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Abstract—Vehicles controlled by autonomous driving software
(ADS) are expected to bring many social and economic benefits,
but at the current stage not being broadly used due to concerns
with regard to their safety. Virtual tests, where autonomous
vehicles are tested in software simulation, are common practices
because they are more efficient and safer compared to field
operational tests. Specifically, search-based approaches are used
to find particularly critical situations. These approaches provide
an opportunity to automatically generate tests; however, system-
atically producing bug-revealing tests for ADS remains a major
challenge. To address this challenge, we introduce DoppelTest,
a test generation approach for ADSes that utilizes a genetic
algorithm to discover bug-revealing violations by generating
scenarios with multiple autonomous vehicles that account for
traffic control (e.g., traffic signals and stop signs). Our extensive
evaluation shows that DoppelTest can efficiently discover 123 bug-
revealing violations for a production-grade ADS (Baidu Apollo)
which we then classify into 8 unique bug categories.

Index Terms—cyber-physical systems, autonomous driving
systems, search-based software testing

I. INTRODUCTION

Autonomous vehicles (AVs), a.k.a. self-driving cars, are
becoming a pervasive and ubiquitous part of our daily life.
More than 50 corporations are actively working on AVs,
including large companies such as Google’s parent company
Alphabet, Ford, and Intel [1]–[3]. Some of these companies
(e.g., Alphabet’s Waymo, Lyft, ArgoAI, and Baidu) are already
serving customers on public roads [4]–[7]. Experts forecast that
AVs will drastically impact society, particularly by reducing
accidents [8]. However, crashes caused by AVs indicate that
achieving this lofty goal remains an open challenge. Despite the
fact that companies such as Tesla [9], Waymo [1], or Uber [10]
have released prototypes of AVs with a high level of autonomy,
they have caused injuries or even fatal accidents to pedestrians.
For instance, an AV of Uber killed a pedestrian in Arizona
back in 2018 [11]. AVs with lower levels of autonomy have
resulted in more fatalities in recent years [11]–[18].

To ensure the safety and quality of an AV, a common practice
for testing the autonomous driving system (ADS) that operates
it lies in field operational tests, in which AVs are left to drive
freely in the physical world. This approach is not only expensive
and dangerous but also insufficient since it misses critical
testing scenarios [19]. Virtual tests, where AVs are tested
in software simulations, offer a far more efficient and safer
alternative, precluding the need to obtain necessary permits or

licenses from government agencies or the risks associated with
potentially crashing the vehicle in the physical world.

While these virtual tests can be automatically generated, it
is difficult to systematically generate scenarios with violations
that actually reveal ADS software bugs, which we refer to
as bug-revealing violations. There have been a number of
techniques [20]–[22] that focus on generating scenarios for
simulation-based testing. Although such testing is capable of
finding violations in simulated AV scenarios, these violations
do not necessarily reveal a bug in the ADS. Although violations
are important and should be minimized, violations that do not
correspond to bugs in an ADS are not actually phenomena
that software developers can do much to control (e.g., they
have little control of obstacles that violate traffic rules or even
intentionally try to crash into the AV). The key determining
factor as to whether a bug-revealing violation occurs in an
AV scenario is if the violation is the responsibility of the AV
because responsibility is generally determined based on if the
driver had any misbehavior [23]–[28].

Unfortunately, obstacles generated by prior work [20]–[22]
lack the intelligence necessary to follow traffic rules that
maximize the responsibility of an AV for violations that occur
in simulation. For example, vehicles other than the AV in
simulation may not follow traffic rules or drive defensively,
making violations much more likely to be the responsibility of
these non-AV vehicles. As another example, non-AV vehicles
may be driving at a constant speed, preventing them from being
able to speed up or slow down to prevent an accident (e.g.,
brake for another obstacle or turn quickly to avoid being hit
by another obstacle). Previous AV test generation techniques
may produce obstacles that are not aware of other obstacles in
the scenario, which makes these obstacles more likely to be
responsible for a violation (e.g., a collision). As an example, if
an obstacle is traveling (1) fast enough behind an AV to cause
a rear-end collision and (2) too fast for the AV to move out of
the way, a resulting rear-end collision here is the responsibility
of the rear obstacle, not the AV.

To generate bug-revealing violations and address the limita-
tion of traffic rule-ignoring obstacles, we introduce DoppelTest,
a novel test-generation approach for AV software testing that (1)
utilizes smart obstacles and (2) ensures the ADS is responsible
when violations occur by running multiple ADSes in the same
scenario, where each ADS controls a different AV. Unlike
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prior work, which relies on unintelligent obstacles, we use
multiple instances of the same ADS to control every vehicle
in a scenario, which we refer to as doppelgänger instances.
As a result, every vehicle in the scenario is an AV. These
doppelgänger instances guarantee every vehicle has complex
enough logic to consider traffic rules and the presence of other
participants. Additionally, when violations happen, at least one
of the AVs must have failed to follow traffic rules or made a
sub-optimal decision, this ensures that there is a bug in the
ADS under test.

The main contributions of this work are as follows:
• We propose Doppelgänger Testing, a novel methodology

of testing ADSes. We also design and implement Doppel-
Test around this novel methodology which automatically
discovers bug-revealing violations.

• We evaluate DoppelTest on an industry-grade ADS and
discovered 123 bug-revealing violations that reveal 8
unique bug types. We analyzed and submitted a fix
addressing 1 bug type, which has been accepted by the
ADS developers.

II. BACKGROUND

A. Autonomous Driving Systems

An ADS aims to achieve high automation levels for vehicles
to automatically run on the roads. The autonomy levels for
self-driving cars depend on various features including adaptive
navigation control, environmental detection, and other driver
assistance systems. The Society of Automotive Engineers
(SAE) defines the levels of autonomous driving from 0 with
no assistance systems to Level 5, which represents fully
autonomous driving [29]. There are six autonomy levels for
autonomous vehicles [30]. The ADS is used to achieve high
automation (Level 4) or full automation (Level 5).

Baidu Apollo [31] achieves high automation (Level 4) [32],
which means the ADS controls the vehicle for all potential
circumstances automatically. The vehicle is able to perform
all types of driving tasks in different traffic scenarios and is
capable of handling the majority of driving situations without
any input from a human driver, leaving a limited number of
cases where a human driver may need to intervene.

The ADS is a large software system that consists of different
modules with varying functionalities. Our process of testing
autonomous vehicles with Apollo in the simulation environment
only needs certain modules. A brief introduction of those
modules is as below [31]:

• HD-Map includes lane geometries and location of traffic
control devices, which may be used by other modules.

• Routing generates high-level navigation information based
on the routing requests. It tells the autonomous vehicle
which paths to take to reach its destination.

• Localization provides location, heading, velocity, and
acceleration information of the AV.

• Perception identifies the physical world surrounding
the self-driving car by integrating multiple sensors (e.g.,
camera, radar, and LiDAR) to recognize obstacles.

Fig. 1: 2 Illustrations of collisions that may happen, the red
vehicle is the AV. (a) shows an obstacle rear-ends the AV that
has the right-of-way. (b) shows the AV not yielding the right-
of-way and causing a collision.

• Prediction receives the obstacle information including
position, velocity, and acceleration detected by Perception
and predicts the future motion trajectories of the obstacles.

• Planning makes decisions for the autonomous vehicle to
execute, such as cruising or stopping.

To better understand the nature of AV bugs and how they
affect the aforementioned AV modules, Garcia et al. [33]
conducted an empirical study on 499 AV bugs from 16,851
commits in the Apollo and Autoware GitHub repositories, both
of which are Level 4, open-source ADSes. They found that
Planning had the greatest number of bugs (93 bugs in Apollo,
62.14% of total driving bugs in Apollo) and exposed many
symptoms associated with driving behaviors of AVs, while
previous work focused heavily on Perception and Prediction,
which had significantly fewer bugs than Planning (37 bugs in
total, 61.48% fewer than Planning in both ADSes studied) [33].
Based on this data, we designed our ADS testing technique
to focus on testing the modules that might contain more bugs,
especially Planning.

B. Motivating Example

We introduce the following motivating example to demon-
strate the importance of testing for bug-revealing violations,
as opposed to just plain traffic violations: Consider a scenario
with a collision violation where an AV and a non-AV vehicle
collide. A non-AV vehicle is often referred to as a non-player
character (NPC). In a scenario, responsibility can be attributed
fully to the AV, the NPC vehicle, or even shared by both of
them. Cases, where any responsibility can be attributed to the
AV, are of particular interest in this paper because they are the
types of violations that are bug-revealing.

Figure 1 illustrates how a collision can be bug-revealing
or not depending on the situation. As shown in Figure 1(a),
the AV is driving in its lane and following traffic rules; the
NPC is traveling behind the AV and hits the AV from behind.
In California, where an overwhelming majority of AV testing
occurs at the production level, rear-end collisions are almost
never the fault of the vehicle that is rear-ended [24]–[28].
In traditional scenario-based testing techniques, this type of
collision is also regarded as a violation and recorded in the
experimental results. As a result, this type of rear-end collision
is not caused by the AV’s misbehavior and thus is not actually



bug-revealing. Figure 1(b) depicts the NPC passing through the
junction while the AV is turning left. From the perspective of
the ADS, it should recognize that the NPC has the right-of-way
and it should yield until the intersection is clear. However, in
this scenario, the AV ignores the NPC and still tried to turn
left. As a result, the AV’s failure to yield the right-of-way
caused the collision. We regard this type of scenario as bug-
revealing since it is a sign of functional defects in the ADS.
DoppelTest aims to generate scenarios where any violation that
occurs will be the responsibility of the AV, which reveals an
AV misbehavior and is thus bug-revealing.

III. STATE SPACE SPECIFICATION

To aid in the generation of effective and valid scenarios, we
present a formal specification of the state space in the form of
scenarios. DoppelTest uses this formal specification of the state
space, along with a genetic algorithm, to generate scenarios
that maximize the possibility of the ADS either violating safety
or traffic rules.

Definition 1. A Scenario S = ⟨A,P,T,V, tS⟩ is a tuple where:
• A= {A0,A1, ...,A|A|} is a finite, non-empty set of AVs.
• P= {p0, p1, ..., p|P|} is a finite set of pedestrians where
|P| ≥ 0.

• T is a traffic signal configuration that specifies the color
of each signal at any time in a simulation.

• V = {V (Ai) : Ai ∈ A}, where V (Ai) = ⟨vAi
0 ,vAi

1 , ...,vAi
n ⟩ is

a set of violations.
• tS is the maximum allowed duration for the scenario.

Definition 2. An AV A = ⟨WA, tA
start⟩ is a tuple where:

• WA = ⟨wA
0 ,w

A
1 , ...,w

A
n ⟩ is a sequence of waypoints that

the AV A is expected to reach. wA
0 is the vehicle’s initial

location, and wA
n is the vehicle’s final destination.

• tA
start specifies the timestamp during a scenario at which the

AV A begins driving from wA
0 to wA

n following waypoints
specified by WA and 0 ≤ tA

start < tS.

Definition 3. A pedestrian P = ⟨WP, tP
start ,s

P⟩ is a tuple where:
• WP is a sequence of waypoints ⟨wP

0 ,w
P
1 , ...,w

P
m⟩ that the

pedestrian is expected to reach. wA
0 is the pedestrian’s

initial location, and wA
m is the pedestrian’s final destination.

• tP
start specifies the timestamp during a scenario at which

the pedestrian P begins walking from wP
0 to wP

m following
waypoints specified by WP and 0 ≤ tP

start < tS.
• sP is a finite number specifying the speed (m/s) at

which the pedestrian walks, and 0.6 ≤ sP ≤ 1.3, whose
values are obtained from the United States Department of
Transportation (USDOT) Federal Highway Administration
(FHWA) [34].

Definition 4. Traffic Control Configuration T= ⟨Minitial ,
M f inal ,dinitial ,dtransition,dbuffer⟩ is a tuple where:

• Minitial is a mapping between every traffic signal ts and
its color c ∈ {GREEN,RED,YELLOW} on a given map.

• Minitial is the starting signal color and M f inal is the final
signal color through one cycle of color changes.

• dinitial is the amount of time during the scenario for which
signals will display the color specified by Minitial .

• dtransition is the duration of the yellow change interval,
which is an interval where a signal that will change from
GREEN to RED should display YELLOW to warn vehicles
about an upcoming change in right-of-way status. [34]

• dbuffer is the duration of the red clearance interval, which
is an interval where a signal that will change from RED
to GREEN should remain RED to allow vehicles who have
entered the intersection during the yellow change interval
to clear the intersection. [34]

Definition 5. A waypoint w is represented by a tuple ⟨x,y⟩
which indicates a specific location on the map in the coordinate
system, e.g., Universal Transverse Mercator (UTM) system or
World Geodetic System (WGS84) in Apollo.

Definition 6. A vehicle’s decisions D= ⟨d0,d1, ...,d|D|⟩ in a
scenario is a finite non-empty set of unique decisions where
di ∈ D is a single decision the vehicle has made at any time
during the scenario. d may take on one of the following values:

• STOP_SS is a decision to stop for a stop sign.
• STOP_TS is a decision to stop for a traffic signal.
• STOP_OB is a decision to stop for an obstacle.
• YIELD_OB is a decision to yield right-of-way to an

obstacle.
• CRUISE is a decision to drive forward following its

planning trajectory.

Definition 7. Road traffic participants O = A∪P are every
vehicle and pedestrian in a scenario.

Definition 8. A violation map vmap : v → vtype identifies the
violation type vtype = {collision,routing,
stop sign, traffic signal}, which corresponds to the four types
of bug-revealing violations we focus on in this paper, to a
violation v ∈V (Ai)∈V∈ S. We elaborate on oracles that detect
each of these violation types in Section IV-C.

IV. APPROACH

It is often difficult to determine whether the ADS is respon-
sible or not for a violation. To properly assign responsibility,
many complex environmental factors such as who had the
right-of-way, and any traffic laws one violated before the
violation occurred, need to be taken into consideration. Indeed,
violations that the ADS is not responsible for cannot be bug-
revealing because they are not caused by any ADS misbehavior.
Therefore, the key challenge for ensuring ADS responsibility
is to determine how to model obstacles so that (1) their
maneuvers are realistic and (2) they will not be responsible
for causing violations. Accomplishing such modeling could be
highly challenging because this model needs a highly intelligent
representation of road traffic participants that follow all of
the traffic rules and react to other road traffic participants
appropriately. Our key insight for overcoming this challenge
is to use the ADS under test to control all vehicles in the
simulation to achieve this required high intelligence, enabling
them to follow traffic rules and react to each other. This design



also guarantees that when a violation occurs among the vehicles,
the ADS must have misbehaved and is thus responsible for
the violation. This ideology of running multiple instances of
the same ADS, i.e., doppelgänger instances, and observing
interaction among them is what we call doppelgänger testing.

Figure 2 shows an overview of DoppelTest. Its main goal is to
generate scenarios that may expose the ADS to safety and traffic
rule violations. DoppelTest achieves this goal as follows: Map
Parser uses an HD Map to analyze trajectories that vehicles
and pedestrians are allowed to travel on and the necessary
constraints that need to be satisfied to produce a valid traffic
control configuration at junctions; Scenario Generator uses a
genetic algorithm that produces scenarios using the constraints
created by Map Parser and evolves the scenarios with the
aim of finding safety and traffic rule violations; Doppelgänger
Orchestrator converts the scenario representation generated
in the previous step to a simulation by coordinating every
doppelgänger AV instance available and produces a Scenario
Record to be analyzed for each instance; Violation Analyzer
analyzes each Scenario Record and evaluates it for safety and
traffic rule violations. When the evolution process terminates,
every scenario with a bug-revealing violation is saved as output.
In the remainder of this section, we discuss each of these
elements of DoppelTest in more detail.

HD Map

Map Parser

Scenario
Generator

Doppelgänger Orchestrator

Message

Broker

AV Instance 1

AV Instance 2

AV Instance N

...

Scenario

Output Records

Violation

Analyzer

Bug-Revealing

Violations

Generated
Scenarios

Fig. 2: Overview of DoppelTest

A. Doppelgänger Orchestrator

One of the main contributions of our work is the design
of a testing technique that enables multiple instances of
the same ADS to be running in the same scenario without
the need for an external simulator. To enable this feature,
there needs to be an infrastructure which manages interaction
between multiple instances. However, the ADS’ architecture
does not have an interface that provides native support for
communication between other instances of the same software
system. Therefore, we design the Doppelgänger Orchestrator
(DO), which retrieves and transmits necessary information
so that each AV instance is aware of the existence of other
instances. To accomplish this goal, DO keeps track of where
each instance is positioned by subscribing to the Localization
module of each AV instance. Recall from Section II-A that
Localization publishes the location, heading, velocity, and other
information about the AV. Using the location and heading, DO

then constructs a polygon that represents the vehicle’s 3D
bounding box.

Now that DO recognizes the location of every AV instance,
its next goal is to transmit the 3D bounding box of one AV
instance to other instances. Recall from Section II-A that
Perception is responsible for identifying the physical world
surrounding an AV instance, it produces messages that include
3D obstacles with heading and velocity. The information
which DO tracks are location, heading, and velocity of every
AV instance in a simulation, which is exactly the kind of
information the Perception module in an ADS is supposed
to track. Therefore, for each AV instance, DO serves as its
Perception module and publishes 3D bounding boxes of all
other instances. To summarize, DO uses each AV instance’s
localization information to serve as the perception information
for each other AV instance.

B. Scenario Generator

Prior AV test-generation techniques [20]–[22] produce sce-
narios that include only one AV controlled by the ADS per
scenario with a fixed number of obstacles. In DoppelTest, there
may be 2 or more doppelgänger AV instances and 0 or more
pedestrians in a scenario; therefore, the genetic representation
needs to be designed to allow increasing or decreasing of the
number of vehicles and pedestrians. In the remainder of this
section, we elaborate on the design of the genetic algorithm
and its search operators.

1) Representation: DoppelTest uses the definition of a
scenario in Section III along with a genetic algorithm to
generate bug-revealing scenarios. Figure 3 illustrates a genetic
representation (chromosome) of an individual generated by
DoppelTest. The population in our approach is a set of scenario
representations used by the Doppelgänger Orchestrator to run
an actual scenario. Each individual, which is a scenario in
our representation, consists of 3 sections: (1) the AV section
specifies 2 or more AV instances A in the scenario; (2) the
pedestrian section specifies 0 or more pedestrians P in the
scenario; and (3) the traffic configuration section specifies a
traffic signal configuration T. The number of genes in the
AV and pedestrian sections varies based on how many AVs
or pedestrians there are in a scenario. For example, the size
of genes in the AV section will be 6 for 3 AD instances as
illustrated in Figure 3 and 8 for 4 AD instances.

Another main contribution of our work is the design of a
variable length chromosome (VLC) to represent scenarios that
do not have a fixed number of road traffic participants. By
allowing variable length in the AV and pedestrian sections, the
genetic algorithm has the ability to add or remove road traffic
participants to generate more diverse scenarios. The number
of genes is bounded by the maximum and minimum allowed
AV instances and pedestrians in the scenario.

2) Search Operators: Multi-sectional design of the VLC
allows each of the sections to be independent of each other,
thus modifying one section will neither invalidate any other
sections nor the entire chromosome. In turn, the search operator



Fig. 3: Genetic representation used by DoppelTest

for such complex chromosomes can be designed independently
of each other.
Mutation. With equal probability, one of the 3 sections of
the chromosome will be mutated to increase diversity in the
population. Mutating a specific section implies one of the genes
in the section will be mutated. For example, the yellow change
interval of the traffic configuration section, dtransition, may be
selected for mutation. For sections that allow variable length
(e.g., the AV and pedestrian sections), additional operations
such as adding or removing a road traffic participant from
that section are allowed. For example, after mutating the
chromosome illustrated in Figure 3, there may be an additional
AV instance A3 represented by 2 genes WA3 and tA3

start .
Crossover. With equal probability, one of the 3 sections of the
chromosome will be selected for crossover to produce offspring.
If the traffic configuration section is selected for crossover, then
one of the genes from parent A will be replaced by a gene
of the same type from parent B. If the AV Section is selected
for crossover, then (1) 1 gene of an AV instance from parent
AVsp1 is selected to be replaced by the gene of the same type
from a random AV instance from parent AVsp2, resulting in
AVso1 as shown on the left of Figure 4(b); (2) an instance of
parent AVsp1 is selected to be replaced by a random instance
from parent AVsp2, resulting in AVso2 as shown on the right
of Figure 4(b); (3) an instance of parent AVsp2 is randomly
selected and added to parent AVsp1 if the AV section of parent
AVsp1 has not reached the maximum allowed AV instances.
The crossover operator for the pedestrian section is similar to
the one for the AV section.
Selection: DoppelTest uses the NSGA-II (Non-dominated
Sorting Genetic Algorithm selection [35] for breeding the
next generation. NSGA-II is an effective algorithm used for
solving multi-objective optimization problems (i.e., problems

Fig. 4: An example crossover operation of the AV section. (a)
2 parent individuals selected for crossover; (b) 2 examples of
offspring that may be produced.

with multiple conflicting fitness functions) and further aims to
maintain diversity of individuals.

NSGA-II starts by sorting a set of individuals based on a non-
dominated order. In a multi-objective problem, an individual i1
is said to dominate another individual i2 if (1) i1 is no worse
than i2 for all objective functions (e.g., collision detection,
speeding detection, etc.), and (2) i1 is strictly better than i2 in
at least one objective. Once the non-dominated sort is complete,
a crowding distance is assigned to every individual in a given
scenario. A crowding distance measures how close individuals
are to each other; a large average crowding distance will result
in better diversity in the population. Once the crowding distance
is assigned, parent individuals are selected to produce offspring
based on the fitness and crowding distance; an individual is
selected if its order rank is lower than the other, or if the
crowding distance is greater than the other. Only the best N
individuals are selected, where N is the population size.

The intuition behind using NSGA-II selection is threefold:
(1) it uses an elitist principle, i.e., the most elite individuals
in a scenario are given the opportunity to be reproduced so
their genes can be passed on to the next generation; (2) it
uses an explicit diversity-preserving mechanism (i.e., crowding
distance), which maintains the diversity of driving scenarios in
DoppelTest; and (3) it emphasizes the non-dominated solutions.

3) Fitness Evaluation: In each generation, DoppelTest
evaluates individuals using the fitness function defined in
Equation 1.

F(i) = ( fmin distance(i), fdecision(i),

fconflict(i), fviolation(i))
(1)

As an overview, the genetic algorithm’s 4 objectives are
( fmin distance) to encourage AV instances to be in close proximity
with other road traffic participants to increase the likelihood of
interaction; ( fdecision) to maximize the number of decisions to
be made by AV instances so that the scenario can be complex
in a way that involves multiple AV instances making multiple
decisions with regard to each other; ( fconflict) to maximize
the number of conflicting trajectories between AV instances
and other road traffic participants so that a collision violation
may occur if an AV instance fails to yield right-of-way; and
( fviolation) to maximize the number of violations that occur in



a scenario. In the remainder of this section, we discuss each
objective in more detail.

fmin distance(i) (Equation 2) evaluates the closest distance
between pairs of road traffic participants at any time during a
scenario.

fmin distance(i) = min{Dt(A,O)

: 0 ≤ t ≤ tS ∧A ∈ A∧O ∈O∧O ̸= A}
(2)

where Dt(A,O) is the distance between an AV A and another
road traffic participant O at timestamp t during the scenario. O
can be either a vehicle or pedestrian in the scenario. fmin distance
captures the intuition that tests with vehicles driving close
to other road traffic participants are more likely to lead to
interaction and may lead to violations such as collisions.

fdecision(i) (Equation 3) evaluates the total number of unique
decisions being made by all AV instances for the entire duration
of the scenario.

fdecision(i) = max{|
|A|⋃
i=0

DAi | : Ai ∈ A} (3)

Recall from Section III that |A| is the number of AV instances
in the scenario and DAi the set of unique decisions made by the
ith AV instance. The intuition is to encourage scenarios with
multiple AV instances to make more decisions with respect to
the environment, which creates complex scenarios such as the
one we will be discussing later in Case Study 2 of Section V-A.

fconflict(i) (Equation 4) evaluates the total number of pairs
of road traffic participants whose trajectory overlaps with each
other. The function is defined as follows:

fconflict(i) = max{|{⟨A,O⟩
: A ∈ A∧O ∈O∧A ̸= O∧X(A,O)}|}

(4)

where X(A,O) evaluates if A and O have a common waypoint
and is defined as follows:

X(A,O) = ∃wi∃w j(wi ∈WA ∧w j ∈WO ∧wi = w j) (5)

The intuition is to encourage scenarios with AV instances that
may need to yield the right-of-way during a scenario, since
reaching the same location at the same time as another road
traffic participant will result in a collision.

fviolation(i) (Equation 6) evaluates the total number of
violations across all AV instances in a scenario and is defined
as follows:

fviolation(i) = max{|
|V|⋃
i=0

V (Ai)| : Ai ∈ A} (6)

The intuition is to aim for scenarios where multiple AV
instances may be involved in multiple violations. We define
each of the violations in more detail in the next section.

C. Violation Analyzer

Prior work [20]–[22] only considered a limited number
of oracles, such as collision. The limited number of oracles
ignores other types of misbehavior such as violating traffic
rules. Unlike prior work, we consider 4 test oracles that assess

an ADS’ ability to avoid (1) collision violations, (2) traffic
signal violations, (3) stop sign violations, and (4) module
response failures. The oracles are designed with respect to
each AV instance. In the remainder of this section, we describe
each oracle in more detail along with its corresponding oracle
definition.

The collision oracle uses the position of every road traffic
participant to check if a vehicle ever collided with another
vehicle or pedestrian. The test oracle’s failing condition for a
single AV instance A is defined as follows:

∃ti,O :0 ≤ ti ≤ tS ∧O ∈O∧O ̸= A∧ speed(A, ti)> 0∧
D(position(A, ti), position(O, ti)) = 0

(7)

where speed(A, ti) evaluates the AV instance’s speed at time
frame ti, position(O, ti) evaluates the location of a road traffic
participant, and function D evaluates the distance in meters
between the 2 locations. This oracle models the case where
a vehicle collides with another road traffic participant at a
positive speed.

The traffic signal oracle uses stop lines that are associated
with traffic signals on a given map and the AV instance’s
location to check if the instance is following traffic rules
regarding traffic signals by stopping when facing a red signal.
[36], [37] The test oracle’s failing condition for AV instance
A is defined as follows:

∃ti, lts : 0 ≤ ti ≤ tS ∧ color(ts, ti) = RED∧
speed(A, ti)> 0∧D(position(A, ti), lts) = 0

(8)

where color(ts, ti) evaluates the color of traffic signal ts at time
frame ti, D(position(A, ti), lts) evaluates the distance between
the AV instance A and a stop line lts for traffic signal ts. When
the distance evaluates to 0, it implies the vehicle is attempting
to cross the stop line at a positive speed. The oracle models
the intuition that the vehicle should not be crossing any stop
line whose corresponding traffic signal shows red.

The stop sign oracle uses stop lines that are associated with
stop signs on a given map and the AV instance to check if the
instance made a complete stop before crossing the stop line.
[38], [39] The test oracle’s failing condition for a single AV
instance A is defined as follows:

∃ti∄t j∃lss : 0 ≤ t j < ti ≤ tS ∧D(position(A, ti), lss) = 0∧
D(position(A, t j), lss)< thstop distance ∧ speed(A, t j) = 0

(9)

where ti is a time frame in the scenario and t j is another time
frame before ti, lss is the stop line corresponding to stop sign
ss; D(position(A, ti), lss) evaluates if the vehicle is crossing the
stop line lss; and thstop distance is a threshold that determines
how far away the vehicle should be stopped before a stop line.
The intuition here is that if there exists a time frame ti where
the AV instance is crossing a stop sign’s stop line, then there
must exist another time frame t j which came before ti at which
the AV instance is stopped within thstop distance meters away
from the stop sign.

The module response oracle checks if an AV instance
responded to a routing request with a routing response. Failure
to produce a routing response directly impacts the AV’s ability



to reach its destination, which we consider a kind of violation.
The test oracle’s failing condition is defined as follows:

∄ti : 0 ≤ ti ≤ tS ∧R (i) (10)

where ti is a time frame in the scenario and R is a function
checking if a routing response has been produced by the routing
module. The intuition is that the AV instance never responded
to a routing request and thus will not attempt to travel toward
its specified destination. Note that the routing request is valid
if there exists a legal path (e.g., it does not require driving
against the traffic direction) on the map that allows the vehicle
to travel from the initial position to its final position, and a
valid routing response is to be expected given a valid request.

D. Map Parser

Fig. 5: Examples of lanes that may (a) have conflict, or (b)
have no conflict.

The Map Parser’s main goal is to analyze constraints between
traffic signals that are at the same junction. The intuition is
that traffic signals at the same junction controlling lanes that
intersect with each other cannot be green at the same time, as
shown on the left of Figure 5. If the traffic signals indicate both
lanes have right-of-way then a collision may likely happen at
the intersecting point. However, if traffic signals at the same
junction are controlling lanes that will never intersect with
each other, as shown on the right of Figure 5, then there will
not exist any constraint between them as they can be in any
color without intentionally causing conflicts between vehicles
traveling along the lines indicated in the figure.

V. EVALUATION

Our evaluation process involves executing a total of 240
hours of test generation. We conducted our experiments on
two machines: 2 AMD EPYC 7551 32-Core Processor (512GB
of RAM), 1 AMD EPYC 7551 32-Core Processor (256GB of
RAM), 1 Core i9 24-Core Processor (128GB of RAM), and 1
Core i9 24-Core Processor (32GB of RAM) all running Ubuntu
20.04.1. We focus our efforts on testing Baidu Apollo 7.0 [31],
an open-source and production-grade AV software system that
supports a wide variety of driving scenarios and explicitly
aims for both safety and rider’s comfort. Our experimentation
focused on an real-world HD Map provided as part of Baidu
Apollo, which represents Borregas Avenue at Sunnyvale, CA.
The map includes multi-lane roads, 1 traffic signal controlled
junction, and 1 stop sign junction.

We do not compare DoppelTest against certain approaches
due to the fact that they address different research problems.
For example, [40] and [41]–[43], are merely concerned with
generating road networks. To the best of our knowledge, there
is no existing search-based testing approach for production-
grade AV software, including [20], [21], [41]–[55] that: (i) uses
our novel gene representation, (ii) does not require a manual
setup of driving scenarios with fixed scenario attributes (e.g.,
fixed number of obstacles, fixed obstacle trajectories, limited
maneuvers, etc.), (iii) automatically generates a diverse set of
scenario types, and (iv) considers traffic signals.

In order to empirically evaluate DoppelTest, we investigate
the following research questions:
• RQ1: To what extent does DoppelTest find different types

of bug-revealing violations?
• RQ2: Is DoppelTest more efficient in revealing bugs com-

pared to baseline technique that uses unintelligent obstacles?
• RQ3: What is the runtime efficiency of DoppelTest?

A. RQ1: Bug-Revealing Violations Discovered

DoppelTest generated a total of 165 scenarios that contain
violations, each of which we then manually verified to
determine (1) if it has at least one AV instance responsible
for the violation, (2) the total number of violations found,
and (3) the total number of bug-revealing violations. These
results are shown in Figure 6. We determine an AV instance is
responsible by checking whether the ADS made a sub-optimal
decision that directly caused the violation. For example, if
a collision occurred because the ADS did not make a yield
decision to other vehicles or pedestrians who have right-of-way.
42 collisions (33.6% of total collisions found) were determined
to not be bug-revealing because every collision involves the
pedestrian walking into a slow moving vehicle who has the
right-of-way. This type of violation is not bug-revealing because
the pedestrian’s unintelligent modeling of following waypoints,
ignoring other road traffic participants, and ignoring traffic
rules directly caused its collision with a vehicle.

Fig. 6: Number of violations and bug-revealing violations
generated by DoppelTest

The remaining 123 bug-revealing scenarios are then cate-
gorized into 8 unique types of bugs. 5 of which may result
in collision, 2 of which may result in traffic rule violations,
and 1 which results in routing module failure. We describe the
categories as follows:



TABLE I: Number of scenarios found for each type of bug

Category No. of Viol.

1 Failure to recognize slow dynamic obstacle (FRS) 19

2 Failure to react to obstacle heading change (FRH) 41

3 Improper overtake decision (IOD) 2

4 Unsafe lane borrow decision (ULB) 9

5 Incorrect prediction trajectory (IPT) 12

6 Stop sign rolling stop (SSRS) 33

7 Planning ignores traffic signal (TIS) 5

8 Routing failure (RF) 2

• Failure to recognize slow dynamic obstacle (FRS): A
dynamic obstacle slowly moves onto the planning trajectory
and the AV fails to make a new collision-free trajectory.

• Failure to react to obstacle heading change (FRH): A
dynamic obstacle suddenly changes its direction, and the AV
fails to recognize the obstacle’s action in a timely manner.

• Improper overtake decision (IOD): The AV attempts to
overtake another vehicle coming from a different direction
at a junction, when it should yield right-of-way.

• Unsafe lane borrow decision (ULB): The AV borrows the
lane of opposing traffic to overtake a static obstacle, and
collides into another vehicle when attempting to return to
its original lane.

• Incorrect prediction trajectory (IPT): Prediction produces
an incorrect prediction trajectory causing the AV to fail to
recognize a conflict with the obstacle’s trajectory.

• Stop sign rolling stop (SSRS): The AV decelerates to a low
speed (≈ 0.2 m/s) but does not make a complete stop before
crossing a stop sign.

• Planning ignores traffic signal (TIS): The AV stops on
the stop line and decides to accelerate and clear intersection
when facing a steady red signal.

• Routing failure (RF): Routing fails to produce a routing
response because it cannot recognize that a path exists from
one lane to a reachable lane.
For each of the above categories, DoppelTest was able to

automatically generate scenarios and detected them through its
oracles. The number of occurrences of each bug type is shown
in Table I. In the following paragraphs, we discuss 2 specific
bug-revealing violations that are found by DoppelTest.
Case Study 1: Planner Ignores Red Traffic Signal. Apollo
uses a reference line in front of the vehicle to check for traffic
control devices (e.g., a traffic signal or stop sign) it should
consider when making a planning decision. When the reference
line overlaps with a stop line controlled by a traffic signal, it
will make a stop decision if the signal is red or yellow.

In the scenario shown in Figure 7, the vehicle is about to
reach a junction at which the signal for the lane is green. As
the vehicle approaches the stop line, the signal changes to
yellow and is about to change to red. Apollo initially makes
a stop decision for the signal but was unable to stop with a
reasonable deceleration before the stop line, making the vehicle

Fig. 7: Planner Ignores Traffic Signal: The blue line indicates
AV’s planned trajectory. First, (a) the AV is planning to turn
left at the junction, then (b) it attempts to stop before the stop
line as the signal is yellow. (c) The AV stops on top of the
stop line due to limited time and distance and (d) ignores the
red signal and resumes turning left.

stop directly on top of the stop line. Notice that in Figure 7(c),
the vehicle stops on top of the stop line, and its rear side has
not crossed the stop line. However, since the vehicle’s head
already passed the stop line, Apollo no longer considers the
signal ahead and makes a new planning decision to resume a
left turn. As a result, Apollo already stopped on the stop line
when the signal changed to red, but accelerated and resumed
its left turn, causing a red light violation.

The written law does not specify every detail about where
the vehicle can be during the yellow change interval. Thus,
we confirmed with a police officer that the vehicle’s action
of stopping on the stop line then accelerating when signal is
red will result in a citation due to a red light violation. To
fix this bug, Apollo should take the length of the vehicle into
consideration when checking for traffic control devices on its
path, rather than using a reference line that is only in front of
the vehicle.

Fig. 8: Unsafe Lane Borrow: The blue line indicates the
vehicle’s planned maneuver. All 3 vehicles are controlled by
three instances of the same ADS software.

Case Study 2: Unsafe Lane Borrow Decision. Sometimes a



vehicle has to perform an illegal or risky maneuver to reach its
destination, for example, as shown in Figure 8(a), the yellow
vehicle plans to go around a stopped vehicle (the green AV
in Figure 8) by borrowing the lane with opposing traffic. As
the yellow AV proceeds according to its planning trajectory,
it recognizes a vehicle (the red AV in Figure 8) that has the
right of way and decides to yield—resulting in the yellow AV
stopping on top of the yellow line separating traffic going in
opposing directions. With the yellow AV stopped, the red AV
recognizes there is a static obstacle blocking its path in its
original lane and attempts to go around it by borrowing the
lane with opposing traffic, as shown in Figure 8(b). The red
AV completes half of its planned maneuver and realizes the
plan cannot be accomplished because of the existence of the
green AV, making the red AV stop on the yellow line as well.
Since the red AV, which the yellow AV yielded right-of-way
to, is now stopped, the yellow AV resumes its goal to return to
its original lane, ignoring the green AV who is now traveling
on the lane at 10 m/s, as shown in Figure 8(c). As a result, the
yellow AV collides with the green AV, shown in Figure 8(d).
This is one of the most complex scenarios that DoppelTest
finds which involves 3 AV instances all making decisions with
regards to its own goal and its surrounding environment, and
it was not discovered prior to DoppelTest.

One partial fix available in Apollo is to simply disable the AV
from crossing the yellow line. However, in real-life situations,
it may be necessary for the AV to cross the yellow line to
overtake the vehicle and may even be legal in some cases. A
remedy that can still allow overtaking other vehicles in this
case would involve having both the red or yellow AV yield to
the green AV. Thus, the ADS can be more cautious toward the
end of a lane borrow maneuver to check for vehicles traveling
in the lane it is moving into, or the ADS can be more cautious
when seeing a vehicle is trying to change lanes in front of it.

Finding 1: DoppelTest effectively generates scenarios that
reveal 123 bug-revealing violations for 8 types of bugs in
an industry-grade autonomous driving software system.

B. RQ2: Effectiveness of DoppelTest

RQ2 evaluates the effectiveness of DoppelTest by comparing
our results with a random version that generates scenarios with 1
AD instance and multiple unintelligent obstacles that travel at a
constant speed, ignore traffic rules, and ignore other road traffic
participants, which we will refer to as RAND. Such a technique
has similar capabilities as existing state-of-the-art techniques
[20]–[22]. We do not compare against implementations of
current state-of-the-art techniques because they require the use
of an external simulator that is no longer maintained [56].
Moreover, the simulator has a known issue [57] involving
obstacle kinematics. For example, specifying an obstacle to
travel at 5 m/s and then travel at 10 m/s will result in an
obstacle suddenly changing its speed rather than accelerating
or decelerating. The simulator’s simplification causes scenarios
to be physically unrealistic, thus impacting the ADS testing

approaches that depend on the simulator, making them not
bug-revealing for the ADS. Figure 9 shows the results of our
comparison of DoppelTest and RAND. Given the same amount
of time (240 hours), RAND discovered 1109 scenarios with
collisions, which is a significantly higher quantity compared
to how many DoppelTest was able to find. However, verifying
each of the 1109 scenarios generated by RAND reveals they
are all solely the obstacle’s responsibility. 1097 (99% of total)
involve the obstacle rear ending the AV, which is either stopped
at a stop line or is cruising normally; 12 non-rear-end cases
involve obstacles not following traffic rules while Apollo makes
a prediction assuming the vehicle will follow traffic rules. We
discuss an example in the following case study.

Fig. 9: Number of bug-revealing violations generated by a
baseline random approach and DoppelTest

Fig. 10: An illustration of a collision violation that is non-bug-
revealing generated by our random baseline. The red vehicle
is an AV instance, and the yellow vehicle is an unintelligent
obstacle. The blue line is the AV’s planned maneuver; the
green line is the AV’s predicted maneuver for the obstacle. The
obstacle is traveling at a constant 10 m/s.

Case Study 3: Non-Bug-Revealing Collision. In this case
study, we demonstrate how a collision may not be bug-revealing
because the AV never misbehaves or violates a traffic law or
rule. Figure 10(a) shows the AV executing a complete stop at
the stop sign and plans to move forward because it recognizes
that the intersection is clear and it is safe to proceed. As it
enters the intersection, shown in Figure 10(b), it predicts the
obstacle will stop at the stop sign. In Figure 10(c), the AV
recognizes that the obstacle does not slow down and, therefore,
predicts it will go straight at the intersection. This prediction
is reasonable because drivers often decelerate when making a
turn. As a result, the obstacle collides with the AV shown in
Figure 10(d). The AV did not predict there will be a conflict in
trajectory between the vehicles, so the AV could not avoid the



collision, which is solely the obstacle’s responsibility because
(1) it did not stop for the stop sign and (2) it did not decelerate
during any stage of the scenario and completed a right turn at
an unrealistic speed.

Finding 2: Generating violations is different from generat-
ing bug-revealing violations. A random baseline technique
can generate thousands of violations with collisions but
none of them are actually bug-revealing. In contrast,
DoppelTest effectively finds bug-revealing violations that
the ADS has responsibility for.

C. RQ3: Runtime Efficiency of DoppelTest

In RQ3, we study the runtime efficiency of DoppelTest by
measuring its execution time. Table II shows that DoppelTest
takes 47.48 seconds on average to execute a scenario from
Scenario Generator to Violation Analyzer in total (i.e., exe-
cuting all components together). Map Parser is a one-time
initialization that takes on average 2.66 seconds to analyze the
given HD Map. The Doppelganger Configuration is another
one-time initialization that takes 67.42 seconds in total to
configure 5 Apollo instances, on average 13.5 seconds per
Apollo instance. Scenario generation takes 8.80 seconds on
average to produce each scenario while running the scenario
in the Doppelganger Orchestrator phase takes 35.94 seconds to
execute. After running the scenario, it takes about 2.74 seconds
on average to analyze each scenario.

From the experimental results, we examined the time cost of
executing each main component in DoppelTest. The initial map
parsing and final violation analysis do not account for much
time to run, which is negligible. The most time-consuming
phase is to run the scenario with multiple Apollo instances.
We also compare our approach with state-of-the-art technique,
SCENORITA [22], using the paper’s reported results. Overall,
DoppelTest can save 15.63%, 13.44%, and 77.11% time in
Scenario Generator, Scenario Generator, and Violation Analyzer
phase for each scenario, respectively. Note that SCENORITA
does not have a Doppelgänger Orchestrator, which is the main
contribution of our work. We compare this component with a
similar component in SCENORITA whose purpose is to execute
a scenario. From the results, we can conclude:

Finding 3: Each individual component of DoppelTest is
efficient with an average execution time of 47.48 seconds
for each scenario, which means DoppelTest can be used
to efficiently generate driving scenarios that expose AV
systems to bug-revealing violations in practice. DoppelTest
can save 77.11% time in Violation Analyzer phase and
25.72% time in total compared with SCENORITA for each
scenario to run.

VI. THREATS TO VALIDITY

Internal Threats One potential threat to internal validity
is the selection of scenario duration: Simulation-based tests
require the execution of time-consuming computer simulations

to produce violations. We determined from our experimentation
that our selected scenario duration of 30 seconds finds a
significant number and variety of violations without incurring
drastically long test execution times. Furthermore, there is no
agreed-upon threshold in related work that dictates the correct
scenario duration.

Another threat to validity arises from verifying the correct-
ness of generated tests. There are unfortunately no automated
strategies nor a ground truth that can be used to assess the
accuracy of generated scenarios. For that reason, we had
to manually verify the generated tests. We further make
DoppelTest’s implementation and case study videos available
(Section IX) to others to further check our results.

A threat to internal validity is the non-determinism of the
ADS: The differing outputs of the ADS modules for each re-
execution may impact the outcome of a scenario. To mitigate
this threat, DoppelTest attempts to ensure a fresh state for each
re-execution of a scenario by precisely controlling the start
time and location of each road traffic participant and resetting
each of their states.

As a final threat to internal validity, the seed selection may
impact the genetic algorithm’s effectiveness and efficiency at
finding violations. Nevertheless, in our evaluation, initial seeds
are random, which can generate a significant variety of bug-
revealing violations. At the same time, more ADS instances will
produce more diverse and complicated scenarios; an example
is discussed in Section V-A Case Study 2. A minimum of 2
ADS instances is enough to produce all types of bug-revealing
violations discussed in the paper, either by interacting with
each other, interacting with pedestrians, or operating on maps
with traffic control devices.

External Threats One external threat is that we applied
DoppelTest to a single AV software system, Apollo. To mitigate
the threat, we selected the only high autonomy (i.e., Level
4), open-source, production-grade AV software system that
supports a wide variety of driving scenarios and explicitly aims
for both safety and driver comfort. We ran experiments on the
Apollo ADS for 240 hours in total. Note that Autoware [58],
despite being open-source and widely-used [59], is considered
a research-grade and not a production-grade AV software
system [60], [61], which we further verified through speaking
with Christian John, the Vice Chair and Chief Software
Architect of Autoware.

Construct Validity The main threat to construct validity
is how we measure and evaluate traffic rule violations. To
mitigate this threat, we review interpretations of the traffic law
from multiple legal experts [36]–[39]. We further spoke with
police officers of the state for the map we used to confirm the
AV instance’s action violates traffic laws.

VII. RELATED WORK

A wide array of studies focus on applying traditional testing
techniques to AVs including adaptive stress testing [62], where
noise is injected into the input sensors of an AV to cause
accidents; fitness function templates for testing automated and
autonomous driving systems with heuristic search [63]; and



TABLE II: Runtime efficiency(s) of DoppelTest and SCENORITA

Map Parser Doppelgänger Scenario (Doppelgänger) Violation E2EConfiguration Generator Orchestrator Analyzer

DoppelTest 2.66 67.42 8.80 35.94 2.74 47.48

SCENORITA N/A N/A 10.43 41.52 11.97 63.92

search-based optimization [64]. These studies provide limited
insights into the testing of real-world AVs, since they do not
evaluate their techniques on open-source, production-grade AV
software. Other related work focuses on the vision, multi-sensor
fusion, and machine-learning aspects of AV software [65]–[73]
all of which ultimately focus on the Perception and Prediction
components of ADS. Unlike these approaches, DoppelTest
focuses on AV scenario simulations and Planning, which is
known to have more bugs than Perception and Prediction
combined [33].

Erbsmehl [74] recreates crashes by replaying the sensory
data collected from the physical world. Similarly, AC3R [75]
generates driving simulations that reproduce car crashes from
police reports using natural language processing (NLP). How-
ever, AC3R requires manual collection of police reports and
inherits the accuracy limitations of the underlying NLP used
to extract information from police reports.

Gambi et al. proposed a search-based approach, AsFault,
that combines procedural content generation to automatically
create suitable virtual scenarios for testing AVs [40]. However,
AsFault only used one test oracle to test the lane-keeping feature
of autonomous driving [76]. Similarly, tools published as part
of the Search-Based Software Testing Challenge (SBST) [50],
[51] generate challenging road networks for virtual testing
of an automated lane keep system such as GABezier [41],
Frenetic [42], WOGAN [77], and Deeper [43]. Birchler et
al. proposed SDC-Scissor [78], which focuses on predicting
whether a particular road structure may cause ADS violations
without executing the scenario, and is similar to the focus of
the SBST tool competition. However, none of these tools take
into account the behavior of other obstacles when testing for
safety violations in AVs.

Next we discuss the wide variety of approaches that aim
to generate scenarios with violations: Li et. al. [55] generate
scenarios that consider the safety and comfort of AVs. Luo
et. al. propose a framework (EMOOD) [54], which evolves
tests to identify combinations of requirements violations. Chen
et al. proposed a reinforcement learning approach to generate
challenging scenarios for adversarial evaluation on purpose
[79]. AV-Fuzzer is a AV testing framework for generating
diverse scenarios and finding safety violations caused by AVs
[20]. They classify the safety violations of Baidu Apollo
reported by AV-Fuzzer into 5 different types and discuss
the major causes of these violations. AutoFuzz [21] uses
neural networks in the process of evolutionary search to
generate more complex and valid scenarios for AV testing
[21]. SCENORITA is a search-based testing framework, which
exposes ADS to 5 types of violations in generated scenarios and

reduces duplicate scenarios. It supports fully mutable obstacles
with valid obstacles trajectories and automates the scenario
configuration [22]. Unlike DoppelTest, these techniques do not
aim to maximize finding bug-revealing violations, as opposed
to just any violation and they do not explicitly account for
traffic signals, stop signs, or module response violations.

Calò et al. [80] introduce two search-based approaches
to find avoidable collisions for AVs. Unlike DoppelTest, this
work was applied to a closed-source ADS, does not specifically
handle traffic signal configurations, and does not handle
violations other than collisions. Wachi et al. propose a method
that uses adversarial reinforcement learning to find failure
scenarios for AVs [81]. Unlike DoppelTest, they do not discuss
or validate how their failure scenarios may be bug-revealing;
they provide no public implementation of their technique, which
is implemented on Microsoft AirSim, which is not a production-
grade AV system, unlike Baidu Apollo; and do not explain
how long they ran their scenarios.

VIII. CONCLUSION

We presented DoppelTest, a framework that generates bug-
revealing scenarios by making every vehicle an AV and models
traffic control (e.g., traffic signals and stop signs). Our work
addresses the key challenge of determining responsibility after
an ADS is involved in a violation. The takeaway is the insight
that, when all vehicles are controlled by an ADS, violations
should never occur; if a violation occurs in such a setting, such
a violation must be a bug in the ADS. We show that DoppelTest
discovered 123 bug-revealing violations from 8 unique bug
types in a production-grade ADS, Baidu Apollo 7.0 [31]. We
submitted a fix to one type of bug DoppelTest discovered,
which was accepted as part of the most recent version of
Apollo. For future work, we aim to expand DoppelTest to
handle more diverse dynamic obstacles including vehicles of
different sizes and bicycles, more oracles for checking module
failures, and extending work to other AV software systems.

IX. DATA AVAILABILITY

The source code of DoppelTest is available at https://doi.org/
10.5281/zenodo.7575582. Video recordings of the case studies
are available at https://doi.org/10.5281/zenodo.7622399.
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[77] J. Peltomäki, F. Spencer, and I. Porres, “WOGAN at the SBST 2022
CPS Tool Competition,” May 2022, arXiv:2205.11064 [cs]. [Online].
Available: http://arxiv.org/abs/2205.11064

[78] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, and S. Panichella,
“Cost-effective Simulation-based Test Selection in Self-driving Cars
Software with SDC-Scissor,” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). Honolulu,
HI, USA: IEEE, Mar. 2022, pp. 164–168. [Online]. Available:
https://ieeexplore.ieee.org/document/9825849/

[79] B. Chen, X. Chen, Q. Wu, and L. Li, “Adversarial evaluation of
autonomous vehicles in lane-change scenarios,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 8, pp. 10 333–10 342, 2022. [Online].
Available: https://doi.org/10.1109/TITS.2021.3091477
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