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I. Introduction 
 
Maximum likelihood (ML) principles provide a fundamental alternative to parsimony in the 
reconstruction of phylogenies and estimation of ancestral states. ML also represents an important 
shift in thinking from standard probabilistic statistics. In standard statistics we focus on the 
probability of a given observation under a null hypothesis. If the actual observations are 
considered very unlikely, then we reject the null hypothesis. However, we don't actually accept a 
particular alternative hypothesis. For example, consider a t-test of the following observations: 
 
Treatment A: 5, 8, 10 (mean = 7.7, sd = 2.5) 
Treatment B: 8, 12, 15 (mean = 11.7, sd = 3.5) 
 
Null hypothesis:  
• Assume that observations represent a finite sample from a normal distribution (in other words, 
the process in the natural world that generates these data would generate a normal distribution if 
you collected an infinite sample) 
• assume that the means and variances of those distributions are equal in the two samples 
• if these assumptions are true, the probability of drawing two samples that differ by as much or 
more as the two above is Pr(d|H0) = 0.18. 
• note that we can describe the full distribution of possible outcomes, in terms of the differences 
between the two groups, which will be a normal distribution that sums to 1. 
 
Maximum likelihood reverses the entire process. Let's assume that our data are real and true, and 
they reflect the outcome of some unknown process or model. Can we calculate the likelihood of 
the model, given these data, and compare that to the likelihood of alternative models. We are 
searching for the maximum likelihood model – the model of the world that best fits the data. The 
problem is that there are an infinite number of possible models, so unlike probability we can't 
describe the entire likelihood space as a distribution that sums to 1. So how can we calculate 
their relative likelihoods? The fundamental insight (Edwards 1972) that makes ML statistics 
possible is that: 
 

€ 

L m | d( )∝Pr d |m( )  
 
Thus, we can obtain relative likelihoods of alternative models and compare them. One of those 
alternatives could be the traditional null hypothesis, leading to the same significance test, but in 
general the ability to specify a range of alternatives enhances our ability to explore specific 
hypotheses with the data. One of the main drawbacks is that it can be quite difficult in some 
cases to find the best model under ML, if there is no analytic solution.



Likelihood estimation of ancestral states and rates of character evolution on a phylogeny: 
 
We'll start with one of the simplest problem in phylogenetics: estimating the rates of character 
evolution for a binary trait. First consider the problem of evolution along a single branch: 
 
α = the instantaneous forward transition rate from 0 -> 1 
β = the instantaneous reverse transition rate from 1 -> 0 
 
With a little calculus one can show that the probabilities of change along a branch of length t are: 

 

 From:  

To: 0 1 

0 P00 = 1 – P01 

€ 

P10 =
β

α + β
1− exp − α + β( )t[ ]( )  

1 

€ 

P01 =
α

α + β
1− exp − α + β( )t[ ]( ) P11 = 1 – P10 

If one assumes that the backward and forward transition rates are the same, P01 and P10 also are 
the same and simplify considerably. 
 
For example: 
α = 0.5, β = 0.5, t = 1 
 
       To:  From: 0 1 

0 0.684 0.316 
1 0.316 0.684 

 
For example: 
α = 0.8, β = 0.2, t = 1 
 
       To:  From: 0 1 

0 0.494 0.126 
1 0.506 0.874 

 
For example: 
α = 0.8, β = 0.0, t = 1 
 

 0 1 
0 0.449 0.0 
1 0.551 1.0 

 



The first REALLY important thing about maximum likelihood view of evolutionary change is 
that branch lengths matter (unlike parsimony). Given instantaneous rates of change, α and β, a 
branch will eventually converge on a probability α that it ends in state 1 and probability β that it 
ends in state 0, regardless of the initial state. 
 
E.g. α = 0.8, β = 0.2 

 
If both rates are lower, but similar ratio to each other, the branches will converge to the same 
point, but it will take longer. For α = 0.4, β = 0.1 
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Likelihood ratio tests 
 
a measure of support for alternative hypotheses 
 
LR = -2*ln(L1/L2) 
 
For two hypotheses with the same number of parameters, there is no exact 
significance value attached to the LR. Values greater than 2 are considered 
'strong support' 
 
 
For nested hypotheses with different numbers of parameters, LR is 
distributed as a chi-square with df = the difference in number of parameters 
 
For example: 
 

If we find the maximum likelihood with alpha and beta fit 
independently: 
 
al = 0.59 
be = 0.31 
L(m)  ∝ 0.256. 
 
If we allow only one transition rate, such that al=be, then: 
 
al = be = inf 

         L ∝  0.25 
 
LR = -2*ln(.25/.256) = 0.05 
chisq(0.05, df=1) = 0.82 
 
So these data are insufficient to reject a single rates model. 
 
 



Pagel's (1994) discrete test of correlated evolution: 
 
Same idea as above, but test for parameters of dependence in trait change. 
 

 
 
For example: 
q12 is the probability that trait 2 changes from 0 -> 1, when trait 1 = 0 
q34 is the probability that trait 2 changes from 0 -> 1, when trait 1 = 1 
 
For an instantaneous model of change, assume they don't change simultaneously 
 
Model with full dependence has 8 parameters 
 
If traits evolve independently, there are only 4 parameters, because: 
q12 = q34; q13 = q24; q31 = q42; q21 = q43 
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ln(L(independent)) = -11.91 
ln(L(dependent)) = -8.43 
-2*ln(LI/LD) = 6.96 
chisq(6.96,4) = 0.14 
 
q12 = 0.29 gain of oestrous swellings in single-male breeding systems 
q34 = 3.45 gain of OS in multi-male breeding systems 
q13 = 1.87 gain of multi-male BS in absence of OS 




