht and uhf FM communications. the reference for antenna gain is a vertical half-wave dipole. However. many manufacturers advertise gain figures for their products referenced to an isotropic source (a theoretical antenna that radiates equally well in all directions). To add to the confusion, some manufacturers rate their antennas referenced to a quarter-wave ground plane.

The ground plane antenna comprises
tions. It has 1.2 dB of gain over a halfwave dipole, 3.0 dB over a quarter-wave ground plane, or 3.3 dB gain referenced to an isotropic antenna.

Higher omnidirectional gain can be obtained by using collinear arrays or a group of stacked half-wave dipoles. For example, four stacked vertical dipoles will provide approximately 6 dB of gain and an omnidirectional polar pattern. The gain is referenced to isotropic.

When comparing two or more antennas, be sure that all gain figures share a common reference. This can be done by adding or subtracting corrective factors. For example, two antennas are being considered for a fixed station. One has 4.0 dB gain referenced to an isotropic source (sometimes denoted 4.0 dBi)

	ANTENNA GAINS		
Antenna Type	Gain Over Isotropic	Gain Over Ground Plane	Gain Over Dipole
Isotropic	0 dB	0.3 dB	-2.1 dB
Ground plane	0.3 dB	0 dB	1.8 dB
Dipole	2.1 dB	1.8 dB	0 dB
$5 \lambda / 8$ Vertical	3.3 dB	30 dB	1.2 dB
4 Slacked $\lambda / 2$	6.0 dB	5.7 dB	3.9 dB
dipoles	9.0 dB	8.7 dB	6.9 dB
8 Stacked $\lambda / 2$			
dipoles	7.1 dB	6.8 dB	5.0 dB
2-Element Yagi	10.1 dB	9.8 dB	8.0 dB
3-Element Yagi	12.1 dB	11.8 dB	10.0 dB
4-Element Yagi	14.1 dB	13.8 dB	12.0 dB
5-Element Yagi	9.1 dB	8.8 dB	7.0 dB
2-Element quad	12.1 dB	11.8 dB	10.0 dB
3-Element quad	14.1 dB	13.8 dB	12.0 dB
4-Element quad			

a quarter-wavelength vertical radiator and the other has 2.0 dB over a dipole positioned over a metallic ground plane-either solid sheet metal or an array of radial wires. This antenna has 0.3 dB gain over an isotropic radiator. A half-wave dipole has 2.1 dB of gain referenced to an isotropic source, or 1.8 dB over a quatter-wave ground plane antenna. The $5 / \mathrm{H}$-wave vertical, which also requires a metallic ground plane, is commonly used in FM mobile installa-
(sometimes denoted 2.0 dBd). Which has more gain? Add 2.1 dB to the gain of the antenna referenced to the dipole and note the antenna has a gain of 4.1 dBi , slightly better than that of the isotropicreferenced antenna.

The accompaning table compares antenna gains for some common antennas referenced to isotropic, ground plane, and dipole antennas.

a dB Primer

How to work with decibels and convert them to their electrical equivalent in various areas of electronics--from communications to hi-fi

THE expression of voltage, current, and power ratios in decibels (dBs) is pervasive in literature about, and analysis of, electronic circuits. Therefore, anyone interested in electronics, from audio through amateur radio, should clearly understand the concept of decibels. Here are decibel basics, using a minimum of math.

Gain and Loss. The amount of output power from a linear electronic network is proportional to the amount of power present at its input. Thus, the power lost or gained in such a network is proportional to the amount of input power, as shown in Fig. 1. When 10 watts of power are applied to the network's input (Fig. 1A). 9 watts are dissipated as heat and 1 watt appears at the output. When 1000 watts are applied to the same network (Fig 1B), assuming that it can safely handle this increased power level, 900 watts of heat will be produced with only 100 watts of output power.

The amount of power at the output of

Fig. 1. In linear electronic networks, output power is proportional to input power.
the attenuator, P_{O}, is related to the input power P_{1} by the equation $P_{O}=(K)\left(P_{1}\right)$ with $K=1 / 10$; where K is a ratio called the gain factor. Of course, it is possible to cascade two or more such networks to obtain a cumulative effect, as shown in Fig. 2. Here two attenuating networks are used. Their total effect is identical to that produced by a single attenuator with a gain factor of $1 / 100: P_{\mathrm{O}}=(1 / 10)$ $(1 / 10)\left(P_{1}\right)=(1 / 100)\left(P_{1}\right)$.

Cascading linear electronic networks results in the multiplication of their gain factors. It might be well at this point to mention that loss is treated as a fractional gain. For example, the 10:1 attenuators of Fig. 1 have gain factors of 0.1 . Contrast those with the gain factors of most amplifiers, which are often appreciably greater than unity.

Defining the dB. It would be very convenient if we could express gain factors in such a way that they are additive in nature. Then the cumulative effect of cascaded gain or loss blocks could be calculated simply by adding terms, not multiplying them. The decibel allows us to do exactly that.

A decibel expresses a ratio-specifically, 1.259:1-so the addition of decibel gains is equivalent to the multiplication of ratios or gain factors. Power gain in decibels is formally defined as: $G(\mathrm{~dB})=$ $10 \log _{10}\left(P_{\mathrm{O}} / P_{1}\right)=10 \log _{10}(K)$. Note
that the logarithm of a positive number less than one is negative. Thus, negative decibels represent fractional gain or attenuation. Positive decibels signify gains greater than one or amplification. Applying the power formula to the attenuators of Fig. 1, we see that $G=10$ $\log _{10}(1 / 10)=10(-1)$ or -10 dB . Table I summarizes common power ratios and their gains in decibels.

Another Definition-dBm. Power levels are also expressed in dBm , that is, the number of decibels greater or less than a reference level of one milliwatt. Mathematically, this is defined as: $\mathrm{P}(\mathrm{dBm})=10 \log _{10}\left(\mathrm{P}_{\mathrm{mw}}\right)$ or $30+10$ $\log _{10}\left(\mathrm{P}_{\mathrm{w}}\right)$, where P_{mw} is the power in milliwatts and P_{W} is the power in watts.

For example, 10 watts is 10,000 milliwatts, so $\mathrm{P}(\mathrm{dBm})=10 \log _{10}(10,000)$ $=10(4)$ or +40 dBm . Also, $\mathrm{P}(\mathrm{dBm})=$ $30+10 \log _{10}(10)=30+10$ or +40 dBm . One microwatt is 0.001 milliwatt, so $P(\mathrm{dBm})=10 \log _{10}(0.001)=10$ (-3) or -30 dBm . Table 11 lists common values of power in watts and milliwatts. and their counterparts in dBm .

Converting Back. One rarely needs to convert dBm or dB back into watts or power ratios; but for the sake of completeness, we will include the relevant formulas. To convert dBw into watts, milliwatts, or gain factors (power ratios),

The Most Complete MICROPROCESSOR Self-Study COURSES Available on Tape!

Now you or your company can hold self-study seminars at home or in the office. Whenever it's most convenient. Eliminate the need to, and cost of, sending corporate personnel to periodic seminars.
Choose one or more of the $\mathbf{1 0}$ cassette courses from the Sybex self-study library described below. Each course consists of a set of cassette tapes packaged in a durable, book-like case, and a guidebook for studying ease. The lectures are completely coordinated to the pages of the study books, and have been extensively used for personal study with positive results. The tapes can be played on any standard cassette player.

TIME-EFFIGIENT WAY TO LEARN.

INTRODUCTORY - SHORT COURSES

(no technical background assumed)
Each course includes a special course book plus two cassettes (total course length $\mathbf{2 1 / 2}$ hours).

S1 - INTRODUCTION TO MICROPROCESSORS
$\$ 29.95$
This seminar is intended for all non-specialists who wish to acquire a broad understanding of the basic concepts and advantages of microproceasors. It explains how microprocessors work and it stresses methods. costs. advantages and disadvantages for the most important application areas of each type of microprocessor. What is needed to implement a system; how to use it; the impact of microprocessor-based systams; their evolution. Topics covered include: BASIC DEFINITIONS, SYSTEM COMPONENTS MICROPROCESSOR APPLICATIONS, WHAT TO LOOK FOR, and IMPACT AND EVALUATION.

S2-PROGRAFAMING MICROPROCESSORS
$\$ 29.95$
This seminar describes the internal operation of a microprocessor system including how instructions are fetched and executed, how programs are written and executed in typice instructions are fetched and executed. how programs are written and executed in typical understanding of the basic concepts of microproceasor programming. Aequires an understanding of the main concepts in the INTAODUCTION TO MICROPROCESSORS SEMINAR. It is recommended thst these two seminars be taken together
S3 - DESIGNING A MICROPROCESSOR SYSTEM
$\$ 29.95$ How to interconnect a standard nicroprocessor system, in detal: the ROM, RAM, PIO UART, MPU, clock. Trade-offs in addressing lechniques. Case studies (8080, 8085, oihers) You wilt learn in just 2.5 hours how to interconnect a complete system, wire by wire. The techniques are applicable to all standard microprocessors

S10-INTRODUCTION TO PERSONAL

> AND BUSINESS COMPUTING
$\$ 21.95$
Are you planning to buy or use a microcompuler system? This seminar will make you understand the choices and possibilities. A comprehensive description of what is needed and what is available: business computing. peripherals, selection: comparisons costs: the future

INTRODUCTORY - COMPREHENSIVE COURSES

Each course includes a 300-500 page seminar book and 7 to 8 C-90 cassettes.

SB1 - MICROPROCESSORS (12 hours)
$\$ 59.95$
The basic hardware course. It does not require any previous computer knowledge. It will provide you with a comprehensive and effective understanding of all the importan how an MPU operates. In tour hours, you will know all the chips. in ten hours you will know the complete interconnect of a system. At the end of the course. you will know all the essentials about microprocessors.
CONTENT8: Technical Introduction / LSI Technologies ; Internal Archriecture of a Microprocessor / System Components / The Microprocessor Fammas Microprocessor Programming / Applications of Microprocessors / Buiting e System Product Development / Design Aids / Microprocessor Selection / Evelution and Perspectives.

SB2 - MICROPROCESSOR PROGRAMMING (10 hours) \$59.95 The basic software course. It does not require any previous computer or programming knowiedge. It will take you step by step through alf the important aspects of microcomputer programming, as the assambly language level (with a survey of PL/M and BASIC) The techniques presented are opplicable to air micropros. ocus on the 8080 and the 6800 . At the end of the course ine theory snd should be ready for actual practice.
CoNit-Output: Pulses and Deleys, Parallet and Serial Trentorsis. Arthmelic. Subroutines rupts / Mrcroprogramming / Program Development: Procedure. Sollware. Equipment/PL/M Costs and Summary.

SPECIALIZED COURSES Each course includes a 300-500 page workbook and 3 to 4 C - 90 cassettes. Level required: Basic underslanding of microcomputers.

SB3 - MILITARY (SEVERE ENVIRONMENT)

MICROPROCESSOR SYSTEMS (6 hours)
$\$ 49.95$ A complete study of constraints, techniques, and systems avalable for severeCOVironment applications, including the Huguess. Aaytheon. Actron, and other syatems. Systema / Miltarized Microprocessors / Standardization / Bullding © System Appicatrons / Reliabilly / Testing / Summary and Perspective.
SB5 - BIT-SLICE (6 hours)
$\$ 49.95$
in one day, a complete system will be built with bit-sices. in detaif first a fast CPU, then the complete control section, using a PLA, a sequencer, PROM's and miscellaneouk logic. Other innovative applications of slices are also examined.
To follow inis course, you must understand what a CPU is. In this course. you will hearn how to build reat systems, with carelul performance optimization. CONTENTS: Bref Hishory of CPU Design / Bn Slice Principles \& Bir-Slice in Detall f Buiding with Bit-Slice Devices / Survey of Bit-Slice Devices / Applications Develop ment Aids / Conclusions.

SB6 - INDUSTRIAL MICROPROCESSOR SYSTEMS
($41 / 2$ hours)
$\$ 49.95$
This course stresses actual industrial hardware and soltware techniquas: the components the programs, the cost. In particular: D/A conversion, filtering, tests, fail-soff, hardwer replacement programs, industrial case studies.
Conversion I Industrual Components / Control Microprocessors / Outpul / Digital-Analog System Development / Rehability and Testing / Evolution and Perspective. Case-Studies

SB7 - MICROPROCESSOR INTERFACING (6 hours)
SB7 - MICROPROCESSOR INTERFACING (6 hours) \$49.95
How to assemble. Intertace and interconnect a system. Assembling a complete CPU. teletype. printer, cassette, floppy-disk (including one-chip floppy controllers), CRT display. Communications Standard buses S100, RS232, CAMAC, IEEE 488. Evolution.

ORDER TODAY - SATISFACTION GUARANTEED
TECHNOLOGY TRENDS, INC
A diviston of CMP Publications. Inc.
technatiny
333 East Shore Rd., Manhasset, NY 11030
Please mail me the courses circled betow.
I enclose check or M.O. for $\$$ \qquad NY State Re
or charge to my BANKAMERICARD/VISA \square MASTERCHARGE

Fig. 3. Simple network illustrates voltage and power relationships.
use these relationships: $\mathrm{P}_{\mathrm{w}}=10^{0.1 \mathrm{P}(\mathrm{dBw}) \text {; }}$ $P_{\text {mw }}=\left(10^{3}\right) 10^{0.1} \mathrm{P}(\mathrm{dBw}) ; K=10^{0.16}$; where $P(d B w)$ is the power in $d B w, P_{w}$ is the power in watts, P_{mw} is the power in milliwatts, G the gain in decibels, and K the gain factor or power ratio. Similarly. $P_{m w}=10^{0.1} \mathrm{P}(\mathrm{dBm})$ and $\mathrm{P}_{\mathrm{w}}=\left(10^{-3}\right)$ $10^{0.1} \mathrm{P}(\mathrm{dBm})$ where $P(\mathrm{dBm})$ is the power in dBm .
Moreover, it's also possible to use the tables in reverse. Multiplication of ratios can be accomplished by adding decibels. For example, $80 \mathrm{~dB}=40 \mathrm{~dB}+40$ dB , so $K_{80 \mathrm{~dB}}=\left(K_{40 \mathrm{~dB}}\right)\left(K_{40 \mathrm{~dB}}\right)$ or $1 / 100,000,000=(1 / 10,000)$ times $(1 / 10,000)$. Thus you can always break down a given number of decibels into several components that are listed in the
tables. The same technique can be used for power levels in $\mathrm{dBm}:+80 \mathrm{dBm}=$ $+50 \mathrm{~dB}+30 \mathrm{~dB}$, and $\mathrm{P}_{\mathrm{w}}=$ (100 watts) $(1000)=100,000$ watts.

Decibels and Voltage Ratios. Expressing voltage ratios in decibels is also commonly done. The following relationship is used to compute the decibels of power gain of a voltage ratio-providing the network's input and output impedances are equal: $G(d B)=20 \log 10$ $\left(V_{0} / V_{1}\right)$, where V_{0} and V_{1} are the rms output and input voltages, respectively. Keep in mind that the input and output impedances are assumed to be equal. This is often a valid assumption in $r-f$ work because most circuit impedances

TABLE I-DECIBELS VS POWER RATIOS

Gain (dB)	Gain (power ratio)
-50	0.00001
-45	0.00003
-40	0.00010
-35	0.00032
-30	0.00100
-25	0.00316
-20	0.01000
-19	0.01259
-18	0.01585
-17	0.01995
-16	0.02512
-15	0.03162
-14	0.03981
-13	0.05012
-12	0.06310
-11	0.07943
-10	0.10000
-9	0.12589
-8	0.15849
-7	0.19953
-6	0.25119
-5	0.31623
-4	0.39811
-3	0.50119
-2	0.63096
-1	0.79433
0	1.00000
1	1.25893
2	1.58489
3	1.99526
4	2.51189
5	3.16228
6	3.98107
7	5.01187
8	6.30957
9	7.94328
10	10.00000
11	12.58925
12	15.84893
13	19.95262
14	25.11886
15	31.62278
16	39.81072
17	50.11872
18	63.09573
19	79.43282
20	100.00000
25	316.22775
30	1000.00000
35	3162.27744
40	10000.00000
45	31622.77222
50	100000.00000

Fig. 5. Diagram showing the various gains and losses encountered in a communications system.
ceiver with 100 watts of r-f output. It is connected to a $5 / 8$-wavelength antenna mounted on a 50 -foot ($15.2-\mathrm{m}$) tower via a 100 -foot (30.5) length of RG-58A/U coaxial cable. He wants to work a repeater 90 air miles away whose $9-\mathrm{dB}$ gain antenna is mounted on a 2000-foot $(610-\mathrm{m})$ peak. The repeater requires -113 dBm of signal power at the input of its receiver for full quieting. The $2500-$ foot ($762-\mathrm{m}$) length of low-loss coax interconnecting the repeater's antenna and receiver exhibits 20 dB of attenuation. Will his signal quiet the repeater? If not, what can be done about it?

Figure 4 is a plot of path loss at 150 MHz for a 50 -foot (15.2-m) transmitting antenna and a receiving antenna at height H_{2}. It is taken from the "Trans-
mission Loss Atlas for Select Aeronautical Service Bands from 0.125 to 15.5 GHz ," by Gierhart and Johnson, available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, for $\$ 1.25$. This graph tells us that for a 2000 -foot high receiving antenna, a path length of 90 miles results in an antenna-to-antenna loss of 160 dB . Of course, this is only a nominal figure. The exact path loss will depend on terrain, ground conductivity. ground moisture, the weather, etc. Also, the quoted $160-\mathrm{dB}$ path loss does not take antenna gain into account.

Referring to Table II, we see that 100 watts is +50 dBm . Also, we see from the ARRL Handbook that losses for RG-58A/U are approximately 6 dB per

Fig. 6. To achieve full quieting, the transmitted power can be increased (A) or a different tupe of antenna can be used (B).

TABLE RR-POWER IN ABm VS POWER IN WATTS AND milliwatts

Power (dBm)	Power (milliwatts)	Power (watts)
-50	0.00001	0.00000001
-45	0.00003	0.00000003
-40	0.00010	0.00000010
-35	0.00032	0.00000032
-30	0.00100	0.00000100
-25	0.00316	0.00000316
-20	0.01000	0.00001000
-19	0.01259	0.00001259
-18	0.01585	0.00001585
-17	0.01995	0.00001995
-16	0.02512	0.00002512
-15	0.03162	0.00003162
-14	0.03981	0.00003981
-13	0.05012	0.00005012
-12	0.06310	0.00006310
-11	0.07943	0:00007943
-10	0.10000	0.00010000
-9	0.12589	0.00012589
-8	0.15849	0.00015849
-7	0.19953	0.00019953
-6	0.25119	0.00025119
-5	0.31623	0.00031623
-4	0.39811	0.00039811
-3	0.50119	0.00050119
-2	0.63096	0.00063096
-1	0.79433	0.00079433
0	1.00000	0.00100000
1	1.25893	0.00125893
2	1.58489	0.00158489
3	1.99526	0.00199526
4	2.51189	0.00251189
5	3.16228	0.00316228
6	3.98107	0.00398107
7	5.01187	0.00501187
8	6.30957	0.00630957
9	7.94328	0.00794328
10	10.00000	0.01000000
11	12.58925	0.01258925
12	15.84893	0.01584893
13	19.95262	0.01995262
14	25.11886	0.02511886
15	31.62278	0.03162278
16	39.81072	0.03981072
17.	50.11872	0.05011872
18	63.09573	0.06309573
19	79.43282	0.07943282
20	100.00000	0.10000000
25	316.22775	0.31622775
30	999.99993	0.99999993
35	3162.27744	3.16227743
40	10000.00000	10.00000000
45	31622.77222	31.62277222
50	100000.00000	100.00000000

100 feet (30.5 m). Because signal losses and gains are additive (see Fig. 5), we can quickly compute P_{R}, the received signal power: $\mathrm{P}_{\mathrm{R}}=+50 \mathrm{dBm}-$ $6 \mathrm{~dB}+4 \mathrm{~dB}-160 \mathrm{~dB}+9 \mathrm{~dB}-20 \mathrm{~dB}$ or -123 dBm . The repeater requires a signal strength of -113 dBm , so we see that we are 10 dB too low. Hence, the signal at the output of the repeater will be somewhat noisy.

Figure 6 illustrates two possible solutions to the problem. The first and most obvious is to increase the transmitted signal power. Because the signal power at the receiver is 10 dB too low, this means that the transmitter output must be increased from 100 to 1000 watts. Adding a kilowatt amplifier to the transmitting station, as shown in Fig. 6A, will raise the signal power at the repeater's receiver to -113 dBm .

The second solution to the problem involves replacing the 5/8-wavelength antenna with a directional yagi beam (Fig. $6 B$). A 12 -element beam with a 3.5 wavelength boom will give about 14 dB of gain. The additional 10 dB over the $5 / 8$-wavelength antenna will result in -113 dBm of signal power, and hence full quieting of the repeater's receiver.

Decibels in Audio. Anyone who wants to be conversant in the field of audio must be well versed in decibels. This is so because many of the key operating characteristics of the circuits and electromechanical transducers employed in high-fidelity applications are expressed in part or in whole using decibels. For example, the frequency response of a cartridge, speaker, or amplifier is specified as $+X,-Y \mathrm{~dB}$ from (typically) 20 to $20,000 \mathrm{~Hz}$. In the case of the cartridge, the reference employed is a certain output level in millivolts. For a speaker, the reference is the sound pressure levelcorresponding to the threshold of audibility $\left(0 \mathrm{~dB}=2 \times 10^{-4}\right.$ dynes $/ \mathrm{cm}^{2}, 2 \times 10^{-4}$ microbars, or 10^{-16} watts $/ \mathrm{cm}^{2}$.)

The power output of an amplifier is commonly specified in dBw, where 1 dBw equals 1 watt. For example, an amplifier which can provide 100 watts of continuous output power per channel can be rated as having an output of 20 dBw. Program source components such as turntables, tape decks and tuners have several decibel-related specifications. Of prime interest to any prospective purchaser is the signal-to-noise ratio (S / N) at the output of the program source. This is typically rated by driving the source to a reference output level, removing the input signal, and measur-
ing the residual noise at the output. The decibel relationship between the reference output voltage and the residual noise is the component's S / N. For a program source to be considered one of high fidelity, it should have an S / N of 55 dB or more.
The relatively new IHF FM tuner standard specifies that signal strength in sensitivity ratings is to be expressed in dBf , where the reference is the femtowatt or 10^{-15} watt ($0 \mathrm{dBf}=1$ femtowatt). This was done to base sensitivily measurements on signal power, thus resolving the ambiguity caused by varying source impedances. For example, the same tuner could have an "old" IHF usable sensitivity of $2.0 \mu \mathrm{~V}$ into its 300ohm antenna input or $1.0 \mu \mathrm{~V}$ into its 75ohm input jack. Under the updated system, the tuner has a sensitivity of 11.2 dBf no matter which input and source impedance is used.
Decibels are so pervasive in the field of audio that a full appreciation of them is one mark of the true audio buff. Tape recordists especially must be comfortable with decibels. For example, when choosing a microphone, he must consider its sensitivity-its relative efficiency of converting acoustic energy into electrical energy. There are several methods of determining a microphone's sensitivity, which is usually expressed in dB below a specified reference level. The two types of ratings commonly used are the open-circuit voltage rating and the maximum power rating.
The open-circuit voltage technique measures the unloaded output of the microphone when driven by a reference SPL (for example, 1 microbar), compares it to a reference voltage (1 volt), and extracts the decibel relationship between the two. If an SPL of 1 microbar causes a microphone to develop 1 volt of output signal, its sensitivity is 0 dB . Practical microphones deliver much smaller output levels, with typical opencircuit voltage sensitivities varying from about -70 dB for dynamic moving-coil microphones to -37 dB for capacitive microphones with built-in preamplifiers.
The maximum power method involves connecting the microphone to a load equal to its internal (source) impedance, driving it with a reference SPL, and measuring the output power delivered to the load. The reference output power level is 1 milliwatt and the reference SPL is usually 10 microbars. Therefore, if a microphone driven by 10 microbars delivers 0.001 microwatt (10^{-6} milliwatt) into its optimum load, its sensitivity would be

TABLE III DECIBELS VS VOLTAGE RATIOS

Gain (dB)	Voltage Ratio
-50	0.00316
-45	0.00562
-40	0.01000
-35	0.01778
-30	0.03162
-25	0.05623
-20	0.10000
-19	0.11220
-18	0.12589
-17	0.14125
-16	0.15849
-15	0.17783
-14	0.19953
-13	0.22387
-12	0.25119
-11	0.28184
-10	0.31623
-9	0.35481
-8	0.39811
-7	0.44668
-6	0.50119
-5	0.56234
-4	0.63096
-3	0.70795
-2	0.79433
-1	0.89125
0	1.00000
1	1.12202
2	1.25893
3	1.41254
4	1.58489
5	1.77828
6	1.99526
7	2.23872
8	2.51189
9	2.81838
10	3.16228
11	3.54813
12	3.98107
13	4.46684
14	5.01187
15	5.62341
16	6.30957
17	7.07946
18	7.94328
19	8.91251
20	10.00000
25	17.78279
30	31.62278
35	56.23413
40	100.00000
45	177.82793
50	316.22775

-60 dB referenced to 1 milliwatt or -60 dBm .

Volume Units. Many tape decks' record level meters are calibrated in "VU" as opposed to dB . Others have meters calibrated in dB. This may lead some to conclude that VUs are different from dBs. That, however, is untrue. Electrically speaking, a change in signal level of 1 VU is equivalent to a level change of 1 decibel.

A VU meter, however, has carefully controlled ballistic characteristics governing how the meter deflects upward from -20 to 0 VU and how much momentary overshoot will occur. It also has a specified input impedance (3900 ohms), is to be used with a 3600 -ohm series resistor, has a defined scale (-20 to +3 VU), employs a particular type of rectifier, and is an average-responding meter. All of these characteristics have been chosen so that every true VU meter will respond to complex speech and musical waveforms in a consistent manner.

Few of the level meters found in consumer tape decks are true VU meters, even though most are average-responding level indicators and have a scale calibrated in "VU." As Julian Hirsch's Audio Reports usually indicate, these meters do not have the ballistic response of a true VU meter. Even so, they are useful level indicators.

A dB meter, on the other hand, need not have true VU dynamic characteristics. In fact, it is customary to mark the scale in decibels if the meter is a peakresponding indicator. The German standards organization, DIN, has established equally well-defined characteristics for peak-reading meters, but in consumer decks these, too, are often ignored by manufacturers.

Summary. Decibels are used to express power ratios. Voltage ratios can be related to power ratios if input and output impedances are known. Therefore, it's possible to express voltage ratios in decibels based on their equivalent voltage ratios. Power levels are commonly specified in decibels relative to a standard reference-usually one milliwatt, resulting in the unit dBm , or one watt, resulting in the unit dBw . Because decibels are the logarithms of ratios, they can be added to determine the cumulative effect of series connections of gain or loss blocks. In short, decibels are indispensible tools in electronic circuit and system analysis.

many battery manufacturers-is employed, and up to twelve 1.2 -volt cells can be charged in series at any one time.

About the Circuit. The Universal Charger is shown schematically in Fig. 1. When power switch S1 is closed, transformer T1 steps down ac voltage from the power line. Modular bridge rectifier RECT1 converts the ac into pulsating dc which is filtered by C1. Light-emitting diode LED1 acts as a pilot light for the project. Zener diode D1, Darlington transistor Q1, and resistors A2 through R14 form a constant-current source which charges the depleted cells.

Most manufacturers recommend that their cells be slowly recharged at a rate equal to one-tenth of the maximum discharge rate. To accommodate a wide variety of cells, rotary switch S2 offers a choice of 12 values of charging current. The switch grounds the emitter of Q1 by way of one of 12 fixed resistors (R3 through R14) whose resistance determines the magnitude of the charging current. Table II lists the current values selected by the author and the corresponding resistances of fixed resistors R3 through R14. These resistances were determined experimentally, and are dependent on the zener voltage of D1 and the dc beta of the Darlington.

Construction. The circuit of the Universal Charger is relatively simple, so point-to-point wiring techniques are recommended. Be sure to observe the polarities of all semiconductors and that of C1. Assemble the project in a utility box, mounting Q1 either on a heat sink attached to the outside of the box or on the

Fig. 1. Schematic shows how zener D1, Darlington Q1, and resistors R3 through R14 form constant-current source which regulates battery charging.

PARTS LIST

CI $-2200-\mu \mathrm{F}, 35$-volt electrolytic
D1-6.8-voli. 1-watt (of greater) zener diode (see lext)
Fi-I-ampere fast-blow fuse
LEDI-Light-emitting diode
QI-120-wat (or greater) npn Darlington transistor (Radie) Shack RS-2042 276-2042-see tex1)
The following are $1 / 2$-watt, 5 reterance fixed resistors unless ohberwise noted. Also, see text with reference to $R 3$ through $R 1 A$.
R1, R2- 1600 ohms
R3 - 600 ohms
R4- -460 uhms
R5- 170 ohms
R6-9! ohms
R7-70 ohms
R8-54 ohms

R9-44 ohms
R10- $\mathbf{3 5}$ ohms
RII- 24.5 thms. I watt
R12-14 ohms. 2 watts
R13-12.5 कhms, 2 waths
R14- 10 ohms. 3 wats
RECT1-1.4-ampere. 50-PIV modular bridge rectifier
SI-Spst toggle switch
S2-1-pole, 12-position rotary switch
T'I-12.6-volt. 1.2-ampere slepdown transformer
Mise.-Suitable enclosure, terminal strips, color-coded alligator elips, knob for $S 2$. heat sink, mica washer, shoulder washers. silicone thermal compound, hook-up wire. line cord, strain relief, fuseholder, machine hardware, solder. ete.

TABLE I
$\left.\begin{array}{lcc}\begin{array}{c}\text { Manu- } \\ \text { facturer's } \\ \text { Type }\end{array} & \begin{array}{c}\text { Battery } \\ \text { Size } \\ \text { Number }\end{array} & \end{array} \begin{array}{c}\text { Recommended } \\ \text { Maximum } \\ \text { Charge Rate } \\ \text { (mA) }\end{array}\right]$
box's outer surface itself it it can dissipate the heat generated by Q1 without the aid of a heat sink. Use an insulating mica washer, shoulder washers, and silicone thermal compound when mounting Q1. Be consistent when wiring S2. taking care to avoid inadvertent shorts.

Some variation from the values given for R3 through R14 will probably be required if the currents listed in Table II are to be obtained. (Of course, you can choose different charging currents to suit your own particular applications.) This variation will be due to the exact dc beta of the Darlington transistor and the zener voltage of the zener diode used.

Although the parts list specifies a particular Darlington and diode, substitu-
tions can be freely made. The zener voltage can be as low as three volts or as high as 12 volts. (A lower zener voltage will allow a greater number of cells to be charged in series than is possible with a higher-voltage diode.) Parameters of the Darlington transistor are not critical, but it is recommended that the device used have a power dissipation equal to or greater than that of the component in the parts list (120 watts).

The best way to determine the values required for fixed resistors R3 through R14 is to temporarily ground the emitter of Q1 through a 1000 -ohm potentiometer before connecting any components to the emitter or to S2. The potentiometer should be connected to the emitter of

AS A RULE, YOU CANT MIX BUSINESS WITH PLEASURE.

ENGINEER FRANK HOFFMAN IS ONE EXCEPTION.

For Frank Hoffman electronics is one of the "great pleasures" in life. Even when it's strictly business.

Frank is a Telecommunications Engineer from Haddonfield, New Jersey. He designs peripherals for 8080 microprocessor controlled equipment. Supervises the making of prototypes; the drafting. Everything from start to finish.

But his enthusiasm for electronics hardly ends there.

Frank operates a ham radio. Spends time listening to good music (a new stereo octave band equalizer
has piqued his interest in audio). And just recently he bought a digital computer that has videographics capabilities and monitors an impressive home security system.
"I decided on the personal computer after reading an article on the Cosmac 1802 in Popular Electronics," he relates. "That and a very analytical series written by Forrest Mims for PE's Experimenter's Corner."

Popular Electronics is a tradition in the Hoffman family. Frank was introduced to it by his father, a Marine Engineer. And has been a subscriber
since 1960 because "the magazine is geared to people who have a real understanding of electronics."

He's typical of today's PE readers: young, well-educated, highly skilled. In the forefront of this age of micro-computers and advanced audio and laser communications. Electronics activists who make things happen in the marketplace.

THE PE READER. THE ELECTRONICS ACTIVIST. Popular Electronics

Photo of author's prototype shows components mounted on top of enclosure with clip leads used to connect battery to charger.

Q1 and to ground via leads terminated with alligator clips. Adjust the potentiometer for maximum resistance between the emitter of Q1 and ground.

Next, connect a milliammeter between the collector of Q1 (negative meter terminal) and the positive side of C1 (positive meter terminal). Adjust the potentiometer so that the milliammeter indicates the lowest charging current desired. Then remove the potentiometer from the circuit and measure its resistance with an ohmmeter. Make a notation of the milliammeter and ohmmeter readings.
Insert the potentiometer back into the circuit and adjust it for the second desired (next largest) charging current. As before, disconnect the potentiometer, measure its resistance, and make a notation of the two meter readings. Repeat this procedure ten times until a total of 12 charging currents and resistance values have been determined. The required power rating for each resistor can be calculated using the familiar expression $P=I^{2} R$, where I^{2} is the square of the charging current in amperes (pay
close attention to decimal points!) and R is the measured potentiometer resistance in ohms.

Once the required resistance values have been determined, you can connect appropriate fixed resistors between the emitter of Q1 and the lugs of S2. It's very possible that you will not be able to find resistors with the exact values that are needed. If you don't want to synthesize the required resistances by series or parallel (or both) combinations of standard resistor values, you can use trimmer potentiometers in place of fixed resistors. Be sure to choose trimmer potentiometers with adequate heat dissipation ratings if this approach is taken. A very definite advantage of using trimmers is that charge rates can be easily changed at some future time to accommodate newly acquired cells calling for charging currents different from those of the batteries presently on hand.

Interconnection between the charger and depleted cells is largely a matter of personal preference. The schematic suggests the use of color-coded alligator clips. This is perhaps the most conven-

TABLE II
Position of S2 Selected Resistance Charging Current (mA)

1	R3, 600 ohms	9
2	R4, 460 ohms	12.5
3	R5, 170 ohms	28
4	R6, 91 ohms	50
5	R7, 70 ohms	64
6	R8,54 ohms	80
7	R9, 44 ohms	90
8	R10, 35 ohms	118
9	R11,24.5 ohms	167
10	R12,14 ohms	350
11	R13, 12.5 ohms	400
12	R14, 10 ohms	550

Indicates transistor
quality and type without unsoldering from a circuit

LOCATING a bad transistor on a circuit board crowded with components all soldered in place can be a vexing problem. With an in-circuit transistor tester, however, you can determine the component's general quality and also avoid damaging components and/or the foil pattern due to excessive solderingiron heat.

The simple, low-cost (under $\$ 10$) tester described here will indicate when a suspect transistor is good or bad and, as a bonus, tell you the component's type (pnp or npn). Indication is through a pair of flashing LEDs. One LED flashes if the device is a good pnp transistor, while the other LED flashes if the device is a good npn type. If it is not good, either both LEDs will flash or neither will flash, depending on the type of transistor failure.

Circuit Operation. The circuit, shown in Fig. 1, is based on a 555 (IC1) timer operating as a $12-\mathrm{Hz}$ multivibrator. The output at pin 3 drives one flip-flop of IC2. This flip-flop divides the input frequency by two, but more important, delivers complementary voltage outputs at pins 15 (Q) and 14 (not-Q).

These complementary outputs are connected to indicators LED1 and LED2 via current-limiting resistor R3. The LED's are arranged so that when the polarity across the circuit is one way, only one LED will glow, and when the polarity reverses, the other LED glows. Thus, with no transistor being tested, the LED's flash alternately.

The IC2 complementary outputs are also connected to resistor network R4 and R5, with the junction of these two re-

Fig. 1. As shown above, circuit is based on 555 timer operating as a $12-\mathrm{Hz}$ multivibrator.

PARTSLIST

Bi-9-voli battery with holder
$\mathrm{Cl}-1-\mu \mathrm{F}, 16$-volt electrolytic DI through D4-iN4148 or similar
IC1- 555 timer
IC2-4027 dual fip-flop
LED1, LED2 - Light emitting diode R1- 10.000 -ohms, $1 / 2$-watt, 10% resistor R2- 50.000 -ohms, $1 / 2$-watt, 10% resistor R3-270-ohms, $1 / 2$-watt, 10% resistor

R4- 220 ohms. $1 / 2$-watt, 10 gesistor
R5-330-ohms. $1 / 2$-watt, 10% resistor S1-Normally open spst pushburton switch
Mise, -Suitabie enclosure, mounting hardware, et al.
Note: The following is available from J.H. Gilder, 2022-79 St., Brooklyn, NY 11214: kit of parts (no battery or case), for $\$ 10$ including postage NY residents please add 8% sales tax.
sistors connected to the base of the transistor under test.

With a good transistor connected to the B, C and E terminations, when the correct voltage is applied to the three connectors, the transistor will turn on. This produces a short circuit across the LED pair. For example, when a pnp transistor is under test, during the interval when the Q output is low and the not-Q output is high, the pnp device will turn on. In this mode, LED1 is shorted, LED2 is reverse biased and, for that half cycle, neither LED will glow. Qn the next half cycle, the conditions of Q and not- Q are reversed with Q high and not- O low. Under these conditions, LED1 is off because it is reverse biased, and since the pnp transistor is cut off, it does not prevent LED2 from glowing. Thus, when testing a good pnp device, LED2 will flash, and when testing a good npn type, LED' will flash.

If the transistor under test is open, both LEDs will flash. If the transistor has an internal coilector-to-emitter short, neither LED will flash.

To compensate for low-valued resistors that may be present in the circuit being tested, R4 was selected to supply a large amount of base current to the transistor under test. This makes it possible to overcome in-circuit resistances across the collector-base or base-emitter junctions of as little as 40 ohms .

Diodes D1 through D4 become important if the transistor being tested has an internal short between its collector-base or base-emitter junctions. In such a case, half of the transistor acts like a diode and would normally conduct and indicate a good transistor. To overcome the possibility of this type of problem's occurring, diodes D1 through D4 are added in series with the collector.

Stereo Review

P.O. Box 2771

Boulder, Colorado 80321

Discount Order Form

CHECK APPROPRIATE BOXES

\square YES. Send me a year of Stereo Review for just \$4.99 50% off the regular subscription price of \$9.98.
\square I prefer two years for $\$ 9.98$.

I prefer three years for $\$ 14.97$.
CHECK ONE: \square Payment enclosed. \square Bill me later.
59998 - Send me one year of Popular Electronics for $\$ 8.97$.

NEW SUBSCRIBERS ONLY

BUSINESS REPLY CARD
 FIRST CLASS PERMIT NO. 903 BOULDER COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Fig. 2. Component placement guide (above) and actual-size foil pattern (at right).

When D1 and D2 or D3 and D4 are conducting, they create a voltage drop of about 1.2 volts across the operating pair. This voltage adds to the drop across the transistor being tested, and if the transistor is good, the drop across it will be about 0.1 -volt, and the total drop across the LED's will be 1.3 volt for the half cycle that the transistor is turned on. This is not enough voltage to turn on the appropriate LED. If, on the other hand, the transistor has a base-emitter or base-collector short, the 1.2 volts of diode drop is added to another 0.6 -volt
drop to produce a total drop of 1.8 volts- enough to turn on the LED. Therefore, internal shorts will cause both LED's to flash alternately.

Construction. The circuit is not critical with regard to parts placement and can be built up on a small piece of perforated board or the pc board whose foil pattern is shown in Fig. 2. Sockets for the iCs are optional, and be sure to observe the polarity of D1 through D4 and C1. The three leads to be connected to the transistor under test can be terminat-
ed at a transistor socket, or used as three color-coded leads terminated with small alligator clips or some form of needle tip to make in-circuit transistor pad connections.

The completed pc board can be mounted within a small enclosure that will also support the battery (and holder) and on/off switch S1. The two LEDs can be mounted on the cover using rubber grommets. To check the tester, depress S1 and note that the two LEDs alternately flash. If they flash together, one of them is improperly connected.

LOW-COST ADDITION FOR MUSIC BOX PERIPHERAL

By Robert Briggs
Produces randomly generated music without a computer

IF YOU HAVE built or are planning to build the "Computer Music Box Peripheral"(Popular Electronics, April 1978), here is a low-cost (under \$2) addition that allows it to be used without a computer. The combination permils experimentation with electronic music at low cost.

The complete circuit is shown in the schematic diagram. The oscillator is essentially the same as that shown on page 84 of the same April 1978 issue in the "Experimenter's Corner." Output leads are randomly connected to the input leads of the Music Box.

The audio output is a variety of notes. chords and strange sequences. Some sound like a harpischord, while others sound like an instrument playing in an echo chamber. To change the effects,
simply interconnect the leads in a different way.

In the original Music Box, make sure
that +5 -volts is connected to pin 4 of both flip-flops and the ground circuit to both pins 11.

Schematic diagram at right shows how simple oscillator circuit is connected to a 4020 integrated circuit whose output is fed to the Music Box Peripheral.

T
HE taper of a potentiometer can be easily changed to suit a particular application by the simple addition of one or more resistors. The new curve is easily predictable if you carefully observe the locations of the output terminals and which parts of a centertapped potentiometers are shunted by fixed resistors.

See if you can match the pot circuits (1-10) with their corresponding output voltage curves (A-J) produced when the wiper arm is moved from point 1 to point 2 in the circuit in each case.
Assume that all resistors and linear pots, some of which are center-tapped, have the same total resistance values.
(Answers on page 85)

CMOS logic allows more effective control of time and prevents track-change interruptions

8-Track Timer Simplifies Recording

THE 8-Track Timer (8TT) described here is the perfect companion to an 8 -track tape deck. Its primary feature is a digital elapsed-time indicator that eliminates guesswork-and track changes in the middle of a song. In essence, the 8TT provides a visual indication of the amount of time used to record on one track and then tells you how much of that time you have used as you continue to record on each succeeding track. Thus, you'll always know exactly how much time remains before an end-of-track or end-of-tape occurs, and will be able to plan your recording sessions accordingly.

The project also offers the following:

- a PAUSE control;
- automatic shutoff after four "tracks" (that is, track pairs) have played;
- a CLEAR TAPE function that shuts the deck off after any change-of-track.

The last-mentioned function prepares the cartridge in-
serted in the deck for a recording session. If you don't want the 8TT to control the tape deck, simply remove line power from the project. Normal operation can then be resumed.

About the Circuit. The block diagram of the 8TT is shown in Fig. 1 and its schematic diagram in Fig. 2. A glance at the block diagram reveals five major functional sections: a $1-\mathrm{Hz}$ pulse-train generator; an elapsed-time counter and display; a track counter; a motor flip-fiop and controller; and a "logic" circuit.
The $1-\mathrm{Hz}$ generator accepts a low-level signal derived from the ac power line and divides its frequency by either 50 or 60 . The position of a jumper on the project's main printed circuit board determines which divisor is selected. This choice is of course governed by the line frequency of the commercial power source (50 or 60 Hz). The resulting train of $1-\mathrm{Hz}$ pulses is employed as a time-

base for the elapsed-time counter.
CMOS up- and down-counter IC's perform the actual timing of the 8 -track cartridge. The up-counter is enabled during the interval that track 1 is being used. It serves double-duty by counting the tape cartridge's start-of-track to end-of-track playing (or recording) time and by acting as a latch, storing this information for the rest of the recording session.

The outputs of the up-counter are connected to the parallel-load inputs of the down-counter. When the downcounter is placed in its asynchronous, parallel-load mode, its outputs follow the information presented to its parallel inputs. Removing the parallel-load command causes the counter to commence counting down from the last binary number to which the outputs followed the parallel inputs. The down-counter can thus be ordered to either pass the binary number generated by the up-counter directly to the display decoder/driver or

PARTS LIST

C 1 through $\mathrm{C} 12-0.1-\mu \mathrm{F}$ dise ceramic CI3-500- $\mu \mathrm{F}, 25$-volt electrolytic D1 Ihrough D5-1N4001
FI-I-ampere fasl-blow fuse
DISI through DIS4-FND70 or similar com-mon-cathode LED display
ICI.IC3,IC14-4518 dual decade counter
IC2-4019 quad 2-input multiplexer
IC4,IC13,IC18-4001 quad 2-input NOR gate
IC5 through IC8-4510 decade counter
IC9 through IC12-45I! BCD-to-seven-segment decoder/driver
IC15-555 timer
IC16-4072 dual 4-input OR gate
tC17-4002 dual 4 -input NOR gate
IC19-4017 decade counter/divider with 10 decoded outputs
IC20-7805 5-volt regulator
KI-12-voit relay with 250 -ohm coil and 3-ampere spdt contacts
LEDI,LED2-Light emirting diode
OCI-MCT-2 optoelectronic coupler
Q1-MPSA13 npn Darlington
The following are $1 / 4$-watt, 5% tolerance car-bon-composition fixed resistors.

R1,R2,R3- 1000 ohms
R4 through R7. R9 through R12. R48- 10,000 ohms
R8.R13,R14,R15- $100,000 \mathrm{ohms}$
R16-I megohm
R17-330,000 ohms
R18- $\mathbf{3 . 3}$ megohms
R19 through R46-220 ohms
R47-150 ohms
SI-I-pole, 5-position nonshorting rotary swiseh
S2-Spst toggle switch
T1-12.6-volt, 1-ampere transformer.
Misc.-Suitable enclosure, display bezel, 4 -conductor chassis-mount female connectors, 4-conductor male connectors, printed circuil board, standoffs, line cord, etc.

Note-An etched, drilled and silk-screened printed circuit board is available for $\$ 15$ postpaid (in U.S.) from Noveltronics, Box 4044, Mountain View, CA 94022. California residents add sales tax. Foreign orders: write for prices. Allow 2 weeks for checks to clear.

Fig. 1. Five major functional sections of the BTT are shown in block diagram. The motor Aip-flop is actually two cross-coupled NOR gates.
briefly sample the up-converter's output lines and then count down.

The first operation is performed during the time track 1 is being used and the second during the intervals associated with tracks 2, 3, and 4. The binary information present at the output of the down-counter is applied to a BCD-to-seven-segment decoder/driver network for the common-cathode LED displays.

The display's colon driver is a 555 astable multivibrator (IC15) that oscillates at a $2-\mathrm{Hz}$ rate. The astable can be gated off by grounding its RESET input (pin 4). This happens whenever the deck is running normally and causes the display's colon to glow steadily. When the motor is shut off, the 555 indicates that fact by pulsing the display colon.

Every 8 -track cartridge contains a short section of metallic tape. This tape trips a solenoid to move the deck's tape head through its four track positions.

The voltage pulse generated when the solenoid is activated is sensed via optoisolator OC1 and applied to the track counter's clock input. In this way, the deck's mechanical track position is sensed by the 8TT.

Track counter IC19 controls the operation of the up- and down-counters. During the track 1 interval, IC19 enables the up-counter and places the down-counter in its parallel-load mode by way of OR gate IC16B. At the end of track 1, the track counter prevents the up-counter from incrementing further and enables the down-counter. At the start of tracks 3 and 4, a puise generated by either R9C5 or R10C6, respectively, is applied to the down-counter by way of IC16B. This loads the up-counter's latched value into the down-counter which then decrements toward zero.

Because each track should take an equal amount of playing time, the dis-
play will read 0:00 (or close to it) at the ends of tracks 2.3. and 4. At the end of track 4, the track counter inhibits further timing and sets the motor flip-flop, stopping the deck motor.

The motor flip-flop is controlled by the logic section. Setting the flip-flop disables the $1-\mathrm{Hz}$ generator, allows the display colon driver to oscillate, and energizes relay $K 1$, which is mounted inside the tape deck. The relay's normally closed contacts are wired in series with one of the deck motor's power leads, so that setting the flip-flop removes power from the deck's motor.

The position of rotary switch S1 determines the 8TT's operating mode. Setting it to its CLEAR TIMER position resets the up-counter and the track counter. and sets the motor flip-flop. This readies the 8TT for the start of a recording session. Placing St in the PaUSE position sets the motor flip-flop, but switching it to the aun position resets the motor flipflop. With the switch in the RUN position, recording proceeds as previously described. Placing $S 1$ in its clear tape position initially resets the motor flip-flop and allows the tape to run. At the first change of tracks, the $8 T T$ sets the flipflop. This stops the deck, leaving the cartridge "cleared" for recording.
Readily avaitable CMOS IC's comprise almost all of the 8TT circuit. A regulated 5 -volt and unregulated 12 -volt supply is used as the power source. The 12 -volt ac waveform developed across the transformer secondary is conditioned to a level compatible with the CMOS logic circuit before being applied to the input of the $1-\mathrm{Hz}$ generator.

Construction. Almost all of the $8 T T$ circuit fits on a single pc board whose etching and drilling and parts placement guides are shown in Figs. 3 and 4. An unusual feature of the board is the "wireless" connection between the logic and display sections. After the board has been fabricated as a single unit, it is cut along the indicated line. The two sections are then soldered together along the cut line to form a right angle. The resulting structure is rigid. The logic board is mounted parallel to the bottom of the project enclosure using spacers as shown in Fig. 5. This automatically positions the display board vertically.

Before soldering the two boards together at a right angle, mount and solder all components and jumpers on each board. Note that $\mathrm{C13}$, the elec-

Eight-Track Timer cont'd

Fig. 2. Schematic diagram of 8TT. CMOS logic is used throughout.
trolytic filter capacitor in the power supply, is located on the display board, but is mounted on the foil side. This allows the vertical display board to fit flush with the front panel of the project enclosure. If the line frequency of the available power source is 60 Hz , use a jumper to connect pin 12 of IC14B to pin 6 of IC13B. If a $50-\mathrm{Hz}$ ac source is used, the jumper should interconnect pin 11 of IC14B and pin 6 of IC13B.
Mount the logic board on spacers at least $2^{\prime \prime}$ high so that power transformer T1 can be mounted directly beneath it. The regulator IC (IC20) should be mounted directly to the project enclosure to provide heat sinking. Be sure to add a thin layer of silicone heat-sink compound to improve thermal transfer between the IC package and project en-
closure. A $1^{\prime \prime} \times 2^{1 / 2 \prime \prime}(2.5-\times 6.4-\mathrm{cm})$ rectangular hole should be cut into the project enclosure's front panel for the digital display. To increase the legibility of the display, affix a red filter to the back side of the front panel using epoxy or similar adhesive.

The tape deck to be controlled must be slightly altered (see Fig. 6). Mount relay K1 inside the deck enclosure at a convenient location. Cut one of the power leads running to the motor. Connect one end of the severed lead to the normally closed contacts of the relay and connect the other end to the relay's pole. The coil leads will be connected to a jack to be described shortly.

Now locate the track-changing solenoid. When a track change occurs, dc voltage' will be momentarily applied
across the solenoid. The polarity of this applied voltage must be determined. This is most easily accomplished by means of an oscilloscope or voltmeter. With the meter or scope probes connected across the solenoid, depress the deck's program or track change pushbutton and note the meter's (or scope trace's) deflection. Compare this with the polarity of the probes and determine which side of the solenoid becomes positive with respect to the other. Mark this lead with a small flag of vinyl tape.

Make a hole on the tape deck's rear apron large enough to accommodate a chassis-mount, 4-conductor female connector. Install this connector and solder the leads from the track-changing solenoid and relay coil to the connector lugs. An identical connector should be in-

Fig. 3. Actual-size foil pattern for the 8TT's single pc board.

stalled on the rear apron of the $8 T \mathrm{~T}$ enclosure and appropriate leads from the pc board soldered to it. Be sure that the connections to this second jack match those made to the first. The circled-letter markers on the schematic correspond to the designated foil pads on the project's printed circuit board.

For convenience, protective diodes D4 and D5 can be soldered to the lugs of one of the female connectors-either the one mounted on the rear apron of the project enclosure or that installed on the rear apron of the 8-track tape deck. Prepare a 4-conductor cable of a length sufficient to interconnect the project and tape deck. Solder the cable conductors to the lugs of male connectors compatible with the rear-apron female connectors. Take care to solder each conductor to the identically corresponding lug on each connector.

Flexible hook-up wire should be used
to interconnect the main circuit board and rotary switch S1, the rear-apron connector, and the off-board power supply components. Rotary switch S1 should be wired so that there are two adjacent PAUSE positions between the RUN and clear timer positions. This minimizes the possibility of inadvertently entering the CLEAR TIMER mode (which would erase the information stored in the $8 T \mathrm{~T}$ latch) when a switch to the RUN position was actually intended.

Testing and Use. Interconnect the $87 T$ and tape deck with the 4 -conductor cable that you have prepared. Insert a tape cartridge into the deck and apply power to both the GTT and the deck. Then place rotary switch S1 in its CLEAR TIMER position. If all is well, the deck motor will stop turning, the display will read 0:00 and the display colon will blink on and off at a $2-\mathrm{Hz}$ rate. Switching to the

Fig. 4. Component placement guide for the 8-Track Timer.

PAUSE position will cause no change. Placing the 8TT in its run mode, however, will cause the deck motor to start running and the display to function as an elapsed-time indicator. The display colon will glow steadily.
After approximately one minute of running time, make a mental note of the interval indicated by the display and depress the tape deck's track change pushbutton switch. The elapsed time indicated by the display will begin to decrement toward 0:00. Depressing the track-change pushbutton twice more will initiate the same count-down sequence, slarting each time at the first track's running interval.

If you find that track counter IC19 has trouble following the track state, decrease the value of $R 48$. This will allow more current to flow through the LED in optoelectronic coupler OC1 and provide stronger pulsing of the internal phototransistor. If the problem persists, doublecheck the wiring associated with the optocoupler and the solenoid to ensure that the voltage applied across the LED is of the correct polarity.

Depress the track-change pushbutton switch one more time. The 8TT will interpret this to mean that the tape has ended and will turn off the deck motor, cease timing, and cause the display colon to blink on and off. Any further depression of the track-change pushbutton will be ignored by the 8 T .
Once these operations have been verified, place rotary switch S1 in its clear tape position. The deck motor will then begin to run but will be shut off at the first change of tracks. Place S1 in its CLEAR tIMER position and then in its PAUSE position. Prepare the cartridge for recording as required by your deck and you're ready to go.

Employ the 8TT's PAUSE mode when you want to stop recording momentarily. By keeping an eye on the 8 TT's display, you will be able to interleave the program material neatly between the trackchange interruptions.

If you want to use your tape deck without the assistance of the 8 TT , simply remove power from the project by opening toggle switch S2. Although the deck has been modified in that the 4 -conductor female connector and relay $K 1$ have been installed inside it, the deck is unaltered electrically. This means that the deck will function normally with the 4 -conductor umbilical cable disconnected. Practically speaking, you can even leave the

Fig. 5. Interior view of author's prototype reveals printed circuit board mounting detaits.

Fig. G. View of tape deck shows how relay and connector were mounted on deck's rear apron.

cable connected to both units. As long as the 8TT's power switch is in its OFF position, the deck will behave as if the 8TT were not connected to it. Also, because the interface between the deck and timer consists of a relay and optoelectronic coupler, there is no possibility that hum will be introduced into the deck by the $8 T$.

One word of warning: fluctuations in tape speed, caused either by worn componehts in the deck's transport or by a binding tape cartridge will make the indications given by the 8TT misleading (if not useless). For best results, make sure your tape deck is in good working order and that the carridges you use are in good condition.

Increase effective reception up to four times with a professional A/S monitor antenna, Our catalog lists 12 models, to answer any need.
It's free.

a member of The Allen Group Inc. 12435 Euclid Ave Cleveland, Ohio 44106
CIRCLE NO. 4 ON FREE INFORMATION CARD

\square Yes! Rush me your FREE Catalog so that I can explore Edmund's World of Science.

Nems

Addrues

Cly
State \qquad Zp
Clip and Mail Coupon Today to: Edmund Sclentific Co., AV14 Edscorp Bldg., Barrington, N.J. 08007

Build the Poor Man's

 ServantAn inexpensive project which activates or deactivates appliances atthe clap ofyour hands.

DID YOU know that with the expenditure of just a few dollars and about an hour's work, you can have a servant for your home that will turn electrical appliances on and off at just the clap of your hands? The "Poor Man's Servant" does just that-allowing you, among other things, to turn your television or radio on and off without moving from your chair or bed.

As shown in the schematic, the heart of the circuit is a small, preassembled, sound-activated switch module that can be purchased for as little as 88 cents from dealers who advertise in the Electronics Market Place section of this mag-
from as far away as 20 feet (6.1 m), even though a television or radio is playing in the same room.

There are three leads on the module. The red lead is connected to the positive side of the power supply. The black lead is grounded, and the remaining (green) lead is used to trigger IC1, a 74121 monostable multivibrator. Clapping your hands causes the module to trigger the one-shot, which in turn toggles flip-flop IC2. The $\overline{\mathrm{Q}}$ output of the flip-flop then goes high, providing gate current for relay driver Q1. This transistor turns on and energizes the coil of relay K 1 , whose contacts can be used to apply
ic. This diode protects relay driver O 1 from inductive spikes generated when the relay is keyed.

Construction. The Poor Man's Servant is a relatively simple circuit and can be duplicated using printed circuit, wrapped wire, or point-to-point wiring techniques. It requires +5 volts at approximately 100 mA . Any suitable power supply can be used, and both the project and the supply can be housed in a small enclosure.
Be sure to observe the polarities of electrolytic capacitors and diodes as well as the pin basing of IC's and tran-

Schematic diagram of the Poor Man's Servant. Module responds to sound and toggles fip-flop which keys relay K1 via driver transistor Q1.

PARTS LIST

$\mathrm{C} 1-10-\mu \mathrm{F}, 16$-volt electrolytic D1-IN4001 rectifier ICI-74121 monostable multivibrator IC2-7470 J-K flip-flop
KI-6-volt relay with dpdt, 5-A contacts Q1-2N2222 npn switching transistor RI- 39,000 -ohm, $1 / 4-$ W 10% resistor R2- 220 -ohm, $1 / 4-\mathrm{W} 10 \%$ resistor
Misc. - Vox module, 5 -volt regulated power supply, printed circuit or perforated board, IC sockets or Molex Soldercons, hookup wire, suitable enclosure, hardware, etc.
Note: The following are available from EDI, 4900 Elston Avenue, Chicago, IL 60630: Vox module, Part No, S-45, for $\$ 0.88 ; 6$ volt relay with 5 -ampere dpdt contacts, Part No. G-296, for $\$ 0.99$. Illinois residents, add sales tax.
azine. The module contains a small ceramic microphone element which provides gate drive for an SCR. It also has a sensitivity adjustment so that the user can set the sound level at which the SCR will begin to conduct.
To call the module a true VOX (voiceoperated switch) is somewhat misleading. It will respond to a voice, but only if the speaker is close by and talking directly at the module in a loud voice. However, it is much more sensitive to certain sounds. For example, the SCR can be triggered by a clap of the hands
line power to an appliance. Another clap of the hands causes the flip-flop to toggle again, forcing its $\overline{\mathrm{Q}}$ output low and depriving Q1 of base drive. The relay then deenergizes and removes power from the appliance.

The relay specified in the parts list has a 6 -volt coil and dpdt contacts rated at 5 amperes. However, a different relay with more sets of contacts can be substituted for it if more complex switching functions are required. No matter what relay is used, be sure to connect diode D1 across its coil as shown in the schemat-
sistors. Use the minimum amount of heat and solder consistent with the formation of good connections and, if desired, employ IC sockets or Molex Soldercons to simplify assembly.

Use. The Poor Man's Servant can be placed in a convenient spot and powered continuously. It will then be your faithful attendant, ready at all times to obey your command. Just clap your hands and it will perform the task assigned to it. Clap your hands again and it will instantaneously retire.

PERHAPS the most important sound characteristic a musical instrument produces is its amplitude envelope. A percussion or a stringed instrument, for example, has a sound with a steep attack and a slow decay time. A wind instrument, on the other hand, has longer attack and shorter decay times. While electronic music synthesizers generally permit the player to exercise full control over the attack, decay, and (usually) sustain of every note played, electric instruments (guitars, pianos, etc.) do not offer this flexibility. The Envelope Modification Unit, or EMU, described here can give the electric musical instrument much the same flexibility.

The EMU interfaces with most electrified instruments and can be used to modify the attack, sustain, and decay times to produce many interesting sound effects. It does not lengthen the intrinsic amplitude envelope, but it can shorten the envelope to produce the sound of a guitar being played while a hand damps the strings-without eliminating the harmonics, as would occur if a hand were actually used. It can also be used to alter the envelope to produce the "whooping" effect one hears when a magnetic tape is played backwards.

The electrical demands of the EMU are so low that a pair of 9 -volt batteries can be used to power it. Of course, if you prefer, you can use an appropriate lineoperated power supply. Also, if you wish, you can add a foot switch to permit you to bypass the EMU to obtain an unmodified sound envelope.

About the Circuit. As shown in Fig. 1. the audio signal from the musical instrument is applied to the EMU via J1. It is then coupled to the inverling inputs of IC1A and IC1B. The IC1A circuit is operated as a unity-gain inverting amplifier that buffers the input signal to drive transconductance amplifier IC2.

The output from $1 C 2$ is generated across R4 and buffered by $1 C 3 A$. From here, it is delivered to output jack J 2 . Buffering of both the input and the output of IC2 eliminates any possible loading and overloading problems usually encountered when using a transconductance amplifier.

The input signal is amplified by $I C 1 B$ and then rectified and filtered by D1, R7. and C1. The amplitude of the-hegativegoing signal generated across R7 is proportional to the amplitude of the input signal. This signal voltage is then used to toggle Schmitt trigger IC3B, whose reference at pin 2 is set to -0.8 volt by JULY 1979

Can be used to vary attack, sustain, and decay of any electronic instrument

BUILD AN ENVELOPE MOD

BY
JAMES J. BARBARELLO
divider network R8/R9. With no input, the output of the trigger is high and applies about +0.8 volt to noninverting input pin 3 of IC3B.
When the detected potential goes below the -0.8 -volt reference, the output of IC3B goes low. Resistors R7 and R1O set the quiescent input level of IC3B and provide some hysteresis. The negativegoing step voltage produced when the output potential goes low is differentiated and level shifted by C2, R11, and R12 to trigger conventional timer IC4, which is operated as a one-shol monostable multivibrator.
When the detected potential drops to zero, the output of $J C 3 B$ returns to high. The resulting positive pulse has no ef-
fect on 1C4. (This IC is not wired in the conventional manner. Instead, it is arranged to operate between -9 volts and ground, to provide signal compatibility for transconductance amplifier IC2.) When IC4 is triggered, its output at pin 3 rises from its negative voltage toward ground. This allows C3 to charge through D2 and R14. The rise time is determined by the values of C3 and R14. Capacitor C5 eliminates the turn-on spike that could be transmitted through the circuit and be heard as a "pop."

When the timing cycle of IC4 is completed, pin 3 returns to -9 volts and the potential across C3 decays through R15, D3, and pin 3 of IC4. The time constant here is determined by the values of

C3 and R15. The voltage across C3 provides the programming current for $I C 2$ via R13, whose value determines the maximum gain.

When the ground connection to R16 and $R 17$ is broken via $\sqrt{ } 3, \mathrm{C} 4$ cannot charge. This keeps IC4 on indefinitely and resuils in a constant gain through the system. When the ground is restored, normal operation resumes.

Construction. Although any method of construction can be used to assemble the EMU, a printed-circuit board is recommended. The actual-size etching and drilling and the components-placement guides for such a board are shown in Fig. 2. When completed, the pc assem-

Fig. I. Transconductance amplifier IC2 has its input and output buffered by IC1A and IC3A respectively. Gain of IC2 is varied by cireuit containing IC4, which is triggered by IC3B and IC1B.

PARTS LIST

B1, B2-9-voli battery
$\mathrm{Cl}-1-\mu \mathrm{F} .25$-volt electrolytic
$\mathrm{C} 2-0.001-\mu \mathrm{F}$ dise capacitor
C3, C4- $10-\mu \mathrm{F}, 25$ voll electrolytic
C5- $0.01-\mu \mathrm{F}$ dise cagacitor
DI.D2,D3- IN914 or similar switching diode [CI.IC3-5558 or MC I 458 dual op amp 1C2-CA 3080 transconductance amplifier IC. 555 timer
The following are $1 / 4$-watt, 10% tolerance:

RI,R2,R4,R5,R7,R9-10,000) ohtins
R3- 100 olams
86- 330.5×0 ohms
RR.RIO,RII.R12.R13-100.000 ahums
R10- 100 ohis3s
R17- 770 ohms
R14.R15.R16-500,000-ohm lineat-lager potemionmeter
51.J2—Phono jach
J.3-Closed-cireur jach

Misce-Subiable enclosure: battery holders (2): cenerol knobs (3); machine hardware: hookup wire; solder: etc.
Note: The following inems are availabie from BNB Kits, RD\#1. Box 241 H , Tennent Rd. Englishtown. NJ 07726: Complete kil of parts. not including case. No. EMU-E for \$21.50: printed.ecircuil board No. EMU.PC for $\$ 6.50$. Postage and handling included for U.S. and Canala only. New Jersey residents. please add 5% sales tax.

Fig. 2. The actualsize etching and drilling guide for a suitable pc board is shown at left below. Component placement guide is at top.
bly can be mounted inside any convenient case that can accommodate it, the batteries and their holders, and the jacks and controls.

Using the EMU. The proper attack, sustain, and decay settings for each different sound effect must be arrived at by experimenting with the EMU.

The sustain control sets the time from the onset of the attack to the onset of the decay. Accordingly, if the sustain time is set too short, it will override the ATTACK setting. For example, when setJULY 1979
ting a short stacatto envelope, the sustain may be shorter than the attack. This would result in no output from the EMU because IC4 will not be on long enough to allow C3 to charge. If this occurs, increase the sustain setting enough to obtain an output.

In another situation, if the controls are set for a shorl-duration envelope, a highlevel input may cause multiple triggering. If this occurs, decrease the input signal level until the multiple triggering just ceases.

If at any time distortion appears in the
output, decrease the level of the input signal until it disappears.

Jack J3 (see Fig. 1) is provided for plugging in an optional footswitch. When the footswitch is open, the EMU is effectively cancelled and the input signal passes through IC1A, IC2, and IC3A pass through without modification. (These three stages operate as a simple unity-gain amplifier in this case.) Closing the footswitch completes the circuit from R16 and ground to allow timer IC4 to operate, placing the sound-modifier circuits into the system.

Experimenter's Corner

Ey Forrest M. Mims

LED BARGRAPH DISPLAY CHIPS

THE HEART of many LED bargraph circuits is the quad comparator, a chip that contains four independent comparators. Connecting two or three such chips to a voltage divider comprising a string of series-connected resistors (Fig. 1) results in a straightiorward but complex bargraph readout.

Fig. 1 Typical voltage dividercomparator $L E D$ hargraph readout.

Fig. 2. LEDs comnected to current sink (A) and current source (B).

Recently, however, semiconductor manufacturers in the United States, England, and Japan have announced new ICs that combine on a single chip the voltage divider and comparators required for a multiple-level bargraph LED display. The new chips have many fascinating applications and are very easy to use. This month, we'll take a close look at three of these chips: Texas Instruments' TL490C/TL491C and National Semiconductor's LM3914.

TL490C/TL491C Bargraph ICs. With the exception of their outputs, these two 10 -step analog level detectors are functionally identical. Each contains a resistor voltage divider and ten comparators. They will light a 10 -element row of LEDs in adjustable increments of 50 to 200 millivolts per LED.
Both chips incorporate output transistors that allow direct drive of the LEDs. The TL490C has open-collector outputs capable of sinking as much as 40 mA at 32 volts max. The TL491C, on the other hand, has open-emitter outputs capable of sourcing a maximum of 25 mA at up to 55 volts. Figure 2 shows how LEDs are connected to both a current source and a current sink.
These new devices are very easy to use. Figure 3, for example, is a simple 10 -element readout. I assembled it on a solderless breadboard using a Texas Instruments data sheet as a guide. Potentiometer R1 provides a variable voltage to the circuit for demonstration purposes. Varying the setting of R1 lengthens or shortens the bar of glowing LEDs as the input voltage increases or decreases.

Note that the circuit requires a supply of 10 to 18 volts for proper operation. The chip can be powered by a 9 -volt bat-

Fig. 3. Busic 10-elenient bargraph readout using TL490C.

Fig. 4. How to cascade two TL490C chips. A voltage divider provides bias for caseade input of second chip.
tery; but, if that is done, the highest-order LED wilt fail to glow. A pair of 9 -volt batteries connected in series makes an excellent power supply for portable operation. Be sure to use alkaline batteries for best results.
Both the TL490C and TL491C incorporate a Threshold input that allows the sensitivity of the bargraph readout to be varied from 200 millivolts per LED to $50 \mathrm{mV} / \mathrm{LED}$. This is accomplished by connecting pin 6 to ground via a series resistor. TI provides an elaborate formula for calculating the input voltage required to activate the first LED: $0.84 / \mathrm{V}_{\mathrm{IN}}=1+(R 2$ $+700)(2240) /(700 R 2)$ where $V_{\text {IN }}$ is the threshold voltage and R2 is the resistance between pin 6 and ground.

If this formula seems a little cumbersome, connect a 1000ohm potentiometer between pin 6 and ground and adjust R1 so that the first LED just begins to glow. The input threshold voltage can then be measured by placing the probes of a multimeter between the wiper of R1 and ground. Of course, if you prefer to work with figures, you can algebraically manipulate and simplify the given equation, solving it for V_{IN}.

Considering the number of comparators within each IC package, the total current drain of one of these chips is moderate when no LEDs are on. However, with even a fairly highvalue current-limiting resistor connected in series with each LED, current consumption is substantial when all the LEDs are glowing. (Each output pin can sink up to 60 mA of current.) Here are representalive values I measured when a TL490C was connected as shown in Fig. 3.

Total Current Demand

$V_{C C}$	+10 V	+12 V
NoLEDs on	11 mA	11 mA
5LEDs on	54 mA	64 mA
10LEDs on	93 mA	114 mA

The basic circuit in Fig. 3 has many interesting applications. With R1 removed and a CdS photocell connected from the positive supply to the input of the IC (pin 4), the circuit
functions as a light meter. As the light level at the sensitive surface of the photocell is increased, more LEDs will glow. The photocell may respond to light from the LEDs so be sure to point its sensitive surface away from the rest of the circuit.
You can even measure resistance with the circuit by connecting a resistor between V_{CC} and pin 4. Moisten your index fingers and touch these two points if you want to see the LEDs respond to your body resistance.

For practical, "ballpark" resistance measurements, you'll need to calibrate the circuit with some resistors of known values. If my preliminary results are valid, the circuit will not necessarily respond in a linear fashion to resistance changes.

Connecting a capacitor between pin 4 and ground provides an interesting demonstration of the effects of capacitance. Assuming the capacitor is discharged initially. all the LEDs will glow when the capacitor is first connected to the circuit. They will then wink off in sequence as the capacitor charges. For best results, use a component with a large amount of capacitance (at least 1000 microfarads). Smaller capacitors charge too quickly to allow you to follow the flashing LEDs.

Both the TL490C and TL491C include a CASCADE input that permits the user to cascade up to ten chips to form a 100 -element bargraph. Figure 4 shows two TL490C chips connected in cascade. Note how a two-resistor voitage divider provides a 2 -volt bias for the CASCADE input of the second of two TL490Cs. The second chip subtracts this reference voltage from the input voltage at pin 4 to automatically arrive at the correct threshold.

LM3914 Dot/Bar Display Driver. This new National IC does everything the TI chips do and more! Like them, it has a self-contained voltage divider and ten comparators, the nucleus of a 10 -element bargraph readout. Of more importance, however, is its self-contained decoding network that converts the chip from a straightforward bargraph driver into a more sophisticated moving-dot driver. A single mODE CONTROL input (pin 9) allows easy selection of either mode.

The National Semiconductor data sheet doesn't explain how the LM3914 achieves moving-dot operation. The movingdot circuits l've described in previous columns required a fair amount of logic to convert a bargraph output into a moving-dot readoul. It would be interesting to discover which approach National has selected.

Why is the moving-dot mode so important? One application that comes immediately to mind is a simplified solid-state oscilloscope with a LED screen. More about this later. Another advantage of the moving-dot readout is that one of ten outputs can be selected by a variable voltage. Think of the possibilities! You can connect one or more outputs to relays, drive transistors, optoisolators, or SCRs. In this way, you can make motors, alarms, and many other devices responsive to such variables as changing temperature, humidity, wind speed, weight, pressure, light, or any other analog function that can be converted into a continuously variable voltage by a suitable low-cost transducer.
Figure 5 shows how to use the LM3914 as a basic bargraph driver. Compare this circuit with the TL490C version in Fig. 3. You'll note the circuits are very similar. One major difference, however, is the use of a fixed resistor (R1) to control the brightness of the LEDs. This single resistor effectively programs the current available to each LED, thereby eliminating the need for individual current-limiting resistors.
The operation of R1 as the LED-brightness control is dependent upon an internal reference voltage available at pin 7 .

Fig. 5. A 10-LED bargraph readout employing the new LM3914 IC from the National Semiconductor Corporation.

The current passing from pin 7 through R1 to ground is approximately one-tenth of the current passing through each iliuminated LED. Since the voltage reference output is typically 1.3 volts, the LEDs will receive 13 mA of current when the resistance of R1 is 1000 ohms. (Why? Ohm's law says that the current flowing through a resistor equals the voltage across it divided by its resistance. In this case, the current is $1.3 / 1000$ or 0.0013 A. The LED current is ten times greater or 13 mA .)

To use the LM3914 in the moving-dot mode, mode control pin 9 should be disconnected from the positive supply voltage and connected to pin 11. This modification is easily made to the circuit in Fig. 5.

The LM3914 can be cascaded to form a moving-dot readout having 200 or more elements by connecting pin 9 of the first chip in the series to pin 1 of the next higher chip. This connection pattern is continued for each chip except the last. Pins 9 and 11 of the last IC are tied together. The only other requirement is a 20,000 -ohm resistor in parallel with LED9 of each chip (between $+V_{C C}$ or $+V_{\text {LED }}$ and pin 11) except for the first one. For details, see the National data sheet.

Figure 6 shows an interesting circuit from the National data sheet that causes the bargraph readout to flash. This circuit can be programmed to flash when the input voltage reaches a specified level by connecting the junction of R1 and C1 to any of the ten LED outputs. (The LEDs flash when the input voli-
age is sufficient to activate the selected LED output.) This flashing mode is very noticeable and makes for an eye-catching warning indicator.

A Unique Moving-Dot Application. Several readers have found interesting applications for the moving-dot readout described in the Experimenter's Corner of October 1978. Perhaps the most intriguing was developed by Leonard J. Lynch of Dekalb, IL. He had previously constructed a wind-powered generator capable of charging up to 482 -volt storage cells. Unfortunately, the output of the wind charger is rarely constant. This means the number of cells being charged must be automatically altered to maintain a constant charge rate.

Leonard solved this problem by replacing the LEDs in the moving-dot indicator circuit with optoisolators connected to pass transistors that automatically switch additional banks of storage cells on line as the voltage from the wind charger increases. When the highest voltage level is exceeded, an overrange circuit composed of an optoisolator and a relay changes the pitch of the generator's propeller.

The LM3914 can be used in Leonard's circuit with few modifications and a lot less soldering. It can also be used in an ultra-simple solid-state oscilloscope that, less the 9 -volt battery required for power, fits in an emply match box! I'll describe this pocket scope and another, larger LED scope in a forthcoming Project of the Month.

Hobby Scene / <áy

 By John McVeigh Technical Editar
IMPROVING FM RECEPTION

Q. I'm trying to receive a distant (80 air miles) FM station transmitting on approximately 100 MHz , but am troubled by "splash over" from a local station transmitting on approximately 102 MHz . How can I reduce the local station's signal into my tuner so that I can listen to the distant station undisturbed? -Larrie Christianson, Wausau, WI.
A. If signals from the two transmitters are arriving at your home from two different directions, you can try installing a highly directional antenna aimed to favor the distant station at the expense of the local one. Of course, a rotator can be installed to aim the antenna for best reception of the station to which you are listening at the moment. If for one reason or another an outdoor antenna is not feasible (or the transmitters lie in the same direction), you could install a tuneable trap at the tuner's antenna input.

Jerrold Electronics manufactures two such traps. The Model RFT-300 is a relatively simple and inexpensive trap designed for use with 300 -ohm lines. It will provide, according to the manufacturer. 18 dB of attenuation over a tuneable notch 0.25 MHz wide. The Model TFM-2, with input and output impedances of 75 ohms, is a more sophisticated trap comprising two tuneable LC circuits in a modified bridged-T configuration. When both circuits are tuned to the same frequency, the manufacturer claims that signal rejection will be 40 dB minimum, with an insertion loss 1.5 MHz above or below the notch frequency of only 3 dB . The Model TFM-2 trap can be used with 300-ohm systems if balun/ matching transformers are used at its input and output.

[^1]
CRYSTAL SET COMPONENTS

Q. I am having a very hard time trying to locate a germanium crystal detector as used in early broadcast receivers. Please tell me where I can obtain one and, if possible, the "catwhisker" assembly associated with it. -Bill Jackson, Wrights ville, GA.
A. The early broadcast receivers did not employ germanium detectors. Rather. various mineral and man-made crystals were used, including galena, silicon, perikon (copper pyrites and zincite), molybdenite and Carborundum. Galena, which is actually lead sulphide (PbS), is the principal ore of lead. It was the most popular detector because it was the most sensitive. Steel galena resembles a piece of broken steel rod, contains a small amount of silver, and is not as sensitive. Il became popular, however, because it is somewhat easier to adjust, The crystals used as delectors were mounted in clips, in tin-foil cups, floated in mercury or more commonly mounted in a small "pill" of an alloy with a low melting temperature. (Some experimenters who tried to mold their own holders used a mixture of lead with too high a melting point, only to discover that the heat had destroyed the galena's sensitivily.)

The "catwhisker" is a length of fine, stiff wire which is used to probe the crystal until an "active" spot is found. (This metai-to-semiconductor interface is similar to today's point-contact diodes.) Different crystals require different catwhiskers. Galena calls for a clean, stiff wire (plated copper, brass or platinum, preferred in that order) with very little pressure. For steel galena, a Germansilver catwhisker is best. Tungsten catwhiskers are preferred for use with silicon crystals, but molybdenum is sometimes used. Chromium or steel are recommended for Carborundum detectors (which also require a bias battery), and many different metals have been used successfully with molybdenile.

Those who want more information on diode detectors (including more recent
designs) should refer to Hank Olson's very interesting article in the January 1976 issue of ham radio magazine. Readers who want to procure crystal set components should send $25 ¢$ for a cata\log to Modern Radio Laboratories, Box 1477, Garden Grove, CA 92642. The catalog includes a variety of crystal set kits, mounted galena crystals, crystal stands and catwhisker assemblies, as well as hard-to-find Carborundum detectors and coil sliders.

If you want to use contemporary components to build a crystal set, a readily available 1N34A or similar germanium diode makes an effective detector. Don't use a silicon diode!

MOBILE CB NOISE

Q. 1 recently purchased a Royce 40channel CB transceiver for my truck and was very happy with it. About one month after installation, however, I started to get high-frequency noise through it. The noise gets louder as the truck goes faster. The volume control has no effect on the noise, but the squelch does. How can I eliminate the interference? -Oliver Vallee, Belmont, CA.
A. If the noise you are hearing is a highpitched whistle or whine, the source of the interference is the alternator. The fact that the volume control has no effect on the noise implies that it is reaching the audio stages after the control. This is consistent with the alternator being the source of the noise if it is travelling along the positive supply lead into the transceiver and hence to the base of an audio transistor.

Clean the slip rings of the alternator and make sure the brushes are making good contact. If not, replace them. (Brush or slip-ring deterioration occurring after you installed the rig would explain why the noise appeared a month later.) Install a $0.5-\mu \mathrm{F}$ coaxial capacitor or an LC noise suppressor at the outPUT terminal of the alternator. (Both are available from most electronics and automotive supply stores.) Be sure the capacitor or noise suppressor can handle the maximum oulput current of the alternator. Do not install a capacitor at the alternator field terminal. Finally, make sure that the engine block, chassis, and negative battery terminal are connected together with grounding straps or clean metal-to-metal bonds. (Make sure the battery's positive terminal is making good contact to its cable. too.)

目 ${ }^{2}$ Product Test Reports

Nakamichi Model T－100

Audio Analyzer

Compact and portable，

 the T－ 100 combines measurement functions of many hi－fi test instrumentsTHE NAKAMICHI Model T－100 Audio Analyzer is a compact portable au－ dio test instrument whose functions in－ clude those of a number of separate pieces of test equipment．Among these are an ac voltmeter，an A－weighted mi－ crovoltmeter，audio oscillator，harmonic distortion analyzer，frequency meter， wow／flutter meter，and peak voltmeter， Although it does not provide all the po－ tential capabilities of these instruments， it can replace them in the specific limited areas of testing normally required for the adjustment and performance verification of tape recorders，record players，and audio amplifiers．
The Model T－100 is being offered to advanced audiophiles and tape－record－ ing enthusiasts who wish to be able to measure the performance of their sys－ tems and components．However，its greatest appeal is likely to be to servic－ ing organizations，because of its versa－ tility and portability，and to dealers who wish to be able to demonstrate the per－ formance of their hi－fi equipment．

The analyzer measures $131 / 2^{\prime \prime} \mathrm{W} \times$ $91 / 2^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(34.3 \times 24 \times 7.5 \mathrm{~cm})$ ； weighs $9.5 \mathrm{lb}(4.3 \mathrm{~kg})$ ．It is ac－line pow－ ered and comes in a portable carrying case to which is attached a shoulder strap．Suggested retail price is $\$ 800$ ．

General Description．Half of the in－ strument＇s front panel is devoted to its display，a solid－state equivalent of the analog meters generally found on test instruments．It consists of a two－channel horizontal bar graph，with each bar made up of a large number of tiny in－
dividual plasma cells（neon lamps）．As individual cells become ionized，a hori－ zontal orange bar is formed，the length of which is proportional to the magnitude of the parameter being measured．

For audio level measurements，the two bars indicate the left and right chan－ nel signals against a common scale lo－ cated between them，calibrated over a $30-\mathrm{dB}$ range．The analyzer contains a logarithmic converter that is used in most of its modes and allows accurate measurements to be made over a very wide range of amplitudes without chang－ ing ranges．Many other measurements require only a single scale，with the channel selection made with a front－ panel－control，so that the upper bar graph is also labelled for SPEED（ $\pm 3 \%$ range）and the lower scale is labelled for THD and WOW／FLUTTER（ 0.1% to 3% ）．A separate snap－in scale，also fumished， has each channel calibrated directly in volts from 0 to 30 ，with a wattage scale between them that indicates from 0.1 to 100 watts at 8 ohms．

At the far right of the front panel is a switch for selecting any of 21 discrete audio OSCILLATOR frequencies in the 20 － to $20,000-\mathrm{Hz}$ range，as well as a pink－ noise output．A knurled control shaft be－ low the OSCILLATOR selector switch is provided for adjusting the output level of the oscillator signal over a range from 0 to a maximum of 1.2 volts．

To the left of the oscillator switch are two lever switches for adjusting the sensitivity of the metering and measur－ ing circuits．The input Level switch has positions for 0．1，1，and 10 volts，which

Put Professional Knowledge and a COLLEGE DEGREE
in your Electronics Career through way up-scale on the bar displays, not to full-scale indications. The input level switch has $+20-, 0-$, and $-20-\mathrm{dB}$ ranges, and the meter range switch has 1% and 0.1% positions. Two small controls labelled input Level L and r, with CAL at their clockwise limits function only in the PEAK meter mode, where they are used to adjust the input sensitivity of the instrument.
The function switch in the center of the panel places the instrument into each of its specialized functions. Logic circuitry and dc-controlled FET switches allow a single switch of reasonable complexity to perform a great many functions that are often unrelated without risk of stray coupling and unreliable switch contacts.

At the counterclockwise end of the FUNCTION switch are three positions for speed and flutter measurements. The SPEED CAL position is used with a small similarly labelled knob below it to tune the flutter meter circuits to 3000 Hz , as shown on the sPEED (upper) scale as a center-0 indication. Then, if one plays a standard flutter test tape into the Model T-100, the upper bar display indicates the frequency error between its output and the $3000-\mathrm{Hz}$ calibration frequency. This is the tape speed error (over a $\pm 3 \%$ range in 0.1% steps). Simultaneously, the lower wow/flutter bar display indicates the DIN peak flutter, either weighted or unweighted, according to the switch position. The flutter display's range is from 0.1% to 3% when the METER RANGE switch is set to 1% and from 0.01% to 0.3% when it is set to 0.1%. In the flutter modes, the output terminals from the analyzer carry a precise $3000-\mathrm{Hz}$ frequency signal that can be recorded on tape for a combined record/ playback flutter measurement if a standard flutter tape is not available.

The next two function switch positions are for measuring total harmonic distortion at a $400-\mathrm{Hz}$ frequency. In this mode, the oscillator supplies a low-distortion $400-\mathrm{Hz}$ signal, regardless of the setting of the oscillator switch. The distortion measurement is made by nulling out the $400-\mathrm{Hz}$ fundamental in the signal entering the instrument from the tape recorder or other equipment and reading the residual signal (from 800 to $10,000 \mathrm{~Hz}$). Nulling is automatic, as is the setting of the full level signal reference for the measurement. As long as the upper bar display indicates between -10 and +10 dB , the lower bar indicates directly and continuously in THD, Bulletin E-79.

Grantham College of Engineering

 P. O. Box 35499Los Angeles, California 90035
Worldwide Career Training thru Home Study
CIRCLE NO. 25 ON FREE INFORMATION CARD

Build The World's Most

 Powerful 8-Bit Computer Featuring The Famous Intel 8085! Explorer/85 ${ }^{\text {™ }}$Starting for just $\$ 129.95$ you can now build yourself a sophisticated, state-of-the-art computer that can be expanded to a level suitable for industrial, business and commercial use. You learn as you go. . . in small, easy-to-understand, inexpensive levels!

- Features Intel $8085 \mathrm{cpu} 100 \%$ compatible with 8080A softwarel
- Onboard S. 100 bus (up to 6 slots)!
- Onboard RAM and ROM expansionI
- Bullt-In deluxe 2 K Monltor/Operating ROMI
- Cassette/RS 232 or $20 \mathrm{ma} / 4-1 / 2$ 8-blt parallel

UO and timerall on beginner's Level " A " system!
EXPLORER/B5 gives you "big computer' teatures immedrately, wilhoul turning you into an appliance operator, doomed to run pre-developed soltware lor life. Simply COnnecl EXPLORER 10 a terminal, video monitor or lv sel and 8 voll power supply and
slant running programs, the very first night" Level "A" leaches you machne language and computer lundamentals II lets pou fun exercise programs including programs to examine the cpa registers, examine memory. Illil mennory, move memory and make up games you can load and play back these programs on an ordinary tape cassette-and display your efloris on any lv screan, videe monitor or orinter (\$8.95
$\& F$ modulator required lor ty use) The simplited archtiecture of the Intei 8085 makes EXPLORER tat easiet io understano man computers using the older, mare complex but less powerlul BOBOA Then, when you re ready. EXPLORER can be axpanded-by you-to rival the power of any 8 -bil computer on earth. Or you can customize it 1 periorm a dedicated lask, thanks to onboard

LEVEL "A" SPECIFICATIONS LEVEL "A" SPECIFICATIONS EXPLORER's Leval "A" system teatures an advanced Intel
8085 cpu . which is 50% laster than cessor. yet 100% compatister than its 8080 A predewhich, yeu'll discover exists by whe 8080A soltware. which, you'll discover, exisists by the lon. "Big compuler":
feafures inctude an 835 ROM with $2 k$ deluxe montor feafures include an 835s ROM with 2 K deluxe montor/ operating system which has two programmable 8 -bil
bi-directional parallel $1 / 0$ ports, buill in cassette interiace bi-directional parallel $1 / 0$ ports, buill-in cassette interiace
with lape control circuitry to aliow labeling cassette files. and commands which include "disolay cassette lifes. memory." "run at user tocation (go tos)." "insert data." memory." "run at user tocation (go to\}," "insert data,"
"move contents of memoxy." "eramine repisters indivaluaity or all,"' bill command fot fill the contents of memory uaity or all," 'ill command (to fill ehe contents of memory
with any varizble), automatic baud rate selection, pregram. mable charactiers, per line display ratpult lor mat, and more! An 8155 RAM - $1 / 0$ chip contains 256 byles of RAM. Two programurable 8 -bit b-direclional and one programmable
$6-\mathrm{bf}$ bi-directional $1 / 0$ ports plus programmable $14-\mathrm{bi}$ binary counter/timer, user interrupt and reset switches. Onbord expansion provisions exist for up to six S-100
boords, 4 K of RAM and 8 K of ROM. PROM or EPROM.

No kidding. Speakerlab's catalog took longer to write than some of our competitors have been in business. In fact, we created an industry by "building great kits so you can afford great speakers." Our catalog is an invaluable manual of speaker function and design. And. it will introduce you to the finest speaker kits made anywhere...with the strongest money-back guarantee. Find out for Yourself...FREE. FREE, that is. Mail the coupon now.

CIRCLENO. 49 ON FREEINFORMATION CARD

Product Focus

The Nakamichi Model T-100 Audio Analyzer is replete with circuit features that make it difficult to single out any specific area in which it differs from similar products. (The fact that there are no similar products is a further complication!) However, we feel that the logarithmic voltage converter which gives this tiny instrument so much of its versatility is worthy of special mention.

In any of the analyzer's operating modes, except SPEED, the final readout on the bar displays is logarithmic, covering a $30-\mathrm{dB}$ range with uniform scale intervals. The signal to be displayed is available as a voltage with dc and infrasonic ac components and an amplitude that is linearly proportional to the function being measured. To compress these widely different signa! amplitudes into a $30-\mathrm{dB}$ logarithmic scale, they are fed to one input of a voltage comparator. The other input receives a signal whose amplitude varies exponentially with time.

The exponential signal is derived from a square-wave reference oscillator, whose output charges a capacitor through a resistance. The voltage appearing across the capacitor increases exponentially with time. When it is less in amplitude than the signal voltage going into the comparator, the output of the comparator is a logic 1 . When the reference voltage exceeds the signal voltage, the comparetor switches to a logic 0 . Thus, the comparator's output is a train of pulses at a frequency determined by the clock oscillator, whose duty cycle (the width of the logic 1 state) is proportional to the logarithm of the input signal voltage. The puise train is integrated, and the resulling voltage, atter additional processing, controls the length of the bar graph indication.
over the same scale ranges used in the flutter measurement, from 0.01% to 3% in two ranges. The two switch positions are for measuring the left and right channels separately.

The next two function switch positions are for LEVEL measurements. They are used with the oscillator switch. The osc output and recorder's level controls are adjusted to give a $0-\mathrm{dB}$ or other reference level indication on the recorder's meter. The oscillator's signal armplitude is constant over its full frequency range. When the FUNCTION switch is set to LEVEL -20 dB , the oscillator's output drops by exactly 20 dB , which is the usual test condition for re-
cord/playback frequency response.
In the level mode, the displays have a standard VU-meter ballistic response. In the PEAK LEVEL mode, the display can respond to transients as short as 10 ms with full accuracy and have a 2 -second decay time to make transients more visible. The noISE-A $(-40-\mathrm{dB})$ switch setting is used for measuring the output noise from a tape deck or amplifier. The meter sensitivity is automatically increased by 40 dB in this mode and a standard A-weighting network is insert-
ed in the metering circuit. At full sensitivity settings of the INPUT LEVEL switches, noise levels as low as $10 \mu \mathrm{~V}(-100 \mathrm{~dB}$, referred to 1 volt) can be measured.

The ac receptacle for the plug-in line cord and a POWER switch are recessed into the right side of the instrument. In a similar recess on the left side are the two INPUT and two OUTPUT jacks (the latter in parallel, since all signal outputs from the analyzer go in common to both channels on the item being tested). Another pair of jacks, labelled SCOPE, carries the

Performance Specifications

General

Input impedance: 50,000 ohms
Scope out: low impedance

Oscillator

Spot frequencies: $20,40,63,100,160,250,400,630,1 \mathrm{k}, 1.5 \mathrm{k}, 2 \mathrm{k}, 3 \mathrm{k}, 4 \mathrm{k}, 5 \mathrm{k}$, $6.3 \mathrm{k}, 8 \mathrm{k}, 10 \mathrm{k}, 12 \mathrm{k}, 15 \mathrm{k}, 18 \mathrm{k}, 20 \mathrm{k} \mathrm{Hz}$.
Output voltage: 1.2 volts maximum (variable)
Level deviation: $\pm 0.2 \mathrm{~dB}(20$ to $20,000 \mathrm{~Hz})$
Output distortion: Less than $0.3 \%(20$ to $20,000 \mathrm{~Hz}$)

$$
\text { Less than } 0.01 \% @ 400 \mathrm{~Hz} \text { (THD measurement) }
$$

Frequency accuracy: $\pm 2 \%$
Output impedance: 600 ohms

Level Measurement

Range: -BO to +30 dB ($0 \mathrm{~dB}=1$ volt)
Frequency response: 20 to $20,000 \mathrm{~Hz} \pm 0.3 \mathrm{~dB}$
Ballistics: Average (rms): 0.3 s (VU)
Peak: 10 ms rise time, 2 s fall time (DIN PEAK)

Wow \& Flutter

Center frequency: 3000 Hz
Input level range: 3 mV to 30 V
Indication: DIN peak (weighted and unweighted)
Frequency range: 0.2 to 200 Hz .
Tape speed range: $\pm 3 \%$

Distortion Meter

Measurement frequency: 400 Hz
Input voltage range: 100 mV to 30 V
Distortion range: 0.01% to $0.3 \% ; 0.1 \%$ to 3%.
Automatic input control range: $20 \mathrm{~dB}(-10$ to $+10 \mathrm{~dB})$
Frequency characteristics: 800 to $10,000 \mathrm{~Hz}(-0.3 \mathrm{~dB})$
Residual noise: -90 dB (input range 0 dB)

$$
-85 \mathrm{~dB} \text { (input range }-20 \mathrm{~dB} \text {) }
$$

Fundamental frequency rejection: $400 \mathrm{~Hz} \pm 3 \%:-100 \mathrm{~dB}(0.001 \%)$
$400 \mathrm{~Hz} \pm 5 \%:-70 \mathrm{~dB}(0.03 \%)$

Noise Level

Frequency characteristics: IHF-A curve
Range: 100 to -10 dB ($0 \mathrm{~dB}=1$ volt)
Indication: Average value
Power requirements: $100,120,220,240$ volts, 50 to 60 Hz
Power consumption: 15 VA
Note: All specifications were met or exceeded except for meter ballistics (average), where there was a 40% low reading on 0.3 -second bursts.

Chart shows use of the T - 100 in making record/playback response tests of a Dual tape deck. Continuous line was made with General Radio plotter.
processed signal before it is passed through the display's logarithmic converter for viewing on an oscilloscope.

The analyzer's circuitry is contained on seven small plug-in circuit modules. Two folding feet under the instrument tilt it upward for easier viewing. (The display is best viewed head-on.)

The Model T-100 is supplied with a comprehensive operating manual and a technical supplement that describes some of its novel features. There is also a page of charts that show the relationships between the control settings and the analyzer's display, as well as a block diagram permanently affixed to the top of the instrument itself.

Laboratory Measurements. For almost all tape-deck measurements, the Model T-100 is simply patched to the deck's input and output jacks with the supplied cables. Our first measurement was the record/playback response at a $-20-\mathrm{dB}$ level. Our test data (circled points on the graph) is shown superimposed on the swept response curve measured with our General Radio response plotter. At only two points was there a measurable difference between the two sets of data. At 20 Hz , the initial transient of the chart recorder's pen response to the beginning of the swept signal caused it to read slightly low. The fixed reading from the analyzer was correct. At $12,000 \mathrm{~Hz}$, we noted that the analyzer gave about a $0.5-\mathrm{dB}$ lower reading than the swept measure-ment-a negligible error. It is apparent, though, that the discrete frequency measurement cannot show the precise shape of the curve as it "breaks" beyond $14,000 \mathrm{~Hz}$.

We measured the record/playback THD at 400 Hz with the Model T-100 and our Hewlett-Packard Model 3580A spectrum analyzer (on which we measured only the third-harmonic component). In general, the two distortion readings agreed within about 10%.

The S / N, referred to the level that gave 3% playback distortion, was 62 dB with the Model T-100 and improved to 68 dB with the recorder's Dolby circuit switched in. We measured 61.5 and 65 dB through our external A-weighted filter and meter, respectively. In this case, we suspect that the Model T-100's reading was more accurate, because of the reduced likelihood of stray hum and noise pickup in the interconnecting wiring.

Speed and flutter were measured with a TOK test tape on playback only, using our Meguro flutter meter as a check on the Model T-100. Both instruments gave identical speed readings of $+0.25 \%$, as well as identical weighted peak flutter readings of 0.05%. The Model T-100's unweighted peak test condition, which gave a 0.15% reading, is not duplicated on the Meguro meter, and the latter's JIS (wrms) mode, which gave a very low 0.03% reading, is not provided on the Model T-100.

The ballistics of the bar displays are supposed to correspond to VU-meter standards, which require a reading of 99% to 100% of the steady-state reading when driven by $1000-\mathrm{Hz}$ tone bursts of 0.3 -second duration at a $1-\mathrm{Hz}$ repetition rate. The Model T-100's response was considerably slow, giving 40% low readings (-4.5 dB). in the PEAK LEVEL mode, however, the display was identical on steady-state and burst signals.

As a voltmeter, the Model T- 100 was
as accurate as it couid be interpreted. The number of lighted segments in each bar gives a resolution of about 0.3 dB . It was accurate within these limits from 5 to $60,000 \mathrm{~Hz}$. The response dropped to -3 dB at 115 kHz and to -10 dB at 200 $\mathbf{k H z}$. The distortion of the built-in oscillator was 0.13% at $20 \mathrm{~Hz}, 0.018 \%$ at 1000 Hz , and 0.16% at $20,000 \mathrm{~Hz}$. When the oscillator is automatically set to 400 Hz for THD measurements, its distortion was less than 0.01%. We examined the PINK NOISE output on our spectrum analyzer and determined that it had the required $-3-d B / o c t a v e ~ s l o p e ~ w i t h ~ i n-~$ creasing frequency.

User Comment. The Model T-100 does its primary task, the testing of tape recorders, with an ease and accuracy that seem almost deceptive. It is also useful, though somewhat less convenient, for many other high-fidelity systern and component tests, such as phonocartridge frequency-response measurements, turntable flutter and rumble measurements, amplifier S / N measurements, and frequency response measurements on amplifiers, filters, microphones, etc. Although its inherent performance limitations are well beyond those of most ordinary components, it is ironic that it cannot make definitive measurements on Nakamichi's own amplifiers or others with "state-of-the-art" noise and distortion levels.

One thing we learned about the Model $\mathrm{T}-100$ is that it takes a considerable period of time to become a familiar tool to the user. We doubt that it could be used successfully without careful study of the manual. Much of the manual's "cookbook" approach to measurements presupposes little or no knowledge of the instrument or even of basic measuring processes. However, it entirely omits certain fundamental steps, such as establishing a reference level before making a noise measurement.

There will undoubtedly be some audiophiles who will invest in the Model $\mathrm{T}-100$ as an adjunct to their high-fidelity systems, since connecting it across the speaker outputs of their systems makes the analyzer an excellent peak-power indicator. It's limited, however, to 100 watts. Again, the major markets for this instrument will almost certainly be the hifi equipment service shop, where it can save a lot of time and pay for itself quickly, and the showroom, where it can be used to demonstrate to the prospective buyer the capabilities of the equipment that interests him.

CIRCLE NO. 104 ON FREE INFORMATION CARD
(More Test Reports Overleaf)

Lafayette BCR-101
 AM/CW/SSB Receiver

A very satisfactory receiver for the SWL... and adequate for the novice ham.

THE Lafayette Model BCR-101 is a moderately priced, general-coverage $A M / C W / S S B$ communication receiver. It has a tuning range from 170 to 400 kHz and from 530 kHz to 30 MHz in six bands. On the three lower bands, up to 4.0 MHz , it employs single conversion in a superheterodyne circuit, with a 455$\mathrm{kHz} \mathrm{i}-\mathrm{f}$. On the three higher bands, from 3.5 to 30 MHz , dual conversion is used, with a tunable first i-f from 1650 to 2150 kHz . The tunable second-conversion oscillator, operated by the bandspread dial, covers 1195 to 1695 kHz and converts the incoming signals to 455 kHz .
A switch-defeatable variable-threshold noise blanker is built-in. There is also a fronl-end tracking control for peaking the tuning of the r-f stage. Another worthwhile feature is an input socket for operating the receiver from a 13.8 -volt dc source (such as a vehicle or boat electrical system).
The receiver measures $12^{\prime \prime} \mathrm{W} \times 91^{\prime \prime} \mathrm{D}$ $\times 7^{\prime \prime} \mathrm{H}(30.1 \times 24.1 \times 17.8 \mathrm{~cm})$ and weighs $13.5 \mathrm{lb}(6.1 \mathrm{~kg})$. Price is $\$ 249.95$.

General Description. The drumtype main tuning dial of the receiver has separate scales for each band and for logging. Concentric with the tuning knob is a bandspread tuning knob and dial, the latter calibrated from 0 to 500 kHz in $5-\mathrm{kHz}$ intervals. Front-panel jacks permit the receiver's audio to be routed to an external tape recorder and 10 headphones. (When phones are plugged in. the receiver's built-in $5^{n} \times 1^{\prime \prime}$ speaker is defeated.)

On the rear apron are phono jacks for connecting an external audio signal and for taking an output from the receiver's first oscillator to drive an external fre-
quency counter. Although the oscillator output is meant as an aid to alignment, it can also be used to obtain a highly accurate frequency display from the receiver. Also on the rear apron are antenna and ground terminals for a 50 -to- 75 -ohm antenna and a hinged ferrite-rod antenna for reception on AM.

The receiver's tuned r - f amplifier and firs! mixer employ dual-gate MOSFETs. The first oscillator is isolated by an amplifier and emitter-follower from the output jacks; hence, a cable connecting to a frequency counter will not affect tuning.

From the first mixer, the signal is directed by diode switches to one of two i-f selectivity sections. On the three lower bands, the signal goes directly to a 455kHz if transformer. On the higher bands, it first passes through a tunable $2.15-\mathrm{MHz}$ i-f section, whose two tuned circuits track with the second local oscillator. The signals from the first i-f and second oscillator are combined in a second mixer, whose $455-\mathrm{kHz}$ output (or the output of the single $455-\mathrm{kHz}$ transformer on the low bands) is routed through diode switches to the noise blanker and from there to the two 455kHz i -f selectivity sections.

There are separate wIDE and NARROw bandwidth selectivity modes. The wIDE mode employs three tuned circuits and the NARAOW mode has two and a ceramic filter. The $455-\mathrm{kHz}$ output of the selected circuit is routed through two amplification stages to either of two detectors, the latter determined by the MODE switch. A simple half-wave diode delector is used for AM reception. For CW and SSB, it is replaced by a twodiode product detector in which the signal is heterodyned with the $455-\mathrm{kHz}$ sig-
nal from the bfo. The bfo is tunable over a range of a few kilohertz.

A single rectifier, operated from the fi nal i-f stage, is used to drive the S meter through a two-stage amplifier. Its output is also combined with an adjustable dc voltage from the $r-\frac{f}{f}$ gain control to supply age to one gate of the r-f stage and to the first stage of second i-f amplification.

The audio signal from the detectors goes to an i-f amplifier that supplies a nominal 2 watts to the built-in 8 -ohm speaker. The marker oscillator contains a $500-\mathrm{kHz}$ crystal and an IC divider that generates harmonics at 500- and 50kHz intervals. When the markers are used to set the main funing dial to a multiple of 500 kHz , the bandspread dial must be set to zero.

Laboratory Measurements. Calibration of the main tuning dial was reasonably accurate. Errors were as great as 50 or 100 kHz at the highest irequencies, but were proportionately less on the lower bands.

When using $50-\mathrm{kHz}$ markers, a large number of spurious signals was discovered that made it difficult to identify and count markers as we tuned. Fortunately, the $500-\mathrm{kHz}$ marker could be used to set the main tuning dial close enough to the nearest $500-\mathrm{kHz}$ calibration point so that the bandspread dial could be used for closer readout of the frequency. We found the calibration good enough, however, to set the receiver within 10 kHz of any desired frequency and, if care was exercised, to within 5 kHz .

Sensitivity for a $10-\mathrm{dB}(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ ralio with an AM signal modulated 30% at 1000 Hz was typically about $2 \mu \mathrm{~V}$ at frequencies above 1.4 MHz but somewhat poorer at lower frequencies. CW sensitivily for a $10-\mathrm{dB}(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ was 0.7 to $1.3 \mu \mathrm{~V}$ on the various bands. Image rejection was 63 to 85 dB , depending on the frequency. (We measured sensitivity at the center of each band.)

Wide- and narrow-bandwidth modes were not too different from each other, judging from the audio-frequency response measured at the receiver's output. We varied the modulation frequency applied to the signal generator in the AM mode and plotted the receiver's audio output in both selectivity modes. Response was down 6 dB at 30 Hz in both cases at the low end and down 6 dB at 2000 and 1700 Hz at the high end in the wide and narrow modes, respectively. Audio output at the clipping point measured about 1.5 watts into 8 ohms.

With no antenna connected to the re-

Image rejection	Band A: 70 dB B: 65 dB C: 60 dB D: 65 dB E: 60 dB F: 50 dB	72 dB NA 63.5 dB 66.5 dB 83 dB 85.5 dB
Intermediate frequencies	First: 2.15 MHz Second: 455 kHz	
Audio output (8 ohms)	2 watts	1.5 watts at clipping
Power requirements	$110 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ ac at 10 watts max. or 13.8 V dc , less than 500 mA	

ceiver, we searched for "birdies" and spurious responses. One strong S 9 birdie appeared at 5.1 MHz . Much weaker responses were observed at $6.8,8.5$, $10.2,11.9$, and 13.6 MHz . None of the birdies was strong enough to interfere with normal reception.

User Comment. Past experience with modestly priced communication receivers has taught us that they rarely perform and "feel" like high-priced equipment. Nevertheless, if they perform properly in the essential areas of stability and tuning ease, they can be perlectly satisfactory for the SWL and novice Amateur. (The latter has a more critical JULY 1979
requirement, since a receiver that prevents a new ham from carrying on effective QSQs can discourage him from pursuing his hobby.)

Judged solely on its own merits, the BCR-101 is a very satisfactory receiver for the SWL and is at least adequate for the novice ham. Tuning is a bit "rubbery," with enough backlash to be annoying on SSB, but it is tolerable for CW, and AM listeners will hardly notice it. Accuracy of the tuning dial's calibration was a pleasant surprise. Once it had been zeroed to the nearest multiple of 500 kHz , we found that WWV and CHU appeared "on the nose." Spot checks of intermediate points in the ham bands re-
vealed that the bandspread's dial calibrations were truly meaningful.

On the $1.4-$ to $-4.0-\mathrm{MHz}$ band, our test receiver oscillated at maximum gain, but was stable at reduced settings of the control. There was no sign of instability on the other bands. The noise blanker had no discernible effect on impulse noise. When receiving strong AM broadcast stations, we had to reduce the setting of the r-f gain control to eliminate unpleasant audio distortion. The agc system's time constant was fairly fast. There is no way to disable the agc, but if "pumping" becomes annoying, one need only turn down the r-f gain control.

In spite of some shortcomings, the BCR-101 left us with a distinctly favorable impression of its performance. As stated earlier, a low-cost receiver simply cannot be judged by the rigid standards applicable to an expensive receiver. In its own right, the BCR-101 is quite impressive. With care, it can serve as a most satisfactory receiver for the novice ham or SWL and can even be useful as a standby general-coverage receiver for the experienced ham.

CIRCLE NO. 105 ONFREE INFORMATION CARD

The Freedom Phone is a compact unit only $6^{\prime \prime} \times 21^{\prime} 2^{\prime \prime} \times 1^{\prime \prime}$, with a Rubber Duckie Antenna only $4^{\prime \prime}$, and it can be clipped to your belt.

- - - - - - Send Coupon To: - - - - - LION INDUSTRIAL
709 WEST BROADWAY, WOODMERE. N.Y. 11598 Or Call Person To Person Collect Herb Johnson \$ales Mgr. $516.538-0900$ 1 Freedom Phone Ith., for Tousch-tone System... $\$ 399.95$ \square Freedom Phone IV, for Rotary-dial System... 5.399 .95] Rubber Duckie Ant. $\$ 14.95$
| Please send me the Freedom Phone. If not satisfied. I can return same within ten days for a prompt refund. () Check or M.O. enclosed.
N.Y. Residents add sales tax.

I Please Charge My Credit Card Account Numbers Belou | ()American Express () Bank Americard (Visa) i () Carte Blanche () Diners Club () Mastercharge Credit Card No. ... MasterCharge Bank No...........Exp. Date............. $\mathrm{Namic}^{\mathrm{N}}$. Address City.... Signature
CIRCLENO. 32 ONFREE INFORMATIONCARD

Graphic Games. A number of low-cost software games are now available for the TRS-80, POLY, and PET computers. Among them are WWII Bomber, Lunar Lander 5 and Biorhythm. Requiring only 4 K of memory. these come on a casselte for $\$ 9.94$. Specily computer. Software Industries, 902 Pinecrest. Richardson, TX 75080.

PET Utilities. The Micro-SET I provides five functions to hetp PET users. These are: CREATE TAPE that makes an ASCII file of a program, subroutine or collection of lines for addition to another program; ADD FROM TAPE that uses an ASCII file tape to add previously stored lines to the program: DELETE
that removes lines numbered between your specified limits; PROGRAM INFO that reports the number of lines in a program, identifies the first and last lines and the number of free bytes; and RENUMBER that changes line numbers in a specified range. Micro-SET is used with PET's having at least 8K of RAM. Price is $\mathbf{\$ 1 5}$ per copy. Micro Software Systems, PO Box 1442, Woodbridge, VA 22193.

Video Software. EVIOS-extended video input/output systern, written for the Vector Graphic Flashwriter II video board, can maximize the capabilities of any video terminal and is designed to allow complete control over every facet of software programming. The program includes cursor motion commands, selective screen erasing and five different fields: reverse video, horizontal line, vertical line, graphics and reduced intensity. It also features paging or scrolling, superseding or overlaying screen fields, printing special video characters and a mode that prints control sequences from BASIC as a normal character string. In addition, the input has control sequences to other programs without causing errors, allowing the screen to be cleared while in BASIC. Package includes manual, interlacing and programming examples, a source listing and a 2708 PROM. Price is $\$ 75$. Vector Graphic Inc., 31364 Via Colinas. Westlake Village, CA 91361 (Tel: 213-991-2302).

6800 Language. STRUBAL + (STRuctured BAsic Language plus). comprised of elements of BASIC, PL/M, COBOL and assembly language is compatible with existing BASIC software, provides structured programming, business-type record structures and file accessing methods, and includes assembly language for low-level system operations. Also available are EDIT68, a line oriented text editor; RA6800ML a two-pass macro assembler that generates relocatable and linkable object code; LNKEDT68 a linkage editor utility designed to work with STRUBAL+ and RA6800ML; XREF68 a utility designed to produce a cross-reference listing of an input cross-reference file; and a Cross Assembler for the specific microcomputer written for use on an M6800. Catalog available from Hemenway Associates, Inc., 151 Tremont SI., Suite 8P, Boston, MA 02111.

Games. For the Exidy Sorcerer, there are six games: LEM (Lunar lander), Nuclear Reaction, Pie Lob, Bounce, Checkers (novice level) and Dodgem. Catalog CS-5001 at $\$ 7.95$ plus 75 e postage. For the Ohio Scientific Superboard II/Challenger 1P, there are four games; Dodgem, Tank Attack, Free-forAll, and Hidden Maze. Catalog CS-6001 at $\$ 7.95$ plus $75 ¢$ postage. Creative Computing. Soltware, Box 789-M, Morristown, NJ 07960 (Tel: 201-540-0445).

By Hal Chamberlin

AUDIO CASSETTE RECORDING FORMATS

NOWADAYS many hobbyists take the audio-cassette recording format used by their computer systems for granted. However, four years ago this was not at all true since no really good technique was available and users at the time were screaming for something that simply worked. (The first hobbyist cassette data storage system called "Hobbyists Interchange Tape System" or HITS, was introduced in POPULAR Electronics in the "Computer Bits" column of September, 1975.) Audio and digital engineers were quick to respond and now there are over a dozen widely used formats. Although a standards conference was held in late 1975 to stem the tide, deficiencies in that standard and competitive pressures in the marketplace continue to produce an even wider variety of formats. In this column, we will be looking at some of the more distinctive recording techniques in use mostly as a matter of historical interest rather than critical evaluation of their slrengths and weaknesses.

Characteristics of Recorders. Any viable method of recording digital data on an audio cassette recorder must take into account the various signal distortions inherent in the medium. A typical design goal is to be able to use virtually any kind of recorder, including a $\$ 30$ "cheapie", since two recorders would be needed for any real file-handling application. Recorders in this price range are plagued by limited frequency response $(300-3000 \mathrm{~Hz})$, and very poor
speed regulation ($=10 \%$). Also, mosl severely distorl recorded waveforms because of the limited frequency response and phase shifts through low-quality audio amplifiers. To a lesser extent, all magnelic recording media are subject to sensitivity variations and even complete dropouts, although the use of higher qualify and more expensive tape reduces this kind of problem.

Thus it is obvious thal a straight digital bit syslem such as that shown in Fig. 1 cannot be recorded with any degree of success. To overcome waveform distortion and speed variation it is necessary instead to modulate the digital information onto some sorl of carrier wave which is then recorded. During playback, the modulation is separaled from the carrier to recover the original bit stream intact.

A complete data recording system actually operates at three levels of encoding. The lowest level, which was just discussed, addresses the problem of recording and recovering bits. The second level is concerned with combining these bits into bytes since blindly grouping them by eights is usually not satisfactory. The third level, which is software dependent, handles combined data and identification bytes in complete tape records. Even though only a handful of techniques are popular on each level, the number of combinations is almost infinite and each may have a specific advantage. In this discussion we will be concerned with the lowesi level of individual bit-encoding techniques.

Fig. 1. Lower waveform illustrates typical distortion of a pure digital signal.

Mcintosh C 32

"More Than a Preamplifier"

McIntosh has received peerless acclaim from prominent product testing laboratories and outstanding international recognition! You can learn why the "more than a preamplifier" C 32 has been selected for these unique honors.

Send us your name and address and we'll send you the complete product reviews and data on all Mcintosh products, copies of the international awards, and a North American FM directory. You will understand why McIntosh product research and development always has the appearance and technological look to the future.

> Keep up to date. Send now -...

McIntosh Laboratory Inc. Box 96 East Side Station Binghamton, NY 13904
Name
Address \qquad
City___ State____Z___

If you are in a hurry for your catalog please send the coupon to Mcintosh. For non-rush service send the Reader Service Card to the magazine.
CIRCLE NO. 33 ON FREEINFORMATION CARD

Modulation. When a steady carrier wave is modulated, something about it must be changed and that change must be recognizable at the receiver. Because of the limited frequency response of the recorder, only sine-wave carriers can be seriously considered. A sine wave has only three properties that can be modulated; amplitude, frequency and phase. Looking again at the recorder, we see that any one of these characteristics can be distorted by the recording process. Thus, no modulation process can be totally immune to recorder deficiencies. The key to acceptable performance is to make the modulation gross enough so that the "noise" due to the recorder is small in comparison.

Frequency Modulation. Frequency modulation is probably the most popular type of modulation. When used to encode binary data, it becomes frequency shift keying. Early audio cassette interfaces actually copied the frequencymodulation technique in wide use for communicating data over voice grade telephone lines. Unfortunately, the degree of modulation (binary 0 at 2225 Hz and binary 1 at 2025 Hz) was not sufficient to overcome tape speed variations in low-cost recorders. Another early interface used the international standard radio teletype frequencies $(0=2975 \mathrm{~Hz}$ and $1=2125 \mathrm{~Hz}$) which, being more widely separated, worked considerably better. A serious shortcoming of both methods was that timing information about the bits was not recovered. Thus, if a string of zeroes was encoded there was no way to tell, except by marking time, where one bit stopped and the next began. Marking time was subject to substantial error because tape speed variations distorted the timing.

All later methods provide for measuring time using the data itself. This is called self clocking because there is sufficient redundant information in the signal to tell where bit boundaries are regardless of speed variations. Because of the redundant information, however, the speed of these techniques is less than that theoretically possible with nonredundant recording. As a practical matter, the greater reliability of self-clocking methods outweighs their slower speed.

One popular self-clocking frequencymodulated encoding technique is called the Kansas City standard because it was designed by a committee that met in Kansas City in November of 1975. With this technique, a binary one was defined as 8 cycles of a $2400-\mathrm{Hz}$ tone

Fig. 2. "Pulse" modulation is actually another form of amplitude modulation.
and a zero was 4 cycles of 1200 Hz . Bits were therefore timed by counting cycles of the carrier frequency. Because of the wide separation of frequencies, a simple single-shot circuit was sufficient to discriminate between them. A nice property of the standard was that it could be easily upgraded. The normal data rate of 300 bps (bits per second) could be increased to 600,1200 , or even 2400 bps by reducing the number of cycles for each bit. The $2400-\mathrm{bps}$ rate is interesting in that a zero is only one-half a cycle of 1200 Hz . The resulting modulation is very similar to the popular "Tarbell" format which is known for its high-speed capability. A problem with these formats is that waveform distortion has to be low enough to allow accurate cycle counting, which is usually by zero-crossing detection.

There does exis! a self-clocking frequency modulation technique that does not depend on cycle counting for timing. The trick is to convert each bit into three bits which are then recorded with a nonclocking frequency-modulation technique. If a zero is to be recorded, it is converted into $1-0-0$ and it a one is to be recorded, it is converted into 1-1-0. Thus, the bit boundaries can be identified by noting the transitions from 0 to 1 . The decision between 0 and 1 for the entire bit cell is arrived at by comparing the amount of time within the cell that is spent at a 1 level to that spent at a 0 level. Since the decision is based on a comparison rather than absolute timing. the technique is almost totally immune to speed variations! This method is also known as the " $1 / 1-2 / 3$ " method or "ratio recording". The limit of speed-variation is reached where the FM detector can no longer accurately distinguish between 0 and 1 levels. However, this could be overcome with an aic (automatic frequency control) circuit similar to that used in FM radio receivers.

This technique was first used on the KIM-1 microcomputer and generally works quite well although it is fairly slow. Unfortunately, the carrier frequencies chosen $(3700 \mathrm{~Hz}$ for 1 and 2400 Hz for 0) are a little high for reliable use with
most low-cost cassette recorders. Like the Kansas City standard, methods are available to upgrade the normal 134 bps by factors of 3 and 6 to a respectable 800 bps without producing any serious loss in reliability.

Amplitude Modulation. Although amplitude modulation is less used than frequency modulation, it has some important technical advantages-and some disadvantages. The main advantage is that speed variations from one recorder to the next have no effect on the dala recovery process. The primary disadvantage is that variations in recording level and tape output may require the recorder's volume control to be adjusted for accurate data recovery. Some may see this as an advantage over FM methods since volume controls are standard but speed controls are not.

Amplitude modulation with binary data is often called tone-no-tone recording since that is the result of 100% modulation. One potential problem with amplitude modulation is that the automatic level control (alc) feature found in many cassette recorders tries to counteract changes in signal amplitude. To prevent alc problems, the selected format must avoid long periods of silence. With such a format, the alc feature (which only functions during recording) can become an advantage since it ensures that all tapes are recorded at the same volume level.

The basic idea of the HITS format, mentioned above, is the same as the $1 / 3-2 / 3$ method except that a logic 1 is signified by the presence of a high-frequency tone while a logic-0 level is the absence of any tone. Since silence never lasted longer than $2 / 3$ of a bit time, there was no problem with recorders having alc. Although the $300-\mathrm{bps}$ speed was modest, it was quite adequate for interchange purposes. The system was quite insensitive to recorder variations, a reguirement for interchange. in particular, since only one tone frequency was used, it tolerated head alignment errors (which severely alter the recorder's frequency response curve) quite well.

Another widely used recording method, although termed pulse modulation, is in reality another form of amplitude modulation (Fig. 2). The method was first proposed by the writer in 1975 in The Computer Hobbyist newsletter as a local and interchange standard. Although its initial usage was small, it was quietly adopted by Radio Shack for its TRS-80 computer and now is probably the most widely used format to be found.

In the system, a "pulse" is defined as exactly one cycle of a $4-\mathrm{kHz}$ tone surrounded on both sides by silence. Every bit on the tape begins with a "mark" pulse. A zero bit is detected if the mark pulse is the only pulse seen within a 2millisecond period which is the bit cell time. A one bit is signified by a second pulse occurring shortly (1 millisecond) after the first. The method has a speed variation tolerance of about $\pm 20 \%$ which is limited by the ratio of the bit cell time to the spacing between the mark pulse and the "one" pulse. One interesting property of the method is that the bit rate need not be constant, although too big a gap between bits can cause problems with the alc. The standard speed of 500 bps can be reduced for better reliability (250 bps is used in the Level I TRS-80) and increased (2000 bps has been reported on a good-quality recorder) for faster operation.

Digital Recording. Even the fastest audio cassette interface is painfully slow when searching through files of tens or hundreds of thousands of bytes and even with all kinds of built-in error detection schemes still does not have the reliability needed for extensive business use. Direct digital recording, which avoids the distortions in audio circuitry, is the answer for high-speed, highly reliable recording on magnetic media. The recording techniques used in digital cassette systems and floppy disks will be discussed in a future column.

"Sorry Bill, I ran you through the computer lası night and you just did'n't make it."
 Write and run programs-the
very first night-even if you've
never used a computer before!

You're up and running with video graphics for just $\$ 99.95$ then use low cost add-ons to create your own personal system that rivals home computers sold for 5-times ELF II's low price! pre-recorded tape cassettes.
ELF II Gives You The Power To Make Things Happen! Expanded, Elf II cen give you more power to make things happen in the real world than heavily advertised home computers that sell for a lot more money. Thanks to an ongoing committment to develop the RCA 1802 for home computer use, the ELF 11 products-being introduced by Netronics-kapp you right on the outar fringe of today's small computer technology. It's a parifect computer for engineering, business, industrial, scientific and persoonal applications.
Plug in the GIANT BEARD to record and pley back programs, edit and debug programs, communicate with remote devices and makg things happen in the outside world. Add Kluge (protayping) Board and you can use Elf II to solve spacial problems such as operating a complex alarm yystem or controlling a printing press. Add 4t RAM Bsards to write longer programs, store more inflormation and solve more sophisticated problems.
ELF II add-ons already include the ELF II Light Pan and the amazing ELF-BUG Monitor - two axtremely recent breakhthroughs that have not yet bean duplicated by any other manufacturer.
The ELF-BUG Monitor lets you debug proprams with lightaning spaed because the key to debugging is to know wher's inside the registers of the microprocassor. And, with the ELF-BUG Manitor, instead of single stepping through your programs, you can now display the entire contenis of the registers on your TV programs, You can now display the entire contenis of the registers on your
screan. You find out immediataly what's going on and con make any necessary changes.
The incredibla Elf II Light Pen lats you write or draw anylhing you want on a TV screen with just a wave of the "magic wand." Netronics has also introduced the ELF || Colar Graphics E Music System-more breakthroughs that EIF II owners wete the first to anjoyl

ELF II Tiny BASIC

Ullimately, ELF II understands only machine language-the fundamantal coding required by ell computers. But, to simplify your rel. onshhip with ELF II, wa've introduced an ELF II Tiny BASIC that makes communicating with ELF II a breeze.
Tiny BASIC saves you the time of having to coda your individuel instructions in machine langubge for ELF II. Insteed, you simply type instructions on a keyboard -PRINT, RUN, LOAD, ETC. Your Tiny BASIC program automatically transiates them into machine language for ELF II. Then it transsatas ELF II's output beck into simple words and aymbols for you.
Now Available! Text Editor, Assembler,
Disassembler And A New Video Display Board!
The Text Editoe gives you word processing ability and the ability to adit programs on text while it is cisplayed on your video manitor. Lines and charactars may be quickly inserted, deleted or changed. Add a printar and ELF II can type letters for you-arror iree-plus print nemes and addresses from your mailing list!
ELF II's Ascaembler transfates assembly lenguage programs into hexidecimal machine code for ElF II use. The Assemblef features mnemonic abbreviations rether then numerics so that the instructions on your programs are easier to read-this is a big help in catching errors.
ELF lifs Dhassembier tekas machine code programs and produces assembly language source listings. This helps you understend the programs you are working with ... and improve them when required.
The naw ELF II Video Dizplay Board lets you generata e shayp, profeassional 32 or 64 character by 16 line upper and lower case display on your TV seraen or video monitor-dramatically improving your unexpanded $\$ 89.95$ ELF II. When you get into longer programs, the Video Display Board is a reel blessing! Ask Not What Your Computer Can Do.
But WHAT CAN IT DO FOR YOU?
Don't be trappad into buying an oxponsive dinasaur, zimply bectuse you can affiord it. ELF II is more advanced and more fun to use then big name computers that cost a lot more manay. With ELF II you learn to write aid run your own programs. You'ro nat just a keypunch oparatow. Ho matter what your intarasis ara, ELF II is the fostest way to get into computari. Order from the coupan belowt

PHONE ORDERS ACCEPTED! Call (203) 354-9375

Netronics R\&D Lid., Dept PE-7
333 Litchfield Road, New Milford, CT 06776
Yes! I want my own computer! Please rush me-
Yes! I want my own compuler! Please rush me

thanding (requires 63 to 8 voll AC power \square Deluxe Metal Cabnel with plexiglas dusi cover lor ELF II. \$29.95 plus 5250 pat

Total Enclosed \$

- I am also enciosino
bow Suphly iequired) 54 gs posipaid
the liems checked below!
(Conn. ress, adst tax)

I Tom Piltman S Short Course Dn Meroprocassors © Computer DI want my ELF II wired and tested with power supaty RCA

CHARGE IT! Exp. Dat
\square Visa \square Mastier Charge

Account II
ALSO AVAILABLE FOR ELF $/ /$
口 GIANT BOABGTM kit wht casselie I/O. RS 232 .
 mstructions and a system monior/editor $\$ 39.95$ plus
520.8 h $\$ 20.8 \mathrm{~h}$

ㅁ Kuge (Prototypet Board accepts up to Jb IC s
S 17.00 plus $\$ 1$ p.

-GAk se9.95 plus $\$ 3$ pth
\square Gaid pialed 85 -pin cannectors cone requred lor each
plug-in baated) 55.70 ean ; postpatd
\square Expansion Power Supply (required when adding $4 k$ RQM) $\$ 34.95$ plus $\$$? peh

- Prolarsional ASCil Keyboard kit with 128 ASCH uppet/lower case sel. 96 prinlable characters, onboard regulator, parity. lagic selection and choice of a hander
shakning stgnals to mate wilh almost any computer 564.95 plus $\$ 2 \mathrm{DEh}$

D Delluxe metat cabinel lor ASCII Keybaard, $\$ 19.55$
pius $\$ 2$ SO pEh
\square Video Display Board kul lets you generate a sharp.
protessional 32 or 64 character by 116 line protessional 32 or 64 character by 16 line upper and
rower case oisplay on yout iv screen or video monilor diamalicaly mprowng your unexpanded $\$ 9995$ ELF II

(FIIs inside ASC
plus $\$ 20$ orn
\square ELF II Tiny BASIC on cassente lape Com-
mands inctuce SAVE LOAD . x.

CIRCLE NO. 36 O OAFEE INFORMATION CARD

ELECTRONICS SUPPLIERS, SHOPS, IMPORTERS, MANUFACTURERS. . . HONG KONG IS CHEAPER Owing to the rising value of the Japanese Yen, products from Japan are becoming very expensive.
We have equivalent quality products at far better prices from Hong Kong, Taiwan and Korea.
We can supply in both large and small quantities with proven quality.

Even if you have never imported goods before, we can show you

86 page, comprehansive, fully pricad catalogue available - specialising in products for the electronic hobbyist.
Catalogue SUS4.00 ro cover airmail postage.

DICK SMITH

 ELECTRONICS (HK) LTD.Retail Showroom \& Buying Office 29-38 Ashley Rd, Kowloon Tel. 3-669 352 - Telex 64398 Call in when you're next in Hond Konct

By Kari T. Thurber, Jr., WBFX

SETTING UP YOUR STATION

THE TRANSMITTER and receiver (or transceiver) and the station accessories are all just so much electronic equipment until they are arranged in a fashion that results in efficient, convenient operation. A well-planned station is a joy to operate; a poorly arranged one causes unnecessary operator fatigue and frustration.

Many considerations shape a good station arrangement besides the required interconnections between the equipment. Personal operating preferences play a large role. The point to keep in mind is that it's worth taking the time to set up your station properly. No other decisions apart from the selection of your equipment will determine how much enjoyment you derive from your new hobby.

The Operating Position. A comforlable chair and a sturdy desk are imperative. The author has for years used two double-decker file cabinets supporting a heavy-duty wooden door. Together they form an oversized operating console larger than an "executive" desk.

The location of the receiver or transceiver should be determined first, because all the other equipment will be grouped around it. Place the receiver so that it is within easy reach and is conveniently tuned. A right-handed operator should place the receiver to the left. This allows tuning the receiver with the left hand while writing down call letters, etc., with the right. Similarly, a left-handed operator should place the receiver to the right side of the table.

The transmitter is usually not adjusted as often as the receiver, so it should be
to the right of the receiver in a righthanded operator's station. The front of the transceiver (or transmitter and receiver) should be tilted up slightly. This makes the dials easier to read and the control knobs easier to grasp. Realizing this, many manufacturers place taller rubber feet under the front of their products' enclosures. If your equipment does not have this feature, you can shim up the front simply by placing a small board under the front feet.

Other items, such as an auxiliary station receiver, antenna coupler, directional wattmeter or SWR bridge, keyer, etc., should be located near the piece of gear they supporl. Stacking equipment is permissible as long as adequate ventilation is provided for heat-generating transmitters, amplifiers, etc. Receivers usually generate a small amount of heat (about 40 watts for contemporary models) but still require some ventilation for convection cooling. Small "Muffin" or similar fans will keep transmitters, transceivers, and other components cool and extend the lives of vacuum tubes (if your equipment uses them).

Other accessories, such as the key or keyer "paddle" should be located so they can be moved around the desk-top for comfort while you are shifting position in the operating chair. A 24 -hour clock, preferably set to UTC, should be placed in a spot where it can be viewed easily. One of the many digital clock kits with 24 -hour display capability makes an excellent beginner's construction project and a valuable addition to your station. Some people like to use a foot switch for going from transmit to receive, This can gerierally be wired across the transmit-

ter's or transceiver's transmit-receive switch.

Consideration should also be given to locating an extension phone at the operating location, particularly if third-party message "traffic" is handled. Other gear, especially large accessories such as power supplies and auxiliary units can be located out of sight under the operating console or on separate tables or cabinets. This will keep clutter on the main operating console to a minimum. Consider, also, QSL card storage and display. Do you want to "paper" the wall with your rare DX catches or store them in file drawers? Be sure to allow space for the storage of log books, technical manuals, and pamphlets.

The actual location of the station might be dictated by factors not totally under your control. The attic, basement, and den are popular locations. Remember that damp basement locations will tend to damage equipment through mildew formation and will encourage rusting. Excessively hot attic locations will shorten component life and may make operating a chore rather than a pleasure. The location chosen should not result in excessively long feedlines to the antenna and consequent signal losses.

Wiring. Care should be taken to keep r-f cables (coax, twinlead, or open-wire) as short as possible, and to prevent the rear of the operating console from becoming a "rat's nest" of wires. Small, plastic cable ties and adhesive-backed clamps will keep the wiring neat and simplify any future equipment servicing. Fused, multiple-outiet ac power boxes or strips should be used for power distribution to your setup.

For safety's sake, it should be possible to remove ac power from the entire station by throwing one well-marked, wall-mounted switch. All members of your household should know the location and function of this switch. A station running high power might require an independent ac line from the main fuse box to prevent circuit overload and the resulting fire hazard. An independent line will also prevent light-dimming in step with your CW sending-most annoying to other members of the family!

Lightning Protection. Don't neglect proper grounding for the station proper as well as the antenna system. The antenna, regardless of what type of transmission line is used, should be disconnected from the equipment when not in use and placed at dc ground to prevent
static build-up and possible equipment damage. Such damage often occurs during electrical storms even without "direct hits" by lightning. Installing a heavy-duty lightning arrester on the transmission line will offer a degree of on-the-air protection. Both Hy-Gain and Cush-Craft manufacture inexpensive units which can save the front end of your transceiver or receiver and prevent other, more catastrophic damage. Removing all equipment from the ac power line via the main station power switch during severe weather is a good idea because high voltage transients induced on power lines by nearby lightning hits have ruined more than one piece of valuable ham gear.

Getting on the Air. Every amateur worth his salt takes great pride in observing both good operating practices and FCC regulations. Hams self-regulate their hobby activities by adhering to a code of ethics which stresses gentlemanliness, loyalty, cooperation and public services. This includes Novices.

The Radio Amateur's Operating Manual, published by the American Radio Relay League, goes into considerable
detail as to correct operating procedures for such activities as message handling. public service activities, emergency operation, and contest participation. We will not elaborate on them, but here are several of the most important operation considerations:

- Make your transmissions brief, even during "rag-chew" contacts. This will stimulate conversation and promote two-way communications. Don't make speeches. It is generally wise to avoid discussing subjects such as politics and religion over the air.
- Listen first before transmitting. Never intentionally disrupt a QSO in progress, particularly emergency traffic.
- Keep CQs short with short breaks for listening. Limit transmission length. (Thirty-seven consecutive CQs before signing one's call sign will rarely result in a reply. Almost no one will have the patience to wait for your call letters!)
- Give honest signal reports, not "599", to everyone. (See Table.) Honest reports can save operators from possible FCC citation for trouble caused by faulty equipment.
- Take any technical or operating criticism in stride. Never argue on the air.

5-YEAR REPLGGEMENT WARRANTY.

CIRCLE NO. 40 ON FREE INFORMATION CARD
SAVE!
troualtr strbo meubment AT LOWEST PRICES.
YOUR REQUEST FOR QUOTATION RETURNED SAME DAY.
factory sealed cartonsGUARANTEED AND INSURED.
SAVE ON NAME BRANDS LIKE:

PIONEER	SANSUI
KENWOOD	DYNACO
SHURE	SONY
MARANTZ	KOSS

AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL - FROM

12 East Delaware Chicago, Illinois 60611 312-664-0020

Rather, display sportsmanship and courtesy.

- When a DX station is heard, maintain proper perspective and operating discipline. Don't become a "DX Hog." Call him only when he clears with another station.
- Keep a complete, accurate log. Al-

R-S-T SIGNAL REPORTING SYSTEM

Readability

1. Unreadable.
2. Barely readable, some words or characters distinguishable.
3. Readable with much difficulty.
4. Readable with practically no difficulty.
5. Perfectly readabie.

Signal Strength

1. Faint signals, barely audible.
2. Very weak signals.
3. Weak signals.
4. Fair signals.
5. Fairly good signals.
6. Good signals.
7. Moderately strong signals.
B. Strong signals.
8. Extremely strong signals.

Tone

1. Sixty-cycle ac or less, very rough.
2. Very rough ac, very harsh.
3. Rough ac tone, rectified but not filtered.
4. Rough tone, trace of fittering.
5. Filtered rectified ac, but ripple-modulated.
6. Filtered tone, trace of ripple modulation.
7. Near pure tone, some trace of nipple.
8. Near perfect tone, slight trace of ripple modulation.
9. Perfect tone, no trace of either ripple or modulation of any kind.

Note:If the signal has the inherent stability of crystal control, add the letter X to the RST report. If there is a chirp, the letter C may be added to so indicate. And for a click, add K. (For example a weak, very rough, barely readable and chirpy signal might rate a "lowball" signal report of " 236 C ", an extremely poor report and one not usually given out even when deserved. A super-outstanding signal in all respects might be given a " 599 X ".)
though FCC requirements have been eased, it pays to keep a good record of station operations for future reference. A complete \log is also a source of pride!

- Decide how you are going to handle QSL cards. If you agree on the air to exchange cards, do so!
- Listen to well-run traffic nets and
good operators and try to learn from their operations.
- Consider installing an emergency power source so that the station can be put to public service in case of a natural disaster.
- Participate in local emergency and public service activities, such as the Civil Defense-affiliated Radio Amateur Civil Emergency Service, the ARRL's Amateur Radio Public Service Corps, the Military Affiliate Radio System, and local radio patrols.
- Frequently check your transmitter for any evidence of vo instability, key clicks, chirp, hum, and drift. Do this into a dummy load, not an antenna!
- Attempt promptly to resolve an RFI complaint from neighbors. This may not always be an easy task, but having "clean" r-f equipment to start with and exhibiting a willingness to resolve interference complaints will go a long way toward enhancing the public's image of amateur radio. Before you receive any RFI complaints, make sure that your own home entertainment equipment is RFI-free. Besides preserving domestic tranquility, this will enable you to show a complaining neighbor that your television and audio systems do not display symptoms of interference and that the susceptibility of his equipment to r-f is the cause of the problem.

Onward and Upward. Very few, if any, individuals have, as a long-range goal, to remain a Novice. Although its privileges have recently been expanded by the FCC, the license's capabilities are nevertheless circumscribed by CW-only operation, the 250-watt power limit and restricted frequency allocations. Thus, when you receive a Novice license, you should keep in mind that it is only an entry to the hobby and set your sights on the General or higher class license as soon as you get started on the air.

As you might already know, there are five amateur radio licenses: Amateur Extra, Advanced, General, Novice and Technician Classes. The Extra Class license (the highest) and the Advanced have tough code, theory, and regulations exams and are probably not of immediate interest to the newcomer. The General Class license has the same code requirement as the Advanced (13 wpm as opposed to 20 wpm for the Extra), authorizes privileges on parts of every ham band and is the next logical step up from the Novice.

The Technician Class license, on the
other hand, requires the applicant to take the same theory and regulations examination as the General, but specifies a code test of only 5 wpm , the same as the Novice code exam. However, it conveys operating privileges only on parts of the 6 - and 2 -meter ham bands, all frequencies above 220 MHz and on the hf Novice bands.

The Novice license, of course, is the basic entry-level ticket, though one need not start with it if he or she can qualify directly for a higher license. It conveys very limited operating privileges: CW only on $3.700-3.750 \mathrm{MHz}, 7.100-7.150$ MHz , 21.1-21.2 MHz, and 28.1-28.2 MHz . Privileges have recently been expanded, as previously mentioned, to aliow vfo control and 250 watts of input power. Despite these restrictions, the Novice license, which is available only through the mail, is a very excellent means of entry into amateur radio. It has a minimum of requirements, yet it provides sufficient privileges to "sample" a broad range of activities available to amateur radio operators.

Once you've been on the air for a few months, you should think about upgrading your license. Continued on-the-air practice and listening to the ARRL's W1AW code practice sessions are probably the best ways to develop the proficiency needed to pass the General Class code exam. Technical skills are developed by undertaking construction projects, as well as by studying ham literature. It's also wise (and rewarding) to enroll in one of the several hundred license classes sponsored by local radio clubs around the country. If one of these courses is conducted in your area, the task of preparing for the General Class license examination will be greatly simplified. If not, an experienced local ham will usually be more than willing to help. Radio Shack, Ameco, 73 Magazine and the American Radio Relay League (ARRL) all publish excellent study guides, code courses, and other training aids that will be a real help in upgrading your license.

The newcomer is advised to consider joining the ARRL, a nonprofit association of U.S. and Canadian amateurs. The League is the generally recognized spokesman for amateur radio in both countries, representing the ham in legislative matters and publishing the monthly magazine QST and numerious technical manuals, including many beginneroriented publications. Its mailing address is c/o ARRL, 225 Main St., Newington, CT 06111.

POTENTIOMETER QUIZ ANSWERS

(Quiz is on page 56)

1-G. E is between wiper and negative. At 1 and 2, $E=0$
At center tap, $E=$ input
At $1 / 2$ and $3 / 4, E=1 / 2 \times$ input
2-J. $\quad E$ is between wiper and positive.
At $1, E=1 / 2 \times$ input
At 2, E=input
3-E. E is between wiper and C.T.
At 1 and 2, $E=$ input
At C. T., $E=0$
At $1 / 2$ and $3 / 4$. E is more than $1 / 2 \times$ input
E is not shunted, hence is more than linear value.
4-H. E is between wiper and positive.
At 1, $E=0$
At 2, E=input
At center tap, $E=1 / 2 \times$ input
At $1 / 4, E$ is more than $1 / 4 \times$ input
At $3 / 4, \mathrm{E}$ is less than $3 / 4 \times$ input
5-B. $\quad E$ is between wiper and positive.
At 1, $E=$ input
At $2, E=0$
At center tap, E is more than $1 / 2 \times$ input
6-I. $\quad E$ is between wiper and positive.
At 1 and 2, $\mathrm{E}=0$
At center tap, $E=$ input
At $1 / 4$ and $3 / 4$. E is more than $1 / 2 \times$ input
E is not shunted, hence is larger than linear value.
7-C. $\quad \mathrm{E}$ is between wiper and negative.
At $1, E=0$
At 2, E=input
E is shunted, hence is always smaller than linear value.
8-A. E is between wiper and C.T.
At 1 and 2, $E=$ input
At center tap, $E=0$
At $1 / 4$ and $7 / 2, E$ is less than $1 / 2 \times$ input
E is shunted, hence is smaller than linear value.
9-F. $\quad E$ is between wiper and positive.
At 1, $E=$ input
At $2, E=0$
At $1 / 4, E=2 / 3 \times$ input
At C. T., $E=1 / 2 \times$ input
At $3 / 4, E=1 / 3 \times$ input
10-D. E is between wiper and positive.
At 1, $E=$ input
At 2, $E=0$
Between 1 and 2, E is not shunted, hence always larger than linear.

The Kit Project of a Lifetime...

A Schober Electronic Organ

When an electronic project ends, we always seem to wish there were more to do. Well, here's the project where there really is more to do. It's the ultimate electronic kit, a Schober Electronic Organ.

We've had thousands of letters in our 24 years from enthusiasts all over the world who have had the time of their lives assembling Schober quality parts into fine musical instruments, guided by the famous crystal-clear, step-by-step Schober instructions. Many were family projects; even the little ones can sort resistor colors!

But when assembly is done, the fun is just beginning. You're ready to start a lifetime of musical enjoyment as a Schober course teaches you and your family to play.

A Schober Organ makes a wonderful gift for a music-loving wife or child-or for yourself. It sounds great-far more pleasing and authentic, with far greater musical resources than anything ready-built at a comparable price. In fact, you could easily pay twice as much and not get a better organ.

Basic Schober Organ Kits range from $\$ 650$ to $\$ 3391$-with five models to choose from. Each kit is complete with everything needed. The instructions are comprehensive, precise, and specific, giving you every bit of information you need, assuming no prior knowledge of or-gans-or even electronics.

There's optional equipment, too, which you can add any time later, new effects for more fun.

Send TODAY for the free color catalog. Enclose $\$ 1$ if you'd like the 12 -inch demo record, so you can let your own ears tell you about Schober musical quality.
SCHOBER ORGAN CORP,, Dept.PE-84 43 West 61 st St., New York NY, 10023 Send Catalog. \square I enclose $\$ 1$ for record.
Name:
Address:
City, State, Zip:
CIRCLENO. 44 ONFREINFORMATIONCARD

John Simonton's time -proven design provides two envelope generators VCA, VCO \& VCF in a low cost, easy to use package.

Use alone with its built-in ribbon controller or modify to use with guitar, electronic piano, polytonic keyboards, etc.

The perfect introduction to electronic music and best of all, the Gnome is only $\$ 59.95$ in easy to assemble kit form. Is it any wonder why we've sold thousands? [1) Send GNOMEMICRO- SYNTHESIZER Kit ($\$ 59.95$ plus $\$ 2.00$ postage)
) GNOME MICRO-SYNTHESIZER (Fully Assembled) $\$ 100.00$ plus $\$ 2$ postage () Send FRẸE CATALOG name: addrass:
city: \qquad state: \qquad zip:
BAC/WISA _ MC cerdno.
TMT DEPT. 7.P

CIRCLE NO. 39 ON FREEINFORMATION CARD

FREE TTHT

CATALOG

Audio-Computers

 Instruments Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216
CIRCLE NO. 46 ON FREE INFORMA TION CARD

MOUNTING FERRITE BEADS

Shielded plugs, adapters, and in-line jacks will easily accommodate ferrite beads, resulting in a shielded and r-f decoupled connector. Simply slip a bead with the proper ferrite mix and inner diameter over the inner conductor of the cable before soldering it to the connector. Most ferrite beads are insulators, so they won't create a short circuit between the inner and outer conductors. Some, however, such as Amidon Associates' FB-75B-101, are composed of a semiconductor material and may require an external insulating layer for isolation. Typical applications for bead/connector combinations include keeping r-f out of audio equipment, containing r-f inside transmitters, etc.-Richard Mollentine, WAOKKC, Overland Park, KS.

CAPTIVE MACHINE NUTS EASE SCREW INSTALLATION AND REMOVAL

Captive machine nuts permit installation and removal of screws from one side of a panel without requiring access to the other side. As shown in the drawings,

machine nuts can be soldered to steel chassis and the foil pattern on printed circuit boards or they can be imbedded into acrylic plastic panels to be held captive. You start by drilling a hole just large enough to pass the threads of a machine screw, insert the screw, and screw on the nut until it is comfortably tight.

Then, using a soldering gun, flow sufficient solder between nut and panel or pc board to assure a good bond, or heat the nut while slowly tightening the hardware until the nut embeds about half its thickness into the plastic. In either case, allow the joints to completely cool before removing the screw.-J.C. Smolski, Teheran, Iran.

CLEARING METER FACES

Plastic meter faces, bezels, and dial windows can be restored by removing scratches and "fogginess" as follows. Using a dry cottom cloth, rub the scratched surface with cigarette ash. The ash acts as a very fine abrasive. With a little bit of elbow grease, you can restore the meter face to "like new" condition. This method was used to clear up the S/r-f meter on a Johnson CB transceiver that was "cleaned" with a sol-vent-the type that attacks plastic!

During the rubbing process, a static charge may build up on some meter faces, causing the needle to drift or remain at one spot. This problem can be avoided by removing the face from the meter before restoration. After you have polished the meter face, set it aside, to allow the static charge to dissipate, or

CIRCLE NO. 30 ON FREE INFORMATION CARD Best price and delivery on . . .

Exidy Sorcerer ${ }^{\circ}$ - callus -

SAVE

15% on NORTH STAR CROMEMCO and other S-100 Systems

10\% OFF

RADIO SHACK TRS-80
and accessories (full warranty)
Complete line of printers and disk systems for TRS-80
latter for use in your shop to mount tools on a wall, keep machine hardware in one place, etc. Now, substitute a $1 / 2^{\prime \prime}$ $(12.7-\mathrm{mm})$ diameter pipe fitting for the magnet, using a threaded flange, as shown in the photo. Fasten the speaker basket to the roof with pan-head sheetmetal screws. Assemble the antenna, fasten it to the mast, and slip the mast over the pipe fitting. Aim the antenna in the desired direction and clamp and guy the mast.-Glen Stillwell, Manhattan Beach, CA.

Weller's WC-100 . . . the professional quality, feather-light cordless. Lets you make connections anywhere. Without AC cord and outlet.
Fingertip touch on exclusive sliding safety switch activates long-life, nickelcadmium battery. Heats tip to over $700^{\circ} \mathrm{F}$ in 6 sec . Locks in "off" position to prevent accidental discharge in use or while restoring energy with fastpower recharger (UL listed).

Simple, instant change to any of 4 tips ...for any job. Built-in light focuses on tip and work area.

Get this! It's at your dealer or distributor now...waiting for you. Need more info first? Request literature.

Electronics Division
P.O. BOX 728. APEX. NORTH CAROLINA 27502, 919/362-7511 CIRCLE NO. 13 ON FREE INFORMATION CARD

Get the inside story...
on software, hardware, simulations, computer games, robotics, computers and calculators, languages and compilers, custom systems design and scores of applications.

BYTE, the leading magazine in the personal computer field, will keep you aware of fast-paced changes in the ever growing world of microprocessors. You'll find BYTE tutorials invaluable, reports on home computer applications instructive, and the reviews of computer products stimulating. Tutorial information in BYTE is of interest to both the beginner and experienced computer user. BYTE's editorial content explores the fun of using and applying computers for personal satisfaction in activities from electronic music to electronic mail,
from games to pragmatic personal business. In BYTE is found authoritative yet easily read coverage of principles of computer hardware and software design, approaches to novel applications, and essentials of proven interest to personal computer enthusiasts.
Each month serious computer users read BYTE. They're rewarded with timely articles by professionals, computer scientists and competent amateurs. Isn't it time you got the inside story? Subscribe now to BYTE, the Small Systems Journal.

Fill in and mail the coupon today. Read your first copy of BYTE. If it is everything you expected, honor our mail it back. You won't be billed and the first issue is yours at no charge.

Allow 6 to 8 weeks for processing. If you have any questions, dial toll free 800-258-5485. This is the number of the BYTE Subscription Department. - BYTE Publications, Inc. 1979

BYTE Subscription Dept. P.O. Box 590 Martinsville, NJ 08836 Please enter my subscription for

\square One year $\$ 18$ (12 issues) \square Two years $\$ 32 \quad \square$ Three years $\$ 46$
\square Check enclosed entities me to 13 issues for price of 12 (North America only)
\square Bill Visa Bill Master Charge \square Bill me (North America onty)
\square Bill Visa \square Bill Master Charge \square Bill me (North America only)
\qquad
Card Number Expiration Date
City State/Province/Country Code

Foreign Rates (To expedite service, please remit in U.S. Funds)
\square Canarla or Mexico \square One year $\$ 20 \quad \square$ Two years $\$ 36 \quad \square$ Three years $\$ 52$
[Europe, one year (air delivered) $\$ 32$
\square All other countries, one year (surface delivered) \$32. Air delivery available on request. 7379

One of the greatest drämas ot the Metropolitan Opera is the day-to-day struggle of maintaining its standard of excellence.

It's a drama in which you can play'a very important role.
We need your support now.
We at Pioneer High Fidelity togerther with The National Endowment For The Arts will triple the amount of whatever you can give.

Naturally, the more you contribute to the Metropolitan Opera, the more it can contribute to society.

Even a quarter will help.
You see, the way we figure it, you'll not only be supporting one of the world's great cultural institutions, but the very foundation it's built on. Civilization. ©PIONEER High Fidelity. We all owe a lot to music.

PLAYA SUPPORTING ROLE INTHEMETROPOLITAN OPERA THISSEASON.

HIGH-CURRENT LED PULSER

INFRARED LEDs make ideal optical sources for remote controls, intrusion alarms, reflective and break-beam object sensors, signaling devices and TV commercial killers. However, unless an efficient heat sink is employed, most infrared LEDs are restricted to a maximum continuous forward current of no more than 100 milliamperes. At this current, a high-quality GaAs:Si LED will deliver from 6 to 10 milliwatts of optical power. This is roughly equivalent to the visible radiation emitted by a small one- or two-cell penlight with a prefocused lamp.

Rapidly pulsing a LED at very high current levels makes it possible to obtain much higher power outputs. For example, a G.E. 1N6264 LED that emits 6 mW at 100 mA of forward current will emit 60 mW when driven by 1 -ampere pulses a few microseconds wide.
Figure 1 shows a simple circuit that can deliver high current pulses to an LED. This pulser is considerably more powerful than the LED transmitter module that was the Project of the Month for February 1979. With the parts values shown, it will apply hefty 2.7 -ampere pulses at a rate of about 100 Hz to a LED. The pulses are about 17 microseconds wide. They can be readily detected by a simple phototransistor receiver such as the Project of the Month for January 1979. Current drain from a small TR175, 7 -volt mercury battery is 5 mA .

Many different LEDs can be used with the pulser. For most LEDs, the peak current exceeds by a factor of three the component's maximum continuous rating. Applying even larger pulses will not necessarily destroy a LED, but might shorten its useful life. For best results, use infrared emitters made from GaAs:Si rather than GaAs diodes. Good choices include the TIL-32 (Texas Instruments), 1N6264 (General Electric), OP-190 and OP-195 (Optron) and 276-142 (Radio Shack).
You might have difficulty finding the transistors specified in Fig. 1. If so, you can substitute a common npn silicon device such as the 2N3904 or 2N2222 for Q1. The choice of $Q 2$ is more critical, however. If maximum current is to be delivered to the LED, Q2 must be a germanium transistor. A germanium pn junction has a smaller forward voltage drop than a silicon pn junction, and this causes a germanium transistor to have a lower effective "on" resistance. The LED therefore receives more current if a germanium device is used.
The 2N1132 works better than any other germanium transistor l've tried. The 2N1305 is easier to find and will deliver about 2 amperes to the LED. If you can't find a suitable germanium transistor you

PROJECT DFTHE MONTH

BY FORREST M. MIMS

Fig. 1. Highl-current LED pulser:

16-PIN DIP HEADER)
Fig. 2. Connections for LED pulser.

Fig. 3. Pulser component placement.
can substitute a common pnp silicon switching transistor such as the 2N3906 or 2N2907. Less current will be delivered to the LED, but the oplical output will still be adequate for many applications.

For example, if Q1 is a 2N3904, Q2 is a 2N3906 and the circuit is powered by a standard 9 -volt battery, 1.1-ampere pulses
will be delivered to a LED. Because of the different characteristics of the silicon transistors, the repetition rate will jump to 1400 and the current demand will increase to about 100 mA . That's enough to quickly deplete even an alkaline battery, so for best results the resistance of R1 should be increased to reduce the pulse-repetition rate and the operating current. For example, if the value of $R 1$ is changed to 1 megohm, the repetition rate will decrease to 120 Hz and the current drain to a much more reasonable 8 mA .

Once you've made a final selection of component types and values, you can assemble a permanent version of the LED pulser on a DIP header or postage-stampsized perforated board. I took the latter approach for my germanium-transistor unit because the transistors are packaged in TO-5 cans. It was still possible to install the pulser, TR-175 battery, switch and adjustable lens in a brass tube measuring $0.5^{\prime \prime} \times$ $3.25^{\prime \prime}(1.3 \mathrm{~cm} \times 8.3 \mathrm{~cm})$.
Figure 2 shows how to assemble the pulser on a DIP header if silicon transistors in plastic packages are used. Interconnect the pins on the header with Wire-Wrap leads, but don't solder them in place yet. Use lengths of wire that are longer than necessary, securing them in place by wrapping their free ends under the header.

Figure 3 shows where the components go. To make things as compact as possible, use a miniature tubular capacitor for C1 instead of a ceramic disc. Any capacitance from $0.01 \mu \mathrm{~F}$ to $0.05 \mu \mathrm{~F}$ is satisfactory, but the smaller values will increase the pulse-repetition rate and reduce the current to the LED somewhat. If you must use a disc for C1, try bending it over the top of the header so that it will present a lower profile and leave room for the LED.

If you use a miniature tubular capacitor for C1, the completed circuit will use only half the space in the DIP header's cover. Instead of installing the cover, I clipped all the pins from the header and mounted it on a snap terminal salvaged from a discarded 9 -volt battery. The conductive strips at each terminal were trimmed to size and folded over each end of the header to secure it in place. Taking care to observe the polarity, I soldered short connection wires from the header to the two metal strips: The result is a tiny but powerful LED transmitter that snaps directly onto the terminals of a 9 -volt battery.
Whether you use germanium or silicon transistors, with a little care you can install the complete pulser in a pen-light, lipstick tube, pill bottle or other small container. Although the germanium unit is more powerful, even the silicon pulser projects a beam that can be received at 1000 feet or more at night using a simple phototransistor re-ceiver-provided you use a 2 - or 3 -inch lens at each end of the link.

Radio Shack：No． 1 Parts Place Low Prices and New Items Everyday！

Top－quality devices，fully functional，carefully inspected．Guaranteed to meet all specifications，both electrically and mechanically．All are made by well－known American manufacturers，and all have to pass manufacturer＇s quality control procedures．These are not rejects，not fallouts，not seconds．In fact，there are none better on the market！Always count on Radio Shack for the finest quality electronic parts！

TTL and CMOS Logic ICs

Full－Spec Devices

Direct from
Motorola and
National Semiconductor

Type	Cat．No．	ONLY	0
7400	276－1801	${ }_{3}^{356}$	
7402 7404	276－1811 276－1802	${ }_{356}^{396}$	
7406	276－1821	496	
7410	276－1807	396	Creates
7413	276－1815	796	music to
7420 7427	276－1809	396\％	Includes
7432	${ }^{276-1824}$	496	fiter， 2 m circuit．
7441	276－1804	9996	cations
7447 7448		${ }_{996}^{996}$	
7451	276－1825	396	\square
7473 7474	－ 276 27－1803	${ }_{496}$	
7475	276－1806	796	
7476	276－1813	${ }^{594}$	－
7485 7486	276－1826 $276-1827$	1.19 496	
7490	276－1808	796	

Featured in Oct． Popular Electronics

Creates almost any type of sound－ music to gunshots！＂Built－in audio amp． filter， 2 mixers，envelope modulator，logic circuit． 28 －pin DIP．With data／appli－
cations circuits．276－1765

Mercury Tilt Switch

Synthesizer IC

Top－Quality IC and PCB Accessories

\qquad
回

Subminiature position－detecting switch for use in projects or special applications．Switch is normally closed when upright．opens when tilted more than 45° ．Rated 100 mA at 24 VDC ． 275－025．

198
15 Ceramic Trimmers

Assorted low－loss RF trimmer capacitors．May include both com－ pression and piston types rated up to 500 VDC with maximum capacity values of 3 to 100 pF 272－805．．．

DPDT Dual Inline Relay

Fits Sid． 14 PIn IC Socket

Subminiature relay is designed for use with TTL or CMOS circuitry．Contacts wated 1 A at 125 VAC ．Coil requires 5VDC．Coil resistance， 50 ohms ． 275－215．

Digital IC
 24^{95}

Multi－Logic Family Compatiblity

Detects one－shot low repetition rate，narrow pulses scopes miss． Combines level detector，pulse de－ lector and pulse stretcher．Hi－LED indicates logic＂1＂，Lo－LED is logic O．Pulse LED displays pulse tran－ sitions to 300 nanoseconds，blinks at 3 Hz for high－frequency signals
（up to 1.5 MHz ）．With cables． （up to 1.5 MHz ）．With cables．

回

Computer Data Manuals \＆ Semiconductor Handbook

© Intel 8080／8085 Programming Manual．Handy eference for programming with intel＇s assembl anguage．62－1377
國 Intel Memory Design Handbook．Explains use of Intel＇s memory components and support cir－ cuits in systems．62－1378
［C Intel Data Catalog． 928 pages of specifications on most of Intel＇s standard microcomputer－ related products．62－1379
© Semiconductor Reference and Application Handbook．Complete specs and applications for popular IC transistors，diodes． 276 －4002 ．．． 1.95

Everything you need for making high－ quality custom PC boards．
276－1576．
Extra Resist Pen．276－1530 ．．．．．．．．．．．．．．． 1.29
Extra Elehing Solution．276－1535 ．．．．．．．． 2.19

Molded Connectors

百

Rated 8A＠250V．Standard ．093＂pin diameter． | Fip． | Pins | Type | Cat．No． | Each | Fig． | Pins |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type | Cat．No． | Each | | | | |

A	4	Male	274－224	99 ${ }^{\text {c }}$	8	4	female	274－234	99 c
A	6	Male	274－226	1.19	B	6	Fernale	274－236	1.19
A	9	Male	274.229	1.39	B	9	Female	274－239	1.39
A	12	Male	274－232	1.49	B	12	Female	274－242	1.49

2－Pin Male \＆Famale．（Not shown）274－222

Q Displays red，green．yellow．Uniform light Mex．current： 25 mA Ti－ł case style． 278－035．
四 Dperates directly from 5VDC power source．Pulse rate： 3 Hz ．Max．current： 20 mA
at 5VDC．276－036 ．．．．．．．．．．．．．．．． 129

Digital Project Accessories

［C 270－303

WHY WAIT FOR MAIL ORDER DELIVERY？

Radlo Thaek OVER 7000 LOCATIONS IN NINE COUNTRIES

"ONE CENTERS"

A PENNY MORE GETS YOU TWO

Spectrol

"SKINNY-TRIMS"

POTENTIOMETERS

oresar var. wo. apo vour

1N4000 Epoxy Rectifiers

$\frac{\text { 3ELEMENT }}{120 \text { VAC HOTPLATE }}$

1 AMP	20	for
1000 VOLT	$\$ 2.49$	
MINI RECTIFIERS		

1 AMP
20 for
1000 VOLT MINI RECTIFIERS
,

```
6-OPTO-COUPLER, 1500V isolation, hobby material, u (est(#2629A)
- 6-2N915 UHF TO-18 TRANSISTORS(41423)
- 75-MOLEX SOCKETS, TYpe M1938-4, makes 16 10 40 pin sockets (#1609).
- 6-CALCULATOR AC ADAPTOR IACK, standard threads 3 terminals(*2316)
- 50 CTS RESISTOR NETWORK, ab& fivles and value
```



```
- 6-READOUTS, MAN-3, common Cath, LED, Hhe claw, , &DD (A 333B)
- 8-LEDS, asts sizes and shapes, red, green,yellow, amber(#3869)
- PHOTO FLASH ELECTRO.CAP, 600 MF (O 360V ($3897)
```



```
10TRRNSISTOR/LED SOCKETS, 1/4" high, 3-pc leads, plastic base,(##74)
- 5-5LIDE VOLUME CONTROLS, asst of popular values, for HIFI(#2318)
- 50 1/4 WATTERS, zitt value carbon resiston,, some 5%ers, (#5797).
```



```
S 10-TV/FM SPLICERS, Ior 300 ohm shielded (win lead. Qakelite.(#5547)..........
- 30"#30 WIRE,WRAP WIRE, fits all tools and machinet, cantinuous Iengit,(#3)
- 10-G.E. POWER TAS TRANSISTORS, D4ON1,N2, some N5,TO-220(45629)
```



```
M-NOC COEFESDENT YOLTAGEREFDIODES, Sst vole+50%(45647)
-6-5KINNY TRIM POTS, PRECISION,50% Yield('(33B9)
E 60-pC-PRECUT, PRETINNED WIRE, varlous lenghts and colors(#197%)
-5 OUAL DIGIT READOUTS, H.P, SOB2 TYpe, Bubble Magnifle, (H5748
-4 CAACULATOR KEYBARDS,, i7 keyI and up, multi- -unction,(#5777)
- 10-5K POTS, audio taptr, plastic snap-in mounting(*5124)....
- 50-1 AMP ZENERS, wide astl of values, unlested($1966)
-12-SCR'S& TRIACS,10 AMP, asst values, untested('(2087)
- 3-QUADRACS, 10 AMP, 100% prime, 50-100-200V, TO-220(45048).
- 20-MINI RECTIFIERS, 1%/ AMPS, 25V, epoxy, axial(w5374).
- 10-2N3704 TRANSISTORS, silicon, to-9%%, case, h(e-300 100%(k5625)
S0-IF RANSFORMERS, asit sizer (a3A9)
```



```
-4-1.5V SLVER OXIDE WAT, (1)
S LOO RED BLOCK DISC CAPS, assl values,50%, material($1698).
10-INSTRUMENT KNOBS, ass1 sylyes and colors, %'shaft(45121)
- 4-MINE HOLDERS, for CB's and other mobile rigs(55634)
```



```
- 20-UPRIGHT ELECTROS, assI'd values & capacilance.(*3226A)
-1-UHF TUNER, solld state, slandard trpe(#2927).
```



```
20-1N4148 SWITCHING DIODES, I nsec. 2xial(A3000)
6-10 AMP QUADRACS, w/rigger diode up 600v(#3620).
```



```
- 40-SQUAREDISC STYLE CHOKES, color coded (H3203)
```



```
- 6-TRANSTORS TRANFORMERS, Audio, inter, Etc mini(4)
& 15PRRNTE CKT TRIMMER POTS, ast values, elec(#3346)
```


*Buy any item on this page and get 2nd item of the same cat. no. for only one penny!

- 25-DTL FAIRCHIIDIC's, gates and flip flops, Dip, 100\% (4 3709)
- $13^{3 \prime} \times 4^{\prime \prime}$ DOUBLE SIDED PC $80 A R D$, hi-quallur, copper plated, ($\# 56941$
- $13^{3 \prime} \times 4^{\prime \prime}$ DOUBLE SIDED PC $80 A R D$, hi-quallur, copper plated, ($\# 56941$
- 30-RADIO AND TV KNOBS, asst styles, sizes (H217).
60-1UQULAR CAPACIT ORS, asst. volts and sizes(*219)
4-ROCKER SWITCHES, DPDT, solder tab leads, (*3302)
- 50 -POWRER RESISTOTSS, 3, 5,7 , w. arial, Pop sizes (\#228)
- $\$ 25$ SURPRRSE, al k inds of paris in a pak ((294).
- 12-PANEL SWITCHES, rotary, slide toggle etc (\#29)

- 50-MICA CAPACITORS, asst values(\#373).
- 10-SETS S RCA PLUCS AND IACKS, phono(*402)
- 60 DISC CAPACITORS, ass values long leads (H437)

- 35-SILVER MICASS, red backs, axial, as sild (4555)
- 3-SUSH BUTION, RPST, PANEL, NA,
- 100-GERMANIUM DIODES, arial leads, utes (\#\#642).
- 100-PRINTED CIRCUIT $1 / 2$ WATT RESISTORS, Asst (\#1060)
- 12-T RANSISTOR SOCKETS, asst np n and Pnp types((\%651)
 - 50-3 A MP SILICON RECTIFIERS, axial, assi V 1 B655).
S0-POLYST YRENE CAPS, plastic coated, prec. (\# 10.52
30-4" CABLE YIIES, non-slip white plastic (\#5217)
- 2. 5.1V, $5 \%, 10 W$, STUD ZENER, no- 6 case(45 5277).
- 10-RCA PHONO IACKS, chasis, mount, teflon base i\#551
- 15-THERMISTORS, assi types, styles \& values (\#204B).....
- 25 -MFIAL CAN TRANS., asst, prime , hobby, TO-1, TO-5, TO-18, (+26031 .
1-VOLTAGE REGULATOR. TO202 case, 12V $600 \mathrm{MA}(\% 1900)$
- 2-3 DIGITS ON A DIP, LED, red, DL-33 (a1887)
- 3-MM5262 2K DYNAMIC RAM, specify type (\#3459
- $10-2$ NT1 HIGH SPEED SWIMC HING TRANSISTORS, TOIB, npn (\#3374)
- 2-15W HI POWER TRANSISTORS, 220V. nDn, TO66 (42797)

1-MM5312 DIGITAL CIOCK CHIP, 100\%/A 1525) ….....
2 2-MMST25 4 PUNCTION CALCULATOR CHIP, 100\%, (4203
3-10 AMP 25V BRIDGE RECT, comb style (E 2447)

- 6 -IINEAR SWITCHING TRANSISTORS, 2 N2905, Pnp, TOS $(H 3375)$
50-2 AMP CY LINDRICAL RECT. UP to IK, UEest iHADOS)

-10-2 N2222 (or equiv.), TO-10) metal case (a 1992)
- 10-DATA ENTRY SWITCHES, SPST, 1 amp, norm open 125Vien 321).

-1-2N5001 80V TRANSISTORS STUD(\#2800)

 Cinp, Kr und Mod. Tranathurn, wnd Na Lunal Simi

MOTOROLA STYLE

 "SANDY DISC"10 AMP
RECTIFIERS

- Heavy Sand Type

Hermat Constructlo

"BEEM -O- LIGHT"

LASER DIODES

LED

WATCH GUTS
 2 for
$\$ 1.50$
. 5 ozcusaisn

HOW TO ORDEF

mona numer we.". .".

POLY PAKS ${ }^{\text {® }}$
SO. LYNNFIELD. MA
01940
BE PHONED:
Terme: Add Postage Rated: Net 30
Phone: 1617) 245.3828 .
Retail: 16.18 Del 3828.
M/N/MUM OROER: Carmine St.
MINIMUM ORDER: 58 Wakefield, MA

I.C. Socket Prices
Slashed

\qquad

for malion

\qquad

LCD Quartz Alarm Chronograph with calendar and dual time zonel! Watch is the same as Seiko but you pay a lot more for the name! Features:

24 hour alarm
Chronograph counts up to 12 hrs., 59 mins. 59.9 sec

- Precision of chrono up 10 $1 / 10 \mathrm{sec}$ imdicated by 10 moving arrows!!
Lap time fwith chrono run ning uninterrupted)
Time displays by LCD for hour. min, sec, day, date of the week and AM/PM. Calendar gives out date-day Dual time zone for any two cities of the world at your. own choice.
With light switch so allow you to see the time in the dark
$\$ 65.50$

JUMBO

1" LED ALARM CLOCK MODULE

Assembled not a k।
 12 hours red LED displav 12 hours real rime format 24 hours alarm audio output (just add speaker)

- Power fallure indicator
* Count down timer 59 mins. - 1216 V AC $50 / 60 \mathrm{~Hz}$

10 min. snooze con trol $\$ 8.50 \mathrm{EACH}$
$n+1 \mathrm{~m}^{201}$
Transformer $\$ 1.75$

MIEW MARK III $\{\underbrace{\substack{\text { Stiopt } \\ \text { LED Vor } \\ \hline}}$ Sterco liavell andiciation kıt with arc-shape chs play panell! This Mark HII LED level indicator is new design PC board with an arc-shape 4 colors LED display (change color from red, vellow, green and the pesk output incicated by cose redi, The power range is very large, from 30 18 to +5 dB The Mark ill indicator is applicable to 11 watt
200 watts amplifier operating voltage is 3 V g DC at max 400 MA . The curcuit uses 10 LEDs per channel. It is very easy to connect to the arn plifier. Just hook up with the speaket outputl IN KIT FORM $\$ 18.50$

ELECTRONIC

 DUAL SPEAKER PROTECTORCut off when circuit is shorted of over oad 10 protect our amplifier as well as your speak. rs. A must for OCL circuis. $\$ 8.75 \mathrm{EA}$.

FM WIRELESS MIC KIT
It is not a pack of cigarettes. It is a new FM wireless mic kit! New design PC board fits into a plasicic cigarette box. (case included) Uses a condensor micraphone to allow vow to have a better respanse in sound prekup. Transmits up to 350 fi ! With an LED indicator to signal the unit is on. KIT FORM
$\$ 7.95$

DIGITAL AUTO SECURITY SYSTEM

3-WAY PROTECTION!

This alarm protects you and itself! Entering protected area will set it off, sounding your car horn or siren you add. Any change in voltage will also trigger the alarm into action. If cables within passenger compartment are cut, the unit protects itself by sounding the alarm SPECIAL \$19.95
ALL UNITS FACTOMY ASSEMBLED AND TESTEG-NOT A KITI

AAMAAMAMAAAAMA GREEN COLOR 0.6" LED ALARM CLOCK

$10: 08$

- 24 hr . alarm

10 min . snooze time - AM/PM indicator

- Power interrupt inctication - Green color 0.6" display - 110 V AC 60 Hz inpu - Factory assembled. NOT A KIT $\$ 17.50 \mathrm{EACH}$

LCD CLOCK MODULE !

류:45

-0.6" LCD 4 digits displav
X'tal controlled circuits

- D C. powered (1.5 V battery)
- 12 hr or 24 hr . display
- 24 hr alarm set
- 60 min . countdown timer
- On board dual back up lights
- Dual time zone display
- Stop warch function

NIC1200 (12 hrl) \$24.50EA. NIC2400 (24 hr) \$26.50EA.

IWok AUDIO ABOR
 parts are pre assembled

 on a mini PC 8 oardSupply Voltage 6~9V D.C
SPECIAL PRICE $\$ 1.95 \mathrm{ea}$.
5W AUDIO AARP KIT

2 LM 380 with Volume Control Power Sudply 6~18V DC ONLY $\$ 6.00$ ea.
ULTRA SONIC SWITCH KIT

Kit includes the Ultra Sonic Transducers, 2 PC Boards for transmitter and receiver. All electronic parts and instructions. Easy to build and a lot of uses such as remote control for TV, garage door, alarm system for counter. Unit operated by $9-12$ DC. $\$ 15.50$

BUTTON CELL

NI-CD RECHARGEABLE BATTERIES
225MA/hr 1.2 V per cell $7 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$
Single Cell $1.2 \mathrm{~V} \quad \$ 1.20$
4 cells stack $4.8 \mathrm{~V} \quad \$ 4.80$
5 cells stack 6 V
special voltage order
accepted at $\$ 1.30$ per
. accepted at $\$ 1$.

BATTERY POWERED

 FLUORESCENT LANTERN FEATURESFEATURES Circuitry: designed for operation by high effiecient, high power silicon transistor which enable illuminotion maintaun in a standard level even the battery supply drops to a certain low voltage.
$9^{\prime \prime}$ OW cool/daylight miniature flourescent tube. Easy sliding door for changing batteries. Stainiass reflector with wide angle increasing lumi-
nation of the fantern.

- $311 /$ digits display
- 200 hours 9 V battery life
- Auto zero; polarity; overrange indication
- 100MV DC F.S. sensitivity - 19 ranges and functions - D.C. volt: 0.1 MV to 1000 V - A.C. volt: 0.1 V to 600 V - Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ - D.C. current: $0.01 \Omega 2$ to 100 MA CALLFOR OUR DISCOUNTED PRICE

60W + 60W STEREO AMPLIFIER

COMPLETED UNIT-NOT A KIT!
OCL rear amp. \& low noise pre amp. with bass, middle, treble 3 -way tone control. Fully assem bled and tested, ready to work. Total harmonic distortion less than 0.5% per channel at 8Ω Power supply is 36 V 3 AAC or DC. Complete unit assembled and tested $\$ 49.50$ ea. power transformer
$\$ 9.50$ ea.
STREET ADDRESS
CITY \qquad STATE ZIP
PHONE CHARGE CARD \# AE VISA
EXP. DATE
SPECIAL OISCOUNTS
c.o.D. \qquad UPS POST NET 10th OF THE MONTH
PO
ALL ORDERS SHIPPED PREPAID - NO MINIMUM - COD ORDERS ACCEPTED - ALL ORDERS SHIPPED SAME DAY OPEN ACCOUNTS INVITED - California Residents add 6% Sales Tax. PRICES SUBJECT TO CHANGE WITHOUT NOTICE. \$35-\$99 \$100-\$300 10\% 24 Hour Phone Service - We accept American Express/Visa/BankAmericard/Master Charge
\$301-\$1000

RCA Cosmac Super Elf Computer \$106.95
Compare features betore you decide to buy any
other comouter. There is no other computer on other computer. There is no other computer on
the market today that has all the desirable benefits of the Super Ell for so little money The Super Elt is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine language and yet it is easily expanded with additional memory, Tiny Basic, ASCI Keyboards, video character generation, etc.
The Super Ell includes a ROM monitor for program loading, editing and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the unique Quest address and data bus displays before, during and atter executing instructions. Also. CPU mode and instruction cycle are decoded and displayed on eight LEO indicator lamps.
An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a music or using many music programs already writen. The speaker amplifier may also be used to drive relays for control purposes.
A 24 key HEX keyboard includes 16 HEX keys plus load, reset, run, wail, input, memory pro-

Super Expansion Board with

 This is truly an astounding value! This board hasbeen desioned to allow you to decide how you want it optioned. The Super Expansion Board comes with 4 k of low power RAM fully addressable anywhere in 64 K with built-in memory protect and a cassette interiace. Provisions have been made for all other options on the same board and it fits neatly into the hardwood cabinet alongside the Super Elf. The board includes slots 2716) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor $\mathbf{\$ 1 9 . 9 5}$ is available as an on board option in 2708 EPROM which has besn preprogrammed with a program loader editor and error checking multi file cassette read/write software, (relocatible cassette file) another exclusive from Ouest. It includes register save and readout, block move capabiitity and
video graphics driver with blinking cursor. Break points can be used with the register save feature to isolate program bugs quickly, then follow with single step. The Super Monitor is written with subroutines allowing users to take advantage of
monitor functions simply by calling them up

Auto Clock Kit

$\$ 15.95$
OC clock with 4-50" displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated, comp. instructs. Add $\$ 3.95$ for beau tiful dark gray case. Best value anywhere.

RCA Cosmac VIP Kit $\mathbf{\$ 2 2 9 . 0 0}$ Video computer with games and graphics. Fully assem. and test. 3249.00

Not a Cheap Clock Kit \$14.95 Includes everything except case, 2-PC boards 6-.50" LED Displays. 5314 clock chip. trans former, all components and full instructions Orange displays also avail. Same kit w/. 80 displays. Red only. $\mathbf{\$ 2 1 . 9 5}$ Case $\mathbf{\$ 1 1 . 7 5}$

60 Hz Crystal Time Base Kit $\$ 4.40$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC board, IC. crystal, resistors. capacitors and trimmer
tect, monitor select and single step. Large, on board displays provide output and optional high and low address. There is a 44 pin standard connector for PC cards and a 50 pin connector fo the Quest Super Expansion Board. Power supply and sockets for all IC's are included in the price plus a detailed 127 pg . instruction manual which now includes over 40 pgs , of sottware info, in. cluding a series of lessons to help get you started and a music program and graphics target game.

Remember, other computers only offer Super El features at additional cost or not at all. Compare belore you buy. Super Elf Kit $\$ 106.95$, High address option \$8.95, Low address option 59.95. Custom Cabinet with drilled and labelled plexiglass tront panel $\$ 24.95$. NiCad Battery Memory Saver Kil \$6.95. All kits and option also come completely assembled and tested.
Questdaia, a 12 page monthly soltware publica lion for 1802 computer users is available by sub scription for $\$ 12.00$ per yea

Attention Elf Owners
 New products in hardware and software coming soon.

Tiny Basic cassette $\$ 10.00$, on ROM $\$ 38.00$ original Elf kit board $\$ 14.95$

Cassette Interface $\$ 89.95$

Improvements and revisions are easily done with
the monitor. If you have the Super Expansion Board and Super Monitor the monitor is up and running at the push of a button.
Other on board options include Parallel Input and Outpul Ports with full handshake. They allow easy connection of an ASCHI keyboard to the input port. RS 232 and 20 ma Current Loop for teletype or other device are on board and if you need more memory there are two $\mathrm{S} \cdot 100$ slots for static RAM or video boards. A Godbout BK RAM board is available for $\$ 135,00$. Also a 1 K Super Monitor version 2 with video driver for full capability display with Tiny Basic and a video intertace mity board. Parallel I/O Ports $\$ 9.85$, AS 232 S4.50,
TTY $20 \mathrm{ma} \mathrm{I/F} \$ 1.95, \mathrm{~S} 100 \mathrm{\$ 4.50}$ A 50 pin Try 20 ma I/F $\$ 1.95, \mathbf{S - 1 0 0} \$ 4,50$. A 60 pin $\$ 12.50$ for easy connection between the Super Elf and the Super Expansion Board.
The Power Supply Kit for the Super Expansion Board is a 5 amp supply with multiple positive and negative voltages $\$ 29.95$. Add $\$ 4.00$ for shioping. Prepunched frame $\$ 5.00$. Case $\$ 10.00$. Add $\$ 1.50$ for shipping.

Digital Temperature Meter Kit

Indoor and outdoor. Switches back and forth. Beautiful. 50" LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure -100 to +200 F . tenths of a degree, air or liquid. Very accurate.
39.95

Beautiful woodgrain case w/bezel $\$ 11.75$
NiCad Battery Fixer/Charger Kit
Opens shorted cells that won't hold a charge and then charges them up, all in one kit w/full parts and instructions
$\$ 7.25$
PROM Eraser Will erase 25 PROMs in 15 minutes. Ulitaviolet assembled $\$ 34.50$

Rockwell AIM 65 Computer

6502 based single board with full ASCll keyboard and 20 column thermal printer. 20 char. al phanumeric display, ROM monitor, fully expandable. $\$ 375.00$. $4 K$ version $\$ 450.00$. $4 K$ Assem-
bler $\$ 85.00$. 8 K Basic Interpreter $\$ 100.00$. bler $\$ 85.00$. BK Basic Interpreter $\$ 100$
Power supply assembled in case $\$ 60.00$.

ELECTRONICS

Multi-volt Computer Power Supply $8 \mathrm{v} 5 \mathrm{amp}, 18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp} .-5 \mathrm{v}$ $.5 \mathrm{amp}, 12 \mathrm{v} .5 \mathrm{amp} .-12$ option. $5 v,{ }^{-12 v}$
are regulated. $\mathrm{Kit} \$ 29.95$. Kit with punched frame are regulated. Kit $\$ 29.95$. Kit with D
$\$ 34.95$. Woodgrain case $\$ 10.00$.

Video Modulator Kit

$\$ 8.95$
Convert your TV set into a high quality monitor
without affecting normal usage. Complete kit without affecting normat
with full instructions.
2.5 MHz Frequency Counter Kit Complete kit less case $\$ 37.50$ 30 MHz Frequency Counter Complecte kit less case
$\$ 47.75$
$\$ 19.95$
79 IC Update Master Manual $\$ 3500$ Complete IC data selactor, 2500 pg , master reference guide. Over 50,000 cross references. Free update service through 1979. Domestic postage $\$ 3.50$. Foreign $\$ 5.00$. 1978 IC Master closeout

Stopwatch Kit
$\$ 26.95$
Full six digit battery oparated. 2-5 volis. 3.2768 MHz crystal accuracy. Times to 59 min., 59 sec., $991 / 100 \mathrm{sec}$. Times std., split and Taylor. 7205 chip, all components minus case. Full instructions.
Hickok $31 / 2$ Digit LCD Multimeter Batt/AC oper. 0.1mv-1000v, 5 ranges. 0.5% ohm-20M ohm. DC curr. 01 to 100 ma . Hand held, $1 / 2$ " LCD displays, auto zero, polarity, overrange. \$74.95.

S-100 Computer Boards	
8K Static RAM Kit Godbout	$\$ 135.00$
16K Static RAM K Kit	265.00
24K Static RAM Kit	423.00
32K Dynamic RAM Kit	310.00
64K Dynamic RAM Kit	470.00
8K/16K Eprom Kit (iess PROMS)	$\$ 89.00$
Video Interface Kit.	$\$ 139.00$
Motherboard $\$ 39$.	Extender Board $\$ 8.99$

S-100 Computer Boards
16 K Static RAM Kit
24K Static RAM Kit
32 K Dynamic RAM Kit
8K/16K Eprom Kit (less PROMS)
Mother

FREE: Send for your copy of our NEW 1979 QUEST CATALOG. Include 28 a stamp.

MICROCOMPUTER

BOARDS

SYM-1 MICROCOMPUTER BOARD Marcumate compantintity wil Kim.

SYM-1 \$329.00 NEC MICROCOMPUTER TK-BOA

 Cilcuaionerpan nno B oig niant "a diqis iot TK-80A $\quad \$ 299.00$ Rockwell International AlM65

 audio catselte recordars and gwas extermal acceess to Inchuded as slandard dare a ocmprehensive AIM 65 Liser's Harrmare Manul an R6500 Piogrammin Mas00 and an Alm ES rehematic Alm 65 is pack Manual and and to inches long. the kevboard mie 1312 inchas wide wide and A inches long They are conee is 12 inches AIM65 $\quad \$ 375.00$

MLATIELES MEMCRY MEALE MULTIBUS MEMORY
 mamomy only
\qquad
3IzE

MICROPROCESSOR	
CHIPS	
CPU'S	
Part No.	Price
$8080 A$	5.50
8085	12.95
6800	7.95
INTERFACE	
SUPPORTCIRCUITS	

Part No.	Price	Part No.	Price
8212	1.98	8255	$\mathbf{4 . 9 5}$
8214	3.95	8257	10.95
8216	1.98	8259	14.95
8224	2.75		
8226	1.98	6810	3.95
8228	3.98	3.75	6820
8238	3.98	3.75	6821
8251	5.50	6850	3.95
8253	14.95	6852	4.95
			4.95

Special of the Honth 1702A-6

MOS Static RAM's

 Part No. Price 2102LFPC \$7.49 \$1.14 x 350Ns (Low Power)
2102.1 PC Se9 0.94

2114	
2595	

aK (1K x 4) 300NS
2114
$\$ 6.50$
4K ($1 \mathrm{~K} \times \mathrm{x}$) 450NS

MOS Dynamic RAM's

Part No. Price 4K 4027 \$2.95
$4 \mathrm{~K}(4 \mathrm{~K} \times 1$) 300 NS 16 PIN
16K 416.3 \$9.95
16K(16Kx1) 200Ns 16PIN
16K 416.5 \$7.95
16K(16K×1) 300NS 16PIN

UART's

Part No. Price
AY5-1013A \$450 \$4.25
AY3-1015 \$55 $\$ \mathbf{5 . 2 5}$ IK CMOS RAM
Part No. Price 5101 \$4:95 \$4.50 450Ns (Low Power)

	NUMEER	ant	
16 K	Msc-018\%	S8C-016	\$ 715
32 K	mbC.032/8	s8C.032	1125
48k	Mcic.047/8	S8C.008	${ }^{1735}$
${ }^{\text {64K }}$	Msc.osen/	SBC-O64	${ }_{1125}^{1295}$
- 3 34K	M MCC.032/18	¢	-1795

Texas Instruments
Low Profile Sockets
Finest Quality Socket available in the world. Nobody can match Texas instruments quality - a unique combination of I.C. technology and multimetal expertise.
Over one million pieces in stock.
Contacts Price Contacts Price

contacts	Price	Contacts	Price		
8 PIN	.08	22 PIN	.22		
14 PIN	.12	24 PIN	.24		
16 PIN	.14	28 PIN	.28		
18 PIN	.18	40 PIN	.40		
20 PIN	.20				

LINEAR I.C.'S

LM324N	.49	Quad Op Amp
LM33NN	.49	Quad Comparator
LM55N-8	.29	Timer
LM556N-14	.59	Qual Timer
LM723CN	.36	Voltage Regulator
LM723CH	.39	Voltage Regulator

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Artiya

12 Merc . counter sales.
Behind Zores onick. Mass 01760
Telephone Orders \& Enquiries (617)879 0077
in CANADA
5651 FERRIER ST
MONTREAL, OUEBEC DOOWNSVIEW. ONTARIO
MINIMUM ORDER $\$ 10.00 \bullet$ ADD $\$ 2.00$ TO COVER POSTAGE \& HANDLING
Foreign customers please remil payment on ar money order in American dollars.
baxter centre vancouve SalesCorp.

LM741CH	.37	Op Amp
LM741CN	.24	Op Amp
LM1458N-8	.49	Dual Op Amp
RC4558N-8	.45	Dual Op Amp

DB25P (as pictured) PLUG (Meets RS232)

OB25P (as pictured)	PLUG (Meets RS232)	$\$ 2.95$
OB25S	SOCKET (Meets RS232)	$\$ 3.50$
OB51226-1	Cable Cover for DB25P or D825S	$\mathbf{\$ 1 . 7 5}$
	PRINTEQ CIRCUIT EDGE-CARD	

	PINS (Solder Eyalet)	$\$ 1.95$
$\mathbf{1 5 / 3 0}$	PINS (Solder Eyelat)	$\mathbf{\$ 2 . 4 9}$
$\mathbf{1 8 / 3 6}$	PINS (Solder Eyelet)	$\mathbf{\$ 2 . 9 5}$
22/44		$\$ 6.95$
$50 / 100$ (.100 Spacing)	PINS (Wire Wrap)	
50100 (.125 Spacing)	PINS (Wire Wrap)	R681-1

- Extruded aluminum case (black) - Includes all components, case and wall trensformer
 JE730 \$14.95

6-Digit Clock Kit

- Four 6301 ht . and two 3 - Ules MM5314 elock ehip
 * Switches for hours, minutes and hoid functions
 - Simulated walnut case
 - 115 VAC operatlon - 12 or 24 hour operatio
 * Includes atl compone - Sizes $64 \mathrm{H} \times 3 \mathrm{~h} \times 1 \mathrm{~h}^{2} 4$
 JE747 \$29.95

Bright
ode display

- Uses MM5334 clock ehlp
- Switches for hours. minutes
ond hold modes
- Hrs. easily viewable to 20 ft . - Simulated wolnut case

JE701
12 or 24 hr operation
-Inci ol components, case \&
wall transformer
6-Digit Clock Kit \$19.95
REMOTE CONTROL
TRANSMITTER \& RECEIVER

Digital Stopwatch Kit - Use Intersil 7205 Chip

- LED display (red)
- Times to 59 min .59 .59 sec.
- Quartz crystal controlled

Three stopwatches in one: single event, split
 - Uses 3 penlite batterles " 512 IV: $^{4.5^{\prime \prime} \times 2.15^{\prime \prime} \times .90^{\prime \prime}}$

JE900 $\$ 39.95$

F5] CONTINENTAL SPECIALTIES	
Proto Boared 203	P
DM35	
	Counter
Ins	\%

$\$ 75.00$

COMPUTER CASSETTES

-6 EACH 15 MINUTE HIGH - PLASTIC CASE INCLUDFD 12 CASSETTE CAPACITT

- ADDITIDNAL CASSETTES - ADDITIDNAL CASSETTES CAS-6
\$14.95
(Case and 6 Casseties)
$\$ 29.95$ Kit
Function Generator Kit

This is a 63 -key, terminal keybearo newly manufactured by a large computer manufacturer if is unencoded with SPST keys. $x 4^{\prime \prime}$ base suits most application IN STOCK $\$ 29.95 / \mathrm{each}$.

Hexadecimal

Unencoded

Keypad

19-key pad includes 110 keys
ABCDEF and 2 optional keys and a
shift key. \$10.95/each

CIRCLE NO. 45 ON FREE INF ORMA TION CARD

FAIRCHILD RED LED LAMPS
』FLV5057 Medium Size Clear Case REDEMITTING These are not retested off-spec units as sold by some of our competition These are lactory prime. tirst qually, new units

"THE COLOSSUS"
FAIRCHILD SUPER JUMBO LED READOUT
A full .80 inch character. The biggest readout we have ever sold! Super efficient. Compare at up to $\$ 2.95$ each from others!

YOUR CHOICE $\$ 149 \mathrm{EA}$
FND 847 Common Anode
FND 850 Common Cathode
(6 for \$6.95)

16K DYNAMIC RAM CHIP WORKS IN TRS-80 OR APPLE II

 16K $\times 1$ Bits 16 Pin Package Same as Mostek $4116-4$ 250 NS access 410 NS cycle time Our best price yet for this state of the art RAM 32 K and 64 K RAM boards using this chip are readily available These are new, fully guaranteed devices by a major migVERY LIMITED STOCK!

"MAGAZINE SPECIAL" - 8 For $\mathbf{\$ 7 9 . 5 0}$

NATIONAL SEMICONDUCTOR

JUMBO CLOCK MODULE

FAIRCHILD PNP

"SUPER TRANSISTOR" 2N4022 TO. 92 Plastic Sillcon PNP
Driver High Current VCEO-40 HFE-50 10 150 at 150 MA FT- 150 MHZ A Asuper BEEFED UP" Version of the 2N3996 8 FOR $\$ 1$

FET SALE!
2N4304 Brand New
N Channel، Junction Fe BVGDO-30V IDSS-15 MA Typ. 1500 uMHOS TO-18 Plastic Case. Mig. by Teledyne. 6 FOR $\$ 1$

EXPERIMENTER'S CRYSTAL
: 262.144 KHZ This irequency is 2 to the 18th power Easily divided down to any power of 2 . and even to 1 HZ New by CTS-Knight A 55 value. 4.00 \$1.25 each

MINI PROJECT CASE
Black Molded Plastic ${ }^{2 \%} 4 \times 1 \% \times 2$ in. Has open front. with mounting ears so unit can be easily attached to auto dash, etc Case has molded card guides for mounting PC Board inside. Perfect for digital clocks, car burglar alarms. or almost any electronic project Can also be used for encapsulating circuits or modules 754 each Super Special

MOTOROLA POWER
TRIAC
TO-220 CASE
15 AMP 400 PRV
SPECIAL: 894 each 5 FOR $\$ 3.95$

With Lugs, \#LM-1 754 ea. 3 For \$2

EXPERIMENTER'S HEATING PLATE

Large Manutacturers Surplus. $51 / \times 10 \%$ in Made of $3 / 8 \mathrm{in}$. tempered glass with heating element laminated on back. Works off 120 VAC . Protected by thermostat and two thermal luses. Rated 120 Watts. Use for any heating applications. Perfect for heating ferric chloride to increase PC board etching efficiency. Units are brand new won-submersible
WHILE THEY LAST - $\$ 2.99$ each

COMPLEMENTARY POWER TRANSISTORS

 SILICON NPN AND PNP. TO-220 CASE. VCEO - 40 V PD- 30 WATTSFOR AUDIO POWER AMPS, ETC.
YOUR CHOICE TIP30-PNP 3 FOR $\$ 1$

SONY 30 WATT AUDIO AMP MODULE

\#STK-056. 30 WATTS SUPER CLEAN AUDIO. 20 HZ to $100 \mathrm{KHZ} \pm 2 \mathrm{DB}$. HYBRID, SILICON, SELFCONTAINED MODULE. ONLY $13 / 4 \times 21 / 2 \operatorname{IN}$. WITH DATA. COMPARE AT UP TO TWICE OUR PRICE!
sg ${ }^{99}{ }_{\text {EACH }}$

CIRCLE NO. 3 ON FREE INFORMATION CARD

Abstract

74×2 o o $\cdots 0.487^{7}+141$

STANDARD SHIPPING CHARGES	SPECIAL SHIPPING CHARGES
If your Merchandise Total is between.	For following special services, please include:
S 0.00 \$ 4.99.	COD S 1.00 additional
S 5.00 \$24.99. add $\$ 1.00$	UPS Bint. 52.00 odditional
	Pastal insurance 51,00 additional
\$ 50.00-\$99.99. add \$0.50	Speckid Dellivery St. 25 additional
\$100.00 and Us NO CHARGE	
The above charges include your choice of shlpping in U,S. vie First Class Mail or UPS.	

Abstract

 MODEL BW-2928 is zame as sbow, but tor nen. 28 to 28 wire. CATALOC NO. $25-02628$. 99.95 Type WD-30-Y is umme as soove but conlaim YELLOW wrr. CATALOG NO, 26-18950 53.95 MODEL MOS- 90 is same an obow but it is for 30 - to 40-pin ICS, CATALOO NO, 25-21300 57.95 ALL OTHER O.K. COMPONENTS ARE ALSO AVAILABLE FROM I.C.C. VECTOR ELECTRONICS PRODUCTS. PLEASE ASK

INTERNATIONAL COMPONENTS

 CORPORATIONP. O. BOX 1837

COLUMBIA, MO 65205
PHONE: (314) 474-9485

CIRCLE NO. 28 ONFREE INFORMATION CARD

Operation Assist
 you need information on outdated or rare

 equipment-a schematic. parts list. etc.--another reader might be able to assist Simply send a postcard to Operation Assist Popular Electronics. 1 Park Ave. New York NY 10016 For those who can help readers. please respond directly to them They II apprectate it 'Only those llems regarding equipment not avallable from normal sources are published)Philco model 39-85 multiband radio. Schematic and parts list needed. Tim Floyd, 3113 N. Nortolk St., Indianapolis. IN 46224.

Tektronix type 564 oscilloscope. Need schematic and operation manual. Gerald P. Cuozzo, 499 Innes Rd., WoodRidge, NJ 07075.

Jackson Bell model 62 cabinet radio. Need tube numbers, schematic and transformer. Ottis Cowper, Box 92, Gatesville, NC 27938.

Stromberg Carison model PBC-600 12 station intercom. Need schematic. Dennis E. Auldridge, Rt. 3, Box 113, Killeen, TX 76541.

Pioneer AM-FM 8-track player and recorder. Need schematic and other data. Leonard Vogel, 2717-42nd St. Two Rivers, WI 54241.

Knight-Kit Tube Tester model 600A. Need source of current roll chart and tube setup information. John Sumpolec Jr., 2405 Howard Dr., Las Vegas, NV 89105.

Heathkit model VT-88 laboratory oscilloscope. Manual and schematic needed. K.J. Grammes, 836 Boichot Rd., Lansing, MI 48906.

Alled Radio model TD-1095 tape deck. Need repair and alignment manual. D. Gaumon. 704 W. Wood, Decalur, IL 62522.

Triadex-Muse electronic music computer. Schematic and service manual needed. Robert Stek, 19 Maytield Rd., Regina. Saskatchewan, Can.

Concord model 350 tape recorder. Parts source needed. Will also purchase recorder for parts. William Shuler, 244 Floradale, Tonawanda, NY 14150.

Hammarlund HO 145X receiver. Manual needed. W. Sharland, Box 693, Portland, ME 04104.

Dumont type 304A oscilloscope. Operation, service manual and schematic needed. David C. Wild, 7116 S. Birch Way, Littleton, CO 80122.

Panasonic model RF-951 AM-FM radio. Schematic or parts list needed. Terrence Myers, Box 1000. Lewisburg. PA 17837.

Heath model 012 oscilloscope. Need power transformer and manual. Randy Stanley, 5317 Lawrence Dr., Wilmington, NC 28405.

Gonset G-76 80-10M transceiver. Manual and schematic or any other data. Brad Porter. 1371 48th Ave., \#201, San Francisco. CA 94122.

Hallicrafters model S-40B receiver. Need operation manual and schematic. Bob Lowe, Box 591, Kingsburg, CA 93631.

Continental Sound model 6502 ultrasonic motion detector unit. Need schematic and specifications. E. Rubin, 19 White Cliff Lane, Nesconset, NY 11767.

Johnson Viking II transmitter and Johnson model 122 VFO. Operation manual and schematics needed. W.D. Kinghorn, 191 Grosvenor SI., Athens, OH 45701.

McDonald model CTP-300, code w6-33-24 cassette recorder. Schematics and technical information needed. Inman Ward, 305 47th St., Gulfport, MS 39501.

Hickock model 456 volt-ohmmeter. Schematic and other information needed. H.L. Keeler, 473 Carrington Rd., Bethany, CN 06525.

Mercury Electronics model 1000 conductance tube tester. Need schematic, manual and calibration data. Alan Mark, Box 372. Pembroke, MA 02359.

Century model FC-2 tube tester. Need tube charts. Michael Sacco, 1107 Dohrman St., McKees Rocks, PA 15136.

Telequipment D54 oscilloscope. Need schematic, service
and calibration manual. Richard Brush, 2006 Washington St., San Francisco, CA 94109.

Javelin Electronics model MC-930 TV camera. Need service manual. Aircraft Radio Corp., model ARC 9312. Need schematics. Dan Ogle, Box 84, Council, ID 83612.

Vibratrol modulation monitor oscilloscope. Schematic. Al Miller, 3750 Ballejo Ct. W. Jacksonville, FL 32210.

Military Surplus CV-57 and CV-89 teletypewriter converters and Hammarlund SP-600 receiver. Manuals wanted. D. Teste, Box 9064. Newark, NJ 07104.

Ampex model 6000 video tape recorder. Need service and operation manuais. Grommes model G7 stereo preamp and Hewlett Packard model 523CR electronic counter. Operation manuals and schematics needed. Kevin Kaas, Route \#3, Mora, MN 55051.

Hammarlund HZ-170A communications receiver. Manual
and schematic needed. Norman A. Rolf, 1360 Via San Juan, San Lorenzo, CA 94580.

Patterson PR15 shortwave receiver. Schematic, alignment information and/or manual. Wesley W. Harris, 9064 Old Military Rd., N.E., Bremerton, WA 98310.

Packard Bell black and white television. Need horizontal output transformer part \#89456. Thomas P. Dickey, 570 Carriage Lane, Dover, DE 19901.

Dumont model 304-H. Schematic, repair and operation manuals needed, George Dinwiddie, 4307 Parkton St., Baltimore, MD 21229.

Mitsubishi model 6P-125 micro television. Schematic or any available information. Ted L. Farrell, 660 Coronado Ave. Coronado. CA 92118.

ACA service notes volumes 1923-1928, 1929-1930. J. Allen Call. 1876 E. 2990 So., Salt Lake City. UT 84106.

EDLIE ELECTRONICS, INC. 2700 EP HEMPSTEAD TPKE, LEVITTOWN, N.Y. 11756

THERE'S A NEW MEMORY BOARD IN TOWN ECONORAM IIA, \$149 unkit/\$164 assm \& tested

The $8 \mathrm{~K} \times 8$ Econoram II has been the workhorse of many an $\mathrm{S}-100$ computer system ... and now it's improved, with features like new 4 K static chips, guaranteed 4 MHz operation, simpler layout, and low power (guaranteed maximum current is 8 W from the $8 V$ buss). We've retained all the popular features of the original - deselect switch for 4 K operation, dual 4 K block configuration with independent addressing, switchable memory protect for each block, and more. The oldest board on the block is now one of the new. est, and we think you're really going to like it.

16K MEMORY EXPANSION SET CHIP SET \$109 (3/\$320)

For Radio Shack-80, Exidy Sorcerer, and Apple machines. Compare our features with similar chip sets: 250 ns access time, low power parts used exclusively, DIP shunts included, 1 year limited warranty, and easy-to-follow instructions that make memory expansion a snap - even for beginners!

H8 EXTENDER BOARD KIT

Brand new from Mullen Computer Products, This kit really takes the hassle out of testing or troubleshooting the popular Heath H8 computer, Includes jumper links in supply lines for insertion of fuses, Ammeters, current limiters, etc. $\$ 39$

TERMS: Add $\$ 1$ handling to orders under $\$ 15$. Allow up to 5% shipping (more for power supply), excess refunded. Cal res add tax. VISA" Mastercharge call street address. Prices good through cover month of magazine. Thanks for your business!

MA1003 CLOCK AND CASE SPECIAL \$19.95

Easy to buitd: just add 12V DC and time-setting switches. MA1003 includes built-in crystal timebase - ideal for mobile operation. Beautiful bluegreen fluorescent readouts. Case includes filter and mounting hardware; available separately for \$5.95. MA1003 module available separately for \$16.50.

12V 8A POWER SUPPLY KIT \$44.50

$8 A$ continuous, 12 A with 50% duty cycle. Fold back current limiting, crowbar overvoltage protection, more. For transceivers, portable taperTV equipment, disc drives, etc. Easy to assemble . except for transformer, diodes, and filter caps, all parts mount on heavy-duty circuit board. Does not include case.

POPULAR ICs AT POPULAR PRICES

1791 MOS LSI dual density disc controller from Western Digital: $\$ 59$ with pinout and data. 1771 single density controller: $\mathbf{\$ 2 2 . 5 0}$. Low power 2102 s for 2 MHz systems: tol\$9.90. All parts of fered on a while-they-last basis.

ABOUT YOUR

SUBSCRIPTION

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99\% of our subscribers, you'll never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

An ultrasonic sensing device that triggans an Elarm whenever intruders enter the otc. Optional delay mode, uto reset. Also has connections for fire detection. Operates on 12.5 VDC. Originally sold for \$179. Only waighs 3 lbs. Order no. 8D30336.

. $\$ 49.95$

Teletype/Computer Surplus

POWER SUPPLY KIT

We supply all alectrical and electronic parts, you supply labor and machanical purts, tools and case.
Battery Charger 12VDC, 20A, 20 lbs Ord no. $7 \mathrm{C70005}$. $\$ 19.50$ Battary Chargor 12VDC, 15A, 15 jbs Ord. no.9C0089. $\$ 14.50$ Ni-Cad Battory Charger: Up to 35 VDC , 600 ma . Sh. wt. 5 lbs .
Ord no. 7C70243.
號 Logic PS Kit SV, 1A, regulated. Ord no. 7C70267. 5 to 24 VDC requlated, 5 A, sh. we. 15 lbs 6M160301 $\$ 14.88$

$\$ 6.95$

TOUCH-TONE GENERATOR Encodar chip ME8900, 2-row/8 logs as similar to MC 1440. Sold with data thequired on uses of MC 1440. No crystais | required, |
| :--- |
| 7VL70160. . . |

s
 A pair of brand-name speaker kits.
 Many more kits, raw speaker components and assembled systems

\qquad

Electrify

 Your
 Bike!

Fun and Freedom

Ride away with your own silent exciting electric drive system. New patented nonpolluting Pedalpower installs in minutes on the front wheel of any bike or Trike. Allows easy pedaling when desired. Over 20,000 sold. Powered by latest 12 -volt battery. recharges at home. Ride 100 miles for a dime. Be independent! Improve your health! Enjoy the outdoors! Time payment plan available! Added bonus: Receive free information on complete line of Electric Cars. Electric Bikes and Trikes.

MONEY BACK GUARANTEE. Call toll free: 800-257-7955*

Or send today for
FREE ILLUSTRATED BOOKLET.

General Engines Co. 5446 Mantua Blyd. Sewell, N.J. 08080 *In N.J., Alaska, or HI. . Call Collect: (609) 468-0270

Electronics Classified

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.50$ per word. Minimum order $\$ 37.50$. EX-PAND-AD* CLASSIFIED RATE: $\$ 3.75$ per word. Minimum order $\$ 56.25$. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.50$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column ($2-1 / 4^{\prime \prime}$ wide), $\$ 300.2^{\prime \prime}$ by 1 column, $\$ 600.00$. $3^{\prime \prime}$ by 1 column, $\$ 900.00$. Advertiser to supply film positives. For frequency rates, please inquire. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards - American Express, Diners Club, Master Charge, VISA (supply expiration date) - or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Olfice Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquines, contact Linda Lemberg at (212) 725-3924.

FOR SALE

FREE! Bargain Catalog-I.C.'s, LED's, readouts, fiber optics, calculators parts \& kits, semiconductors, parts. Poly Paks, Box 942PE, Lynnfield, Mass. 01940.

GOVERNMENT and industrial surplus receivers, transmitters, snooperscopes, electronic parts, Picture Catalog 25 cents. Meshna, Nahant, Mass. 01900.
LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 4750 96th St N., St. Petersburg, FL 33708
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS Bluttlon, Ohio 45817.
RADIO-T.V. Tubes- 36 cents each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students ... Construction plans - Complete, in cluding drawings, schematics, parts list with prices and sources .. . Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burgiar Alarm - Sound Meter . . . over 60 items. Send $\$ 1.00$ (no stamps) for complete catalog. Technical Writers Group, Box 5994, University Station, Raleigh, N.C. 27650.
SOUND SYNTHESIZER KITS—Surf \$14.95, Wind \$14.95 Wind Chimes \$19.95, Musical Accessories, many more Catalog free. PAIA Electronics, Box J14359, Oklahoma City, OK 73114.
HEAR POLICE / FIRE Dispatchers! Catalog shows exclusive directories of "confidential" channels, scanners. Send postage stamp. Communications, Box 56-PE, Commack, N,Y 11725

TELETYPE EQUIPMENT: Copy Military, Press, Weather, Amateur, Commercial Transmissions. Catalog $\$ 1.00$ WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! \$1.00. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, NY 11224. Phone: (212) 372-0349.
WHOLESALE C.B., Scanners, Antennas, Catalog 25 cents Crystals: Special cut, $\$ 4.95$, Monitor $\$ 3.95$. Send make, model, frequency. G. Enterprises, Box 461P, Clearfield, UT 84015.

BUILD AND SAVE TELEPHONES, TELEVISION, DETECTIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines, Carphonas, Phonevision, Dialers, Color TV Con verters, VTR, Games, \$25 TV Camera, Electron Microscope Special Effects Generator, Time Base Corrector, Chroma Key. Engineering Courses in Telephone, Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Cataiog PLUS year's subscription to Electronic News Letter, $\$ 1.00$. Don Britton Enterprises, 6200 Wilshire Blvo., Los Angeles, Calif. 90048.
NAME BRAND Test Equipment. Up to 50% discount. Free catalog. Salen Electronics, Box 82, Skokie, Illinois 60077.
NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE, North American Electronics, 1468 West 25th Sireet. Cleveland. OH 44113.
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics, 8753T Windom, St. Louis, MO 63114
UNSCRAMBLER KIT. Tunes all scramble frequencies, may be built-in most scanners, $2-3 / 4 \times 2-1 / 4 \times 1 / 2$. $\$ 19.95$. Factory built Code-Breaker. $\$ 29.95$. Free Catalog: KRYSTAL KITS, Box 445, Bentonville, Ark. 72712. (501) 273-5340.
BUILD THE ARTISAN ELECTRONIC ORGAN . . . The 20th century successor to the classic pipe organ. Kits feature modular construction, with togic controlled stops and RAM Pre-Set Memory System. Be an ar-ti-san. Write for our free brochure. AOK Manufacturing. Inc., Box 445, Kenmore, WA 98028.

B8K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AW, 948 Prospect, Elmhurst, IL 60126.

WRITE US FND WETLL SHND YOU THIE BNST CATALOG YOU EUER RERD!

Nokidding. Speakerlab's catalog took longer to write than some of our competitors have been in business. In fact. we created an industry by building great kits so you can aftord great speakers." Our catalog is an
invaluable manual of speaker function and design. And it will introduce you to it will introduce you to the finest speaker kits made anywhere...with the strongest money-back guarantee. Find out for yourself...FREE. FREE,

POLICE/FIRE SCANNERS, crystals, antennas, CBs, Radar Detectors. HPR, Box 19224, Denver. CO 80219.
CB RADIOS, VHF-UHF Scanners, Crystal, Antennas, Padar Detectors. Wholesale. Southland, Box 3591, Baytown, TX 77520.

UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7, Box 265B, Hot Springs, Arkansas 71901. (501) 623-6027.
MONTHLY PICTURE FLYER. Quality Surplus Electronic parts. Low Prices. Star-Tronics. Box 683, McMinnville, OR 97128.

BARGAINS GALOREI Collectors, hams, experimenters, dealers! Buy-sell-trade through Electronics Trader monthly swap sheet, only $\$ 6.00$ year or send stamp for sample. Electronics Trader, Darwin, CA 93522.
RECONDITIONED TEST EQUIPMENT $\$ 1.00$ for calalog. WALTER'S TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806. (415) 758-1050.

NEGATIVE ION GENERATORS AND ACCESSORIES. (Kita). Fascinating details- $\$ 1.00$. Golden Enterprises, Box 1282-PE, Glendale. Arizona 85311.

TRANSISTORS, IC's, RF-Power, for communications, TV audio repairs, 2SC756A-\$2.00, 2SC1307-\$2.15, 2N6084$\$ 14.50$. STK $439-\$ 8.75$. Many more. Free catalog. B\&D En terprizes, Box 32, M. Jewett, PA 16740. (814) 837-6820.

RECEIVE FREQUENCY ADAPTOR. converts your receiver to digital readout. Davis Electronics, 636 Sheridan, Tonawanda, NY 14150. 1-716/874-5848.
CARBON FILM RESISTORS $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W} \cdot 1.7$ cents each. Free sample/specifications. Other components. COMPONENTS CENTER, Box 295, W. Islip. New York 11795.

PRINTED CIRCUIT BOARDS, your artwork, $45 ¢$ sq. in. single sided, $60 \not \subset$ sq. in. double sided. Mail your order now, or send for free details. Digitronics, P.O. Box 2494, Toledo, OH 43606.
FLAME SPEAKER. Sound from a flame. Send postage stamp. Daniel Burns, 603 Maple, Ottawa, Kansas 66067.
NEWI Digital tach module. Two-digit red display, $\$ 27.50$ each ppd. Free Info. MARECECK INSTRUMENTS, 1904 Paige Place, Albuq., NM 87112.
LOW COST ELECTRONIC PARTS!!! Send for FREE flyer. ALL ELECTRONICS CORP., 905 S. Vermont Ave., Dept. F. Los Angeles, CA 90006.
DB-100-ADJACENT CHANNEL FILTER - most incredible fiter ever offered to civilian market. Replaces any . 455 K.C.I.F. filter to increase selectivity up to 100 DB 's. Works on any receiver, transceiver, etc., using . 455 K.C.I.F. Free fact sheet, or send $\$ 29.95$. SSB Publications, Box 960 , Hyannis. MA 02601.

PLANS AND KITS

AMAZING ELECTRONIC PRODUCTS

LASEES SUPER POWCRED. RIFIE, PISTOL, POCKET SEE IN DAAK. PYRO

 OISRPIER EEERGY PRODUCIMG SCIEATIFIC DETECTEA, ELECTRIFIMG
CHEMCAL ULNASOHIC, CB AERO AUTO ANO MLCH OEVCES, HUNDREO MORE ALL NEW PLUS IEFO UNLTO PARTS SERVICE

INFORMATION infimiled
catalog $\$ 1$
Dept. E8, Box 716, Amherst, NH 03031

BUILD YOUR OWN SYMPHONY OF SOUND!
 It's fun and easy-takes just min utes a day! Complete kits for organs, pianos, strings, phythms amplifiers, synthesizers. Also factory assembled. 104-page catalog $\$ 2.00$
 -1표
 Wersi Electronics, Inc.
 Dept. 2D, 1720 Hempstead Road
 Lancaster, PA 17601

ELECTRONICS KITS: For information, send self addressed stamped envelope. GI Kits, Box 2329, Garland, TX 75041.

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.

TV-OSCILLOSCOPE CONVERTER externally adapts TV into audio frequency oscilloscope. Info, $\$ 1.00$, Plans $\$ 7.50$, with P.C. $\$ 15.00$, complete kit $\$ 60.00$. Evolutionics, Box $855-1$, San Rafael, CA 94902.
PRINTED CIRCUIT Boards from sketch or artwork. Kit projects. Free details. DANOCINTHS Inc., Box 261, Westland, MH 48185.

CB/HAM ACCESSORIES, kits, parts, construction plans catalog. Omnipolarized antenna, 300 MHz counter, Modulation booster. Plens $\$ 3.00$ each, $\$ 7.50$ all. PANAXIS, Box 130-A7, Paradise, CA 95969.
TOP QUALITY IMPORTED KITS, IC's, foreign transistors. Free catalog. International Electronics, Box 567 , Williamsville, NY 14221.
STOP UNWANTED TELEPHONE CALLS! Exclude-Acall selective answering devices. Plans and parts list. Basic unit $\$ 3.49$. Multiple digit unit $\$ 6.99$. TRICK TIMER for telephone calls/3 minute eggs. Plans \$1.49. AUTOMATIC VEHICLE LIGHT CONTROL. Plans, instructions \$3.49. Kit \$29.99. Guaranteed. ESI, 4500 E. Speedway \#33, Tucson, AZ 85712.
WIRELESS MICROPHONE KIT \$4.95, 5 watt police siren kit $\$ 4.98$, 10 watt European police siren kit $\$ 5.25$. Electrokit, Box 588, Milford, Mass. 01757.
TELETYPEWRITER USERS: Unique solid state time delay relay. Reduces energy and maintenance costs. Information 50q, Plans $\$ 5.00$, with P.C. $\$ 10.00$. KEITH RYAN, Box 3103-P, Ottawa, CANADA, KIP 6H7. U.S. Inquiries.
FIVE LASER PLANS - $\$ 8.00$, Welding-Burning Laser - $\$ 9.00$, Laser AMA Light Show - $\$ 19.00$, "Wild Ideas" Catalog - \$2.00. Solaser, "PE779", Box 1015, Claremont, CA 91711.

TELEPHONES \& PARTS

TELEPHONES UNLIMTED, EQUIPMENT SUPPLIES, ALL TYPES, REGULAR, KEYED MODULAR. FREE CATALOG. Call now toll free. (800) 824-7888. In California (800) 852-7777. Alaska-Hawaii (800) 824-7919. Ask for Operator 738.
OMAK PHONE CENTER. All types of telephones - keyed, modular and decorator. Catalog $\$ 1.00$ (refundable). Box 38 , Beardstown, IL 62618. (217) 323-3963.
TELEPHONES. Send $\$ 1$ (Refundable) for brochure and prices. Illinois interconnect Telephone, Box 297PE, Augusta, IL 62311.

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steffens, Box 624K, Cranford, N.J. 07016.

Burglar - Fire - Smoke Alarm Catalog

- Billions of dollars lost annually due to lock of protective worning alorms.
FREE CATALOG Shows you how to protect your home, business
 and person. Wholesale prices. Do-it-yourself. Free engineering service.
Burder Security C6. PE-079 Lincoln, Ne. 68501

INTRUSION ALARM KIT for car, boat or home. \$15.95. Free literature. D.V. Enterprises, 148 Bennington Rd., Amherst, NY 14226.

PROFESSIONAL qualify alarm systems for your home. For free catalogue, write: EAC, Electronics Department, Box 7881, Colorado Springs. CO 80933 .
GARD-A-CAR - within 8 seconds stalls car, engine dead. Thief must flee. $\$ 19.95 \mathrm{pp}$. HARVEY ENTERPRISES, Box $25778-\mathrm{Pl}$, Richmond, VA 23260.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog. LYLE CARTRIDGES, Dept. P, Box 69, Kensington Station, Brooklyn, New York 11218. For Fast Service call Toil Free 800-221-0906.
LOWEST PRICES on stereo components. BOSE, SAE, DBX and more. Dynamic Sound, Box 168(B), Starkville, MS 39759. (601) 323-0750. 1 PM - 9 PM.

MICROCOMPUTERS

ATTENTION MICROCOMPUTER USERS: Verbatim MiniDiskettes - 3 for $\$ 10$; 3 M Diskettes - 3 for $\$ 12$. Also cassettes, other items. Write for price list. DISKS, ETC., P.O. Box 327-H, Center Valley, PA 18034.

WANTED

GOLD, Silver, Platinum, Mercury, Tantalum wanted. Highest prices pald by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood, MA 02062.

tubes

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif. 92105.
TUBES: "Oidies", Latest. Supplles, components, schematics, Catalog Free (stamp appreciated). Steinmetz, 7519-PE Maplewood, Hammond, Ind, 46324.
TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Transleteronic, Inc., 1365 39th St., Brooklyn, New York 11218. Telephone: (212) 633-2800. Toll free: 800-221-5802.

BARGAIN Prices on Radio/TV, industrial obsolete types. Free list. Conelco, Box 67, Trona, CA 93562.
RADIO AND TV TUBES 1938 to $1978 \$ 1.00$ ea. PRELLER TV, Augusta, AR 72006. (501) 347-2281.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence, illustrated brochure free. Hermes-Verlag. Box 110660/Z, D-1000 Berlin 11, W. Germany.

instruction

UNIVERSITY DEGREES BY MALL! Bachelors, Masters, Ph.D'D. Free revealing details. Counseling, Box 317-PE07, Tustin, California 92680.
RADIO BROADCASTING: Become DJ, engineer. Start your own station -- investment/experience unnecessary! Receive free equipment, records. Free details. Broadcasting, Box 130-A7, Paradise, CA 95969.

LEARN WHILE ASLEEPI HYPNOTIZE! Astonishing details, strange catalog freel Autosuggestion, Box 24-2D, Olympia, Washington 98507.
INTENSIVE 5 weak course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577.
1979 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self Study Ability Test." Proven! $\$ 9.95$ Unconditional Moneyback Guarantee. Command Productions, Box 26348-P, San Francisco, CA 94126.

FCC LICENSE over 1200 questions, answers, discussions, Illustrations. 3rd, 2nd, 1st, phone, radar, broadcast, endorsements. \$14.95. SPECIFIC SKILLS INTERNATIONALE Inc., P.O. Box 1233, Cocoa, Florida 32922. Mastarcharge/VISA. UNIVERSITY DEGREES BY MAILI!! Bachelor's, Master's, Doctorates. Free Information. Careers, Department Education, Box 10068, Washinglon, DC 20018.

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books, 7218 Roanne Drive, Washington, D.C. 20021.

JEEPS- $\$ 59.3011$ - CARS- $\$ 33.5011$ - 200,000 ITEMSII GOVERNMENT SURPLUS - MOSI COMPREHENSIVE DIRECTORY AVAILABLE tells how, where to buy - YOUR AREA - $\$ 2.00$ - MONEYBACK GUARANTEE - Government Information Services, Department GE-75, Box 99249 , San Francisco, Californla 94109.
GOVERNMENT SURPLUS. Buy your Area. How, where. Send $\$ 2.00$. SURPLUS HEADQUARTERS BUILDING, Box 30177-PE, Washington, D.C. 20014.

FOR INVENTORS

PATENT AND DEVELOP Your invention. Registered Patent Agent and Licensed Professional Engineer, Send for FREE PATENT INFORMATION every inventor should have. Richard L. Miller, P.E., 3612 Woolworth Building, New York, NY 10007. (212) 267-5252.

INVENTIONS WANTED

FREE CONSULTATION - NOIDEA TOO SMALL
Oisciosure protection cash or royaltios trom manutacturers seaking
new ideas. For ltee inlormation on how to protect your ideas.
American Inventors Corp.
59 Interstate Dr. Dept PE
West Springtiald, MA 01089 (413) 737.5376
a Fee sased Servite Company

BUSINESS OPPORTUNITIES

I MADE $\$ 40,000.00$ Year by Mailorder! Helped others make moneyl Torrey, Box 318-NN, Ypsilanti, Michigan 48197.
FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.
NEW LUXURY CAR WITHOUT COSTI Free Report. CodexZZ, Box 6073, Toledo, Ohio 43614. (419) 865-5657.
MECHANICALLY INCLINED individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESSES, 92-K2 Brighton 11th, Brooklyn, New York 11235.
MILLIONS in Maill! Free Secrets. Transworld-17, Box 6226. Toledo, OH 43614.

mechanicaly maclued molypuals

Assemble electronic devices in your home. Be your own boss. Get started in spare time. Little experience, Knowledge or Investment Necessary. Expect big profits: $\$ 300$ - $\$ 600$ Wk. Possible. Write for free literature telling how.

ELECTRONIC DEVELOPMENT LAB
 Box 1560PE, Pinellas Park, FL 33565

$\$ 1200.00$ MONTHLY Correcting Pupils' Lessons!!! Start Immediately. Free Report. Send self-addressed stamped envelope. Home, Box 98201-SJXP, San Diego, CA 92109.
BEAT THE RACES! Free Booklet! "Unlimited Lifetime Income From Thoroughbreds-Harness". Elias, Box 47BB, Brooklyn, NY 11219.
ERASE DEBTS with little-known law-create wealth!! Details FREE-Blueprints, No. EE7, Box 900, Bronx, NY 10471.

Popular Electronics

ADVERTISERS INDEX

EARN EXTRA MONEY - Homeworkers Noeded Stuffing Envelopes! Free Details. Write: Jadeway, Box 186-ZD, Gaines, MI 48436.

I SAVED $\$ 15,000$ last year bantering, you can 100 . FREE barter information, write: Barter, 2155 So. Main \#4-C, SLC, UT 84115.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service, Box 240E, Northport, New York 11768.
RADIO-TV JOBS . . . Stations hiring nationwidel Free details: "Job Leads", 1680-PG Vine, Hollywood, CA 90028.

DO-IT-YOURSELF

AUDIO/ANALOG/SYNTHESIS. Plans, parts, kits, etc. for the most exciting sound projects ever. Get on our mailing list, send 254 to: CFR Associates Inc., Newton, N.H. 03858.
COMPLETE LINE Security Systems for home, Business. Send self addressed, stamped envelope. Darbar, Box 1147E, San Diego, CA 92112.
COMPUTER HOBBYISTS: Learn in short paper how to solder, clean and de-solder boards to nearty NASA reliability standards. Send $\$ 5$ (refundable) to Gardelco, 23 Church. Waltham, MA 02154.

REAL ESTATE

BIG . . . FREE . . . SUMMER CATALOGI Over 2,600 top values coast to coast! UNITED FARM AGENCY, 612-EP, West 471h, Kansas City, MO 64112.

RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Many now products. Catalog. Jackson's, E-100, Brownsville Rdi,, Mt. Vernon, ili. 62864.

MAGNETS

MAGNETS. All types. Specials-20 disc, or 10 bar, or 2 stick or 8 assorted magnets. $\$ 1.00$. Magnets, Box 192-H, Randallstown, Maryland 21133.

BOOKS AND MAGAZINES

"OWNER REPAIR OF AMATEUR RADIO EQUIPMENT" Book, \$7.95. K6RQ. 14910 LG Blvd., Los Gatos, CA 95030 CB TECHNICIANS - now available - SSB Engineering Practice Manual. Most comprehensive book on how to modify and expand any CB radio for maximum pertormance and range. Includes the newest PLL radios. Free fact sheet or send $\$ 14.95$. SSB Publications, Box 960, Hyannis, MA 02601.

FREE book prophet Elijah coming before Christ. Wonderful bible evidence. MEGIDDO Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14619.
POPULAR ELECTRONICS INDEXES For 1977 now available. Prepared in cooperation with the Editors of "P/E," this index contains hundreds of relerences to product tests, construction projects, circuit tips and theory and is an essential companion to your magazine collection. 1977 Edition, $\$ 1.50$ per copy. All editions from 1972 onward still available at the same price. Add $\$.25$ per order for postage and handling. $\$.50$ per copy, foreign orders. INDEX, 6195 Deer Path, Manassas, Va. 22110.

UNDERSTANDING
 SOLID-STATE ELECTRONICS

New 3rd edition. 270 pages, $\$ 3.95$. Order *LCB3361. Check or money order: Texas In strnments, P.0. Box 3640. M/S84 Dept. PE779, Dallas. Texas 75285. Add sales tax where applicable.

TEXAS INSTRUMENTS

HYPNOTISM

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog Drawer H400, Ruidoso, New Mexico 88345.

MOTION PICTURE/VIDEO FILMS

SPORTLITE CUTS SUPER 8400^{\prime} SOUND FILM PRICES TO THE BONE! Universal Plctures values incl. current musicials - "Jesus Christ Superstar"; "Thoroughly Modem Milie" (Julle Andrews); "Sweet Charity" (Shirley MacLaine) - S-8 color/snd pictures @ only $\$ 39.95$ ea* (reg price $\$ 55$. ea). From Columbia Pictures - assid S-8 BN 400 ' snd. "Fall Sale" (Walter Matthau); "Creature With Alom Brain"; W. C. Fields "Golf Specialist"; "Strait Jacket" - $\$ 31.95$ ea" (reg $\$ 43.95$ ea). Columbia S-8 color 400 ' snd lealures, "Anderson Tapes" (Sean Connery); "Machine Gun McClain" (Peter Falk) \& Ali-Spinks I heavyweight chempionship fight, $\$ 42.95$ ea* (reg $\$ 54.95$ ea). For $\mathrm{S}-8$ silent collectors, boxing specials incl. Dempsey/Tunney; Louis/Schmeling; Zale/Graziano + Apollo XV "Ride of the Rover", S-8 200' B/W, $\$ 8.95$ ea". "+ $\$ 1.50$ post \& hand (add 75¢ per fitm for special handi- speedy del.) This is limited offer while current stocks last - order today New Universal 64-pg glossy catalog, \$1.25. Columbia Sportite, Ring Classics, Universal order forms, 40¢ ea SPORTLITE FILMS, Elect-7/79, Box 24-500, Speedway, IN 46224.

VIDEO MOVIES: ail ratings; Beta, VHS. Bought, Sold, Rented. VCR's, Blank tapes, Supplies: Cat. $\$ 1.00$ (deductible) (201) 572-1222. Devoe, P.O. Box 583, Edison, NJ 08817.

MISCELLANEOUS

MPG INCREASEDI Bypass Pollution Devices easily. REVERSIBLYII Free details - Posco GEE7, 453 W. 258, NYC 10471.

NEW CAR FREE YEARLY! Free informationl Super-Car Publications, Box 28101-N, St. Louis, MO 63119.

Electron-microscope photos of a new, unplayed phono disk before (left) and after treatment with Audio Groome's "Disco Film" are shown here, as provided by the manu-

facturer, Empire Scientific Corp. The "garbage" in the photo at left is said to be a by-product of the manufacturing process which can permanently damage delicate record grooves during the first playing. The new treatment is claimed to remove this material before initial playing as well as acting to clean older records.

With AM stereo broadcasting a possible reality soon, the Institute of High FideIIty (IHF) has filed comment with the FCC that requests an effective date be seleced for broadcast of AM stereo to allow for orderly marketplace transition. Without such a fixed date, the IHF believes the consumer might be disappointed in purchasing AM stereo components for which the ability to receive AM stereo signals would not be realized for a lengthy period of time or which would not comply with the reception standards for broadcasters. The FCC's proposed rule-making of October 19, 1978 provided only that an AM broadcast station may begin transmitting stereophonic programs upon type acceptance of its equipment. The type of stereo system accepted by the FCC has not yet been determined.

The first multi-disc opera set on prerecorded cassettes by Columbia Masterworks will be Madama Butterfly, starring Renata Scotto and conducted by Lorin Maazel. The package will consist of a standard album-size box, containing a fullsize libretto and three cassettes with Dolby noise reduction.

Disneyland isn't the only place where electronic puppets perform. Computer-animated shows in the Pizza Time Theatre, Mountain View, Calif., uses a DEC PDP-11 and a Sykes floppy disk with 32 K memory. The equipment controls actions of eight "cartoon" models, one of which plays piano at a bar.

Video-disc marketing advanced in two ways recently. On one front, Magnavox introduced its Maganavision (R) Optical Player in the Seattle-Tacoma area and added six more locations to its outlets already located in the Atlanta region. These players use the MCA DiscoVision discs which are played by use of laser beams. At the same time, RCA has decided to launch its "SelectaVision" Video Disc in the U.S. They expect a multi-billion dollar business by the 1980s for their capacitive-type cartridge/disc system.
"Thin is beautiful," even with wristwatches. Thus the thin-as-a-nickel (1/16"-thick) Swiss-made "Concord Delirium I" has achieved an esthetic goal as well as some

technical aims. Moreover, it's an analog timepiece, running counter to the digital trend. However, the working mechanism is all electronic except for a 0.36 -tm thick stepping motor. A quartz element operates at $32,769 \mathrm{~Hz}$, with a tuning fork reportedly accurate to within 10 seconds/month. A CMOS IC produces one 8 -millisecond impulse every 20 seconds. Time setting is accomplished by pushing a recessed button; time zone settings are controlled by a microprocessor. The integrated backplate is made of 18 -karat gold as are some other parts. Only $\$ 4,400$.

The new A P Super Grip II is, without question, the best way there is to troubleshoot DIP ICs.

You get positive contacts. No intermiltents. No shorts. Ever.

So it's endlessly useful to you-and it's
builf to stay usetul Indefinitely.
Try one. You'll find 8, 14, 16, 10 LSI, 18, 20.

AP PRDロUCTS INCORPDAATED
Box 110 - 72 Corwin Orive
Painesville, Ohio 44077
Tel. 216/354-2101
TWX: 日10-425-2250

Faster and Easier is what we're all about.

[^0]: "Automatic Garage Door Closer" (March 1979). On the schematic diagram, $C 3$ is shown as a $100-\mu \mathrm{F}$ electrolytic capacitor, while in the
 Parts List its value is specitied at $15 \mu \mathrm{~F}$. There is no absolutely "cordiagram, $C 3$ is shown as a $100-\mu \mathrm{F}$ electrolytic capacitor, while in the
 Parts List its value is specitied at $15 \mu \mathrm{~F}$. There is no absolutely "correct" value tor this capacitor. Its value can be anywhere between 15
 and $100 \mu \mathrm{~F}$. since its sole purpose is to sately bleed off the back emf rect" value for this capacitor. Its value can be anywhere between 15
 and $100 \mu \mathrm{~F}$. since its sole purpose is to sately bleed off the back emf from the relay's coil.

[^1]: Have a problem or question in circuitry, components, parts availability. elc? Send it to the Hobby Scene Editor, popular electronics, One Park Ave., New York, N.Y. 10016. Though all letters can't be answered individually. those with wide interest will be published.

