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Abstract

Protein aggregation has been studied by many groups around the world for many years because it can be the
cause of a number of neurodegenerative diseases that have no effective treatment. Obtaining the structure
of related fibrils and toxic oligomers, as well as describing the pathways and main factors that govern the
self-organization process, is of paramount importance, but it is also very difficult. To solve this problem,
experimental and computational methods are often combined to get the most out of each method. The
effectiveness of the computational approach largely depends on the construction of a reasonable molecular
model. Here we discussed different versions of the four most popular all-atom force fields AMBER,
CHARMM, GROMOS, and OPLS, which have been developed for folded and intrinsically disordered
proteins, or both. Continuous and discrete coarse-grained models, which were mainly used to study the
kinetics of aggregation, are also summarized.
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1 Introduction

After synthesis in the ribosome, the protein can fold into a native
state and is likely to become functional. However, under the influ-
ence of various factors, such as changes in the translation rate of
codons, sequence, crowded environment, it can aggregate (Fig. 1),
which can cause a number of neurodegenerative diseases [1]. There-
fore, problem of protein aggregation has attracted the attention of
many researchers in recent decades. Appearance of plaques from
amyloid beta (Aβ) peptides and tau-protein in the brain is consid-
ered as a hallmark of Alzheimer’s disease [2], while accumulation of
α-synuclein is believed to cause Parkinson’s disease [3]. In total,
there are about 20 different neurodegenerative diseases associated
with the self-assembly of various proteins, although fibrillar struc-
tures are applicable in some cases.

The study of protein aggregation includes the determination of
the structure of aggregates and mechanisms of their formation.
Depending on the conditions, the aggregate can be amorphous
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(e.g., at a high concentration of metal ions) or fibrillar with a cross-
beta structure, as shown by experiment using solid state NMR,
solution NM, and cryo-EM. It was previously thought that only
fibrils are toxic to the nervous system, but recent experimental
studies have revealed that off-pathway oligomers are also highly
toxic [4] (Fig. 1). Therefore, it is necessary to determine the
structure of oligomers, but because of their transient nature, exper-
imental methods cannot solve this problem. In such a context,
computational tools such as molecular dynamics simulations are
helpful.

Amyloid fibril formation mechanism has been experimentally
proven to follow the nucleation growth mechanism [5, 6], in which
the augmentation of aggregation mass in time obeys the sigmoid
curve (Fig. 2) and consists of three characteristic stages: the lag
phase, elongation or growth phase, and equilibrium or saturation
phase [1, 7]. The lag phase corresponds to the period, in which
soluble monomers randomly form unstable oligomers, and its end
is marked by the formation of a primary critical nucleus, which acts
as a stable template into which other peptides are favorably
incorporated and contribute to fibril elongation. In the elongation
phase, formation of protofibrils from the template obeys the “dock-
lock” mechanism [8]. The accumulation of fibril mass also benefits
from the secondary nucleation, where available small fibrils cata-
lyzes the formation of oligomers on their surface, resulting in the
formation of β-sheet-rich species [9]. Finally, as soon as the balance
between the attachment of monomers to mature fibrils and their
detachment is reached, the system enters the saturation phase.

Protein folding has been known to be computationally chal-
lenging due to a rough free energy landscape, but the numerical

Fig. 1 Schematic graph showing that a protein can either fold into its native state
in order to be functional or misfold to aggregate. There are three possible
scenarios for aggregation: the formation of toxic off-pathway oligomers, amor-
phous aggregate, and fibrillar structure through on-pathway oligomers
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study of fibril formation is even more difficult because the fibril
formation time (hour-day) is about four orders of magnitude lon-
ger than the folding time (μs–s). Therefore, all-atom molecular
simulations are usually limited to the fibril formation of short
amyloid peptides or the early stage of aggregation of longer pro-
teins [10]. Coarse-grained models have often been used to study
aggregation kinetics, but not to obtain a fibrillar structure unless
they are hybridized with all-atom models.

There are many good reviews of coarse-grained [11] and
all-atom force fields (FFs) [12, 13] and their application to study
self-assembly of proteins. Therefore, our goal is to provide a short
survey of the latest developments in this area, with a focus on
coarse-grained models and our own contributions. Our review
begins with a description of the main all-atom FFs developed for
proteins that have a native state and intrinsically disordered proteins
or both. We restrict ourselves to the results obtained using these
FFs for the aggregation of amyloid proteins and peptides. Most of
the current off- and on-lattice models and their application to the
study of the thermodynamics and kinetics of oligomerization and

Fig. 2 Sigmoid kinetics of fibril formation process typically observed in the fluorescent experiment. Blue and
orange colors represent species favoring disordered and ordered configurations, respectively. 1SN refers to
one-step nucleation kinetics, in which highly amyloidogenic peptides can associate to form β-rich oligomers
and then a critical nucleus. 2SN stands for two-step nucleation kinetics, in which poorly amyloidogenic
peptides are first formed small amorphous oligomers, and then they evolve into a disordered stable critical
nucleus, which gradually transforms its structure into a rich β-structure template
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fibrillation will be briefly discussed. Future directions in the devel-
opment of computational models for the study of the aggregation
of biomolecules will be outlined.

2 Application of All-Atom Models to Study Protein Aggregation

All-atom FFs are the most natural choice to conduct theoretical
studies of many biological phenomena involving proteins, nucleic
acids, lipids, and sugars. Most of the FFs focusing on proteins are
based on Anfinsen’s dogma saying that at least for small globular
proteins the native structure is determined only by the amino acid
sequence [14]. However, the process of protein folding is so com-
plicated that it is impossible to study all possible protein conforma-
tions [15]. Therefore, one should focus on a dominant folding
pathway that leads to a native structure of proteins [16]. Although
this is true for many proteins, it was found that protein aggregates
and fibrils possess very stable and low-energy structures, which are
kinetically preferable [17]. High stability of the fibrils is one of the
reasons why diseases such as Alzheimer, Parkinson, or dementia
with Lewy bodies are so difficult to treat [18, 19].

2.1 Typical FFs Used

for Studies of Systems

Involving Peptides or

Proteins

The four most popular all-atom FFs used to study proteins are
probably Amber [20], CHARMM [21], GROMOS [22], and
OPLS [23]. Although technically only GROMOS and OPLS-UA
are unified atom FFs, due to the fact that some hydrogen atoms are
implicitly included in heavy-atom parameters with which they are
covalently bound, other FFs are also using some tricks to constrain
motion of some or all hydrogen atoms in order to speed up simula-
tions, such as SHAKE [24], RATTLE [25], and SETTLE for rigid
water molecule [26] algorithms. All of the mentioned FFs are
non-polarizable and belong to first-generation FFs sharing very
similar energy equation [27]. Therefore, the most significant dif-
ferences between them are mostly due to various parameterization
methods used to obtain parameters [28].

All of the popular all-atom FFs exist in many versions and
alterations developed by years of development, and although, in
general, the accuracy of modern FFs is much better than of the old
ones, not always new versions are universally better. For instance,
they may overestimate the alpha [29] or beta [30] content. Thus,
one should always be aware of possible bias of the method
[31]. Some popular versions of FFs used to study protein systems
are Amber ff99sb [32], ff14sb [33], and new ff19s [34], which is
recommended to be used with more advance water model, e.g.,
3-charge, 4-point rigid water model OPC [35] instead of regular
three-site water model TIP3P [36]. CHARMM C22/CMAP
(C27) [37, 38], C36 [39], and new C36m [40] designed with
improvements for regular and disordered proteins, GROMOS
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54A7 and 54B7, which improved the stability of proteins compared
to 53A6 [41] and newer 54A8 [42] which fixed charge interactions
[43], OPLS-AA [44], OPLS-AA-L [45], and other modifications,
such as L-OPLS [46] and OPLS-AA/M [47, 48].

Additional issue is caused by peptides and proteins without
stable secondary and tertiary structures, such as intrinsically disor-
dered proteins (IDPs) [49], for which FFs often overestimate
structure stability; therefore, some variants specially designed for
these cases were developed [50], such as Amber ff14IDPs [51], and
further improved versions ff14IDPSFF [52] and CHARM-
M36IDPSFF [53], significantly improving agreement of the simu-
lations with the experimental observables [54]. As water models
can significantly change the properties of disordered proteins
[55, 56], due to strong interaction of such molecules with water
[57, 58], Table 1 shows short summary of popular state-of-the-art
FFs with recommended water models coupled with them.

2.2 Applications

of All-Atom Models

Due to computational limitations, for many years most of the
applications of all-atom FFs focused on single peptide or protein
systems [69]. Klimov and Thirumalai [70] were the first to apply an
all-atom model to study the aggregation of three short peptides
Aβ16–22 (KLVFFAE), which stimulated a lot of works in this area.
Interesting approach to overcome the problem of too short
computational time to study aggregation effect in large systems
was to study the addition of the monomeric chain to oligomers
and fibrils, which showed the two-stage dock-and-lock mechanism
of such process if oligomer is big enough [8]. Sometimes the
aggregation can be studied by using even only two chains or
many chains but heavily truncated, if a good description of this
process can be provided [71]. A good example is studies in which
possibility of the aggregation was investigated by measurement of
fibril-prone structure population [72], as in the works of Viet and
Li, who demonstrated that addition of Aβ40 inhibits Aβ42 aggre-
gation [73]. Thanks to the truncation, it is possible to investigate
aggregation of dimers, trimers, and bigger oligomers [74] using
enhanced sampling methods, such as replica exchange molecular
dynamics [75–77], which allows to overcome energy barriers and,
therefore, study the conformational space more thoroughly. On the
other hand, we found that in case of monomeric IDPs with the use
of modern FFs, it may be enough to use conventional MD simula-
tions, which can be speed-up by using GP-GPU calculations
[78, 79], due to small energy barriers between various conforma-
tions [58]. It is especially useful because studies of monomers’ beta
content may be enough to predict their aggregation rates [80];
however, it is important to remember that aggregation rate alone
does not provide any information about conformation and toxicity
of aggregates, and some small changes in the sequence may, e.g.,
induce the formation of nontoxic ellipse-like aggregates
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Table 1
Summary of the modern all-atom FF for studying structured proteins and IDPs. Official distributions of
the FF versions are highlighted by gray background. In “Systems” column, letters S and D indicate
that FF is suitable for structured or/and disordered proteins, respectively

FF Parameters Systems Notes Ref. Recommended 
water model Ref.

AMBER

ff99sb
S Old and very 

popular FF
[32] TIP3P [36]

a99SB-disp
S + D Optimized a99SB-

ILDN FF
[59] TIP4P-D [55]

ff99SBnmr2

S + D

Improved 

ff99SBnmr1 FF
[60]

TIP3P for 

folded and 

TIP4P-D for 

IDPs

[36,55]

ff03CMAP

S + D Correction maps 

[CMAP]-

optimized ff03sb 

FF.

[61]

TIP4P-Ew for 

folded and 

TIP4P-D for 

IDPs

[55,62]

ff14sb

S Improved ff99sb 

by tuning dihedral 

potentials

[33] TIP3P [36]

ff14IDPs

D ff14sb FF with 

modifications for 8 

residues.

[51] TIP3P [36]

ff14IDPSFF

D ff14sb FF with 

modifications for 8 

residues.

[52] TIP3P [36]

ESFF1

S + D Extended ff14sb 

FF with 71 

backbone CMAP 

energy terms

[63] TIP4P-D [55]

ff19sb

S + D Improved 

backbone profiles 

from ff14sb. 

[34] OPC [35]

CHARMM

C22

S Very old and 

popular version of 

the FF

[37] TIP3P [36]

C22/CMAP

S C22 with inclusion 

of an energy 

correction map 

[CMAPs]

[38] Modified TIP3P [64]

C36

S Recent version of 

the FF for regular 

proteins

[39]

Modified TIP3P 

[εh= −0.046 

kcal/mol]

[39]

C36m

S + D Optimized C36 FF 

with emphasis on 

disordered proteins

[40]

Modified TIP3P 

[εh= −0.100 

kcal/mol]

[40]

CHARMM36IDPSFF

D C36m with 

modified CMAP 

parameters for 20 

residues.

[53]

Modified TIP3P 

[εh= −0.100 

kcal/mol]

[40]

(continued)
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[81]. Another important note is that one should be careful when
studying truncated systems, because lack of even one or two amino
acid residues can significantly change their properties, such as
aggregation rate, which is especially true for IDPs [82]. Influence
of lipid bilayer on the amyloid peptide aggregation and peptide on
bilayer stability was also investigated for monomers [83], dimers
[84], and tetramers [85] including the structures manually inserted
into the membrane forming beta-barrel structures [86], which
were found also experimentally [87]. In case of amyloid beta, it is
equally important to study aggregation of the chains as the inhibi-
tion of this process, due to the presence of different compounds,
such as fullerenes [88] and their derivatives [89], curcumin [90], or
small peptides [91]. Such attempts are conducted by many groups
in order to provide theoretical background for fibril-related disease
[10]. Computational studies of aggregates of amyloidogenic poly-
peptides such as Aβ, α-synuclein, islet amyloid polypeptide, tau
protein, and prion protein have been recently reviewed by Ilie and
Caflisch [92].

Table 1
(continued)

GROMOS

54A7 S Popular FF version [41] SPC [65]

54A7_β

S Optimization of 

beta-structures in 

54A7 FF

[66] SPC [65]

54A8

S 54a7 with 

recalibrated 

nonbonded 

interactions of 

charged residues

[42] SPC [65]

OPLS

OPLS-AA
S All-atom version 

of OPLS FF
[44]

OPLS-AA-L

S OPLS-AA with 

optimized key 

Fourier torsional 

coefficients

[45]

OPLSIDPSFF

S Residue-specific 

variant of OPLS-

AA-L FF

[67] TIP4P-D [55]

L-OPLS

S Improved 

treatment of long 

hydrocarbons [e.g. 

lipid bilayers]

[46] TIP3P-MOD [68]

OPLS-AA/M

S + D Improved OPLS-

AA FF for proteins 

with additional 

parameters for 

nucleic acids

[47,48] TIP3P [36]
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3 Coarse-Grained Models

In general, idea of coarse-graining is based on the assumption that
reduction of the interacting centers decreases the computational
time required for every MC or MD step and that conformational
space can be searched more thoroughly due to smoother energy
landscape (Fig. 3) and better sampling. Simplification of the system
representation always bears a risk that some important details will
be missing, negatively impacting accuracy of the method [93, 94];
therefore, users should be even more careful to check if a given
approach provides satisfactory results for the investigated phenom-
enon [95, 96]. On the more positive side, coarse-grained FF can
provide much wider view than all-atom methods, due to ability to
study system or phenomenon much more extensively, using higher
number of longer trajectories, providing better statistics and aver-
age properties than single-trajectory studies and discover secondary
pathways of some processes [97]. All types of coarse-grained FFs,
including structure-based, knowledge-based, and dynamics-based
model, are currently very intensively developed to allow reliable
simulations of macromolecular complexes [98]. Additionally, there
are approaches to develop and use multiscale coarse-grained simu-
lations to study biological systems [99, 100], or to include polari-
zation [101] and reactivity [102]; there are not yet advanced
enough to use for complex biomacromolecular systems.

3.1 Typical FFs Used

for Studies of Systems

Involving Peptides or

Proteins

Although there are many in-house coarse-grained FFs dedicated
for studies of very limited number of systems, or even single cases
[103, 104], there are also general-purpose coarse-grained FFs,
such as AWSEM [105], CABS [106], MARTINI [107, 108],

Fig. 3 Schematic representation of the all-atom, coarse-grained, and lattice representations and respective
energy landscapes
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OPEP [109, 110], PaLaCe [111], PRIMO [112], SIRAH
[113, 114], and UNRES [115–117]. Contrary to the all-atom
FFs, coarse-grained ones differ significantly not only in parameters
of interacting centers, but also in system representation (level of
reduction) and energy functions [93, 118]. Although such uni-
versal FFs allows in principle to study a plethora of phenomena,
such as protein folding, conformational changes, and aggregation,
due to complexity of these processes, performance of every
method should be verified before application. One good example
is the MARTINI FF, which was found to cause excessive, irrevers-
ible, and non-selective aggregation of membrane proteins [119],
which is one of the problems assigned to be fixed in the next
version of the FF [120]. Another issue comes from the unstruc-
tured character of IDPs, which are poorly described by most of the
FFs, mostly due to overestimation of secondary structure stability.
In some cases, it can be simply fixed by tuning energy potential
terms responsible for secondary structure, like in ASWEN-IDP
[121] or increasing strength of protein–water interactions [122];
however, sometimes design of the completely new method instead
of modifying existing one is more convenient, like in case of
FRAGFOLD-IDP [123], being redesigned CABSFlex
[124]. One should have in mind that although design of
IDP-specific version of the method should improve performance
for these proteins, it may corrupt results for regular systems.
Another problem may come from the fact that majority of
coarse-grained FFs use knowledge-based potentials to describe
studied systems. Their usage to study aggregation of IDPs, such
as Aβ42, may be problematic, due to the fact that they are strongly
biased by the structures deposited in the Protein Data Bank [125],
used for parametrization, which are available only for fibrils, not
for monomeric or oligomeric forms in water.

3.2 Applications

of General-Purpose

Coarse-Grained FFs

Despite the limitations, at some point every popular coarse-grained
FF was successfully used to study aggregation or oligomerization-
related effects. It is unavoidable, as it is predicted that more than
80% of proteins stay not alone in the cell, but in complexes [126]. A
few examples are presented below. The AWSEM Amylometer is a
useful and powerful tool for prediction of amyloidogenic segments
from the sequence providing additional information of thermody-
namic and kinetic roles of these segments in folding and aggrega-
tion based on AWSEM FF [127]. Very recently, the same FF was
used to study nucleation of two fibrils derived from patients with
Pick’s and Alzheimer’s diseases showing importance of oligomeric
structure on the fibrilization: oligomers with parallel in-register
β-strands lead to fibril formation, while not ordered β-strand stack-
ing lead to amorphous structures [128]. Even though in the
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MARTINI model, secondary structure is fixed during simulation,
there are still some attempts, in which it can be successfully used for
structural studies of aggregation dynamics of self-assembling sys-
tems, such as self-assembling peptides [129], dipeptides [130] and
other short peptides [131], and even effect of lipid bilayer on Aβ
peptide [132]. Newer FFs, like PRIMO and PaLaCe, were not
extensively used yet, but even for them they are examples of associ-
ation studies [133].

Various coarse-grained FFs are used to study also aggregation
process of other molecules, such as α-synuclein, for which it was
found that formation of β-hairpin in region 38–53 is necessary for
the aggregation [134] and that non-amyloid-β component (NAC)
mutations can disturb aggregation [135]. Influence of some mole-
cules, like trehalose, which promote alternate aggregation pathway
leading to the formation of amorphous aggregates was also studied
as a possible way to treat Parkinson disease [136]. Another mole-
cule, which is commonly studied for aggregations effect, is tau
protein, for which nucleation kinetics of hexapeptide fragments
involved in fibril formation was extensively studied by a coarse-
grained FF [137], as well as effect of the temperature on fibril
formation [138].

3.3 OPEP

Coarse-Grained FF

The most extensively used coarse-grained FF for studies of peptide
and protein aggregation is OPEP (Optimized Potential for Effi-
cient Protein Structure Prediction), developed by the group of
Philippe Derreumaux for more than 20 years [109]. In OPEP,
protein chain representation is reduced this way that the backbone
consists of all atoms (N, Cα, C, O, and H), while side chain is
simplified to coarse-grained form (one bead, except for proline,
which is described by all heavy atoms) to find good compromise
between accuracy and speed-up [139]. Authors not only carefully
designed the FF and model, but extensively tested it for protein
folding capabilities [140], pH dependence [141], and investigated
influence of simulation temperature [142] and thermostat on the
obtained results [143].

Using ART-OPEP simulations, it was demonstrated that the
formation of oligomeric metastable structures is an important step
in fibrilization process and provided possible explanation of depen-
dency of β-sheet formation on pH conditions [144]. Later, using
OPEP and all-atom FF, it was presented that the formation of
stable β-barrel structures of NHVTLSQ oligomers [145] may be
an important early aggregation step in fibril formation process
[146]. Very recently, the same group demonstrated using all-atom
methods that similar structures may be obtained by truncated
Aβ11–40 in dipalmitoylphosphatidylcholine membrane models
[147]. In other recent studies, OPEP was used to study 1000
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chains of very truncated Aβ16–22 to show prefibril elongation mech-
anism, including pore and branch formation during aggregation
process [148]. Thanks to the addition of the hydrodynamical
effects to the OPEP FF, it can better capture kinetics of aggregation
and association processes, speeding-up the collapse of molecules by
about 40% [149].

3.4 UNRES

Coarse-Grained FF

UNRES (UNited RESidue) is a coarse-grained physics-based FF, in
which polypeptide chain representation is reduced to two interac-
tion centers: peptide and side chain. It has been developed for more
than 20 years by Liwo, Scheraga, and coworkers to allow realistic
studies of peptides and proteins. It allows to study ab initio folding
processes of many single-chain [95, 150, 151] and multi-chain
proteins [152] including their aggregation for two [153], four
[154, 155], and more chains with a good accuracy, if the satisfac-
tory simulation time can be reached. UNRES can work purely as an
ab initio method, without any information from databases, or to
utilize in simulations some information, like predicted contacts
between residues [156], SAXS data [157] or domain [158], and
protein fragment [159] structures.

In the past, UNRES was used to study the growth mechanism
of Aβ fibrils by adding monomer to the existing fibril template
without any additional bias, which allowed to confirm the dock-
lock mechanism with two distinct locking stages and importance of
hydrophobic contacts between chains [160]. These studies were
recently extended to determine most probable pathways of fibril
elongation and residues necessary for the process to occur
[161]. Also the importance of α-to-β transition of 17–21 residue
fragment was found by the molecular dynamics simulation in
UNRES FF to allow propagation along the 28-residue amino-
terminal fragment of Aβ chains [162]. It was demonstrated that
in the presence of extended 16–21 residue fragment of Aβ (such as
in fibrils, but not in monomers), Aβ can bind to repeat domain of
tau forming Aβ40 fibril–tau aggregates [163]. In the most recent
studies, we showed using multi-scale simulations that tetrameric
structures of Aβ significantly differ from Aβ fibrils [155] and that
Aβ–water interactions are key for stabilization of monomers [58]
and small oligomers. We also showed that the formation of the
tetramer is mostly due to interaction between two dimers, rather
than trimer andmonomer (Fig. 4) what was suggested also by other
studies using OPLS/AA FF [164].
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4 Other Off-Lattice Coarse-Grained FFs

In the following paragraphs, some off-lattice coarse-grained models
designed and applied for the study of peptide aggregation are
briefly described. Since there are many models of these types, for
convenience we call them after the name of the authors who have
developed them. Representation of amino acids in most of the
models described below is more simplified than in general-purpose
coarse-grained FFs.

4.1 The Vacha–

Frenkel Model

Vacha and Frenkel constructed a generic CG model, in which the
peptides had patchy sphero-cylinder’s (PSC) shape with a stripe on
its side representing their binding ability. Using Monte Carlo simu-
lations, the authors proved that this model can successfully predict
the existence of oligomeric states capturing a two-filament amyloid-
like structure [165]. Then, in the two-state modified model, spe-
cifically designed to describe Aβ peptides, the patchy particles can
switch between α- or β-states corresponding to the soluble peptide
or extended peptide conformation in Aβ-amyloid structure, respec-
tively. By performing 2μs of Dynamic Monte Carlo (DMC) simu-
lation for a system of 600 PSCs, the authors were able to observe

(13.9 %)

(1.5 %)

(8.0 %)

4 (76.6 %)

2

3

3.2 %
4.4 %

4.7 %

83
.8

 %

24.2 %

32.0 %

13.0 %

73.7 %

50.6 %

25
.2

 %
63

.6
 %

21.6 %

1

Fig. 4 Transition network from UNRES REMD simulation showing oligomer size
(label on each node) and transitions between different forms (arrows) [155]

62 Nguyen Truong Co et al.



fibrillar species with a morphology similar to experimental observa-
tions. The kinetics of patchy self-assembly is consistent with Oosa-
wa’s theory and the critical nucleation size was estimated to be
about 3.8 chains [166]. Based on the PSC model, properties of
the fibrillar nucleation-dependence kinetics were further studied
[167–169], and the effect of various surfaces on the rate of amyloid
formation was systematically investigated [170].

4.2 The Barz–Urbanc

Model

Barz and Urbanc defined the unit of their minimal self-assembly
model as a tetrahedron of two attractive (hydrophobic) and two
repulsive (hydrophilic) beads located at its vertices [171]. The
model employed a discrete MD algorithm combined with periodic
boundary condition and an implicit solvent. By modulating the
values of the hydropathic parameter η, the ratio between repulsive
and attractive interaction, the authors obtained various morpholo-
gies of aggregates such as quasi-spherical oligomers, curved
tubules, curvilinear protofibrils, and multi-domain aggregates.
The mechanism of monomer addition, assembly fusion, and break-
down has also been reported [171].

4.3 The Hoang-

–Trovato–Seno–

Banavar–Maritan

Model

Auer et al. extended Hoang-Trovato-Seno-Banavar-Maritan tube
model [172], in which each residue is simplified to Cα atom,
represented as a flexible tube, in order to study the nucleation
and growth mechanism of peptide fibrillation [173] and to shed
light on the kinetics of conversion from disordered oligomer spe-
cies into protofilaments [174]. Hoang et al. applied the model to
study the sequence dependence of the aggregation process, stating
that the fibril template created by highly fibril-prone sequences can
assist the formation of poorly amyloidogenic sequences into a fibril-
like structure [175].

4.4 The

Mioduszewski-

–Cieplak Model

Cieplak and Mioduszewski developed one-bead-per-residue Cα
model to investigate intrinsic disorder proteins using unique design
in which contacts between beads can form and disappear during
MD simulation [176]. Using their model, the authors successfully
constructed the polyglutamine and polyalanine phase diagrams
which not only confirmed the existence of liquid–gas coexistence
curve at room temperature but also revealed a novel amyloid-glass
phase corresponding to the fibril-liked structures of the proteins at
low temperatures [177]. Recently, the model was updated with the
introduction of nonradial multibody pseudo-improper-dihedral
potentials which allowed to more accurately capture protein and
protein assembly properties during MD simulations [178].

4.5 The Ilie–den

Otter–Briels Model

Ilie and coworkers developed a highly CG polymorph patchy parti-
cle model [179] to study α-synuclein and its self-assembly. In their
model, the protein is treated as a particle, and a changeable internal
state was assigned to characterize the structural adaptability of this
intrinsically disordered protein.
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The disordered state and β-sheets are described as a solid
sphero-cylinder with a long attractive stripe and soft spheres,
respectively. The probability of shifting between the two states
was set to favor the ordered state for bound particles. The authors
matched the particle parameters to the experimental data of
α-synuclein and performed Brownian dynamics simulations. They
found that the kinetics of fibril formation confronted to either the
nucleation and growth mechanism or a two-step mechanism. Fur-
thermore, the preformed fibrils promoted the conversion of oligo-
mers to fibrils. The authors also introduced a higher resolution
version of α-synuclein as a mixture connecting polymorph particles
and examined the kinetics of peptides incorporation at the fibril
end [180].

4.6 The Pellarin–

Caflish Model

Pellarin and Caflish developed a two-state CG phenomenological
model of a simple amphipathic peptide consisting of ten beads, of
which six beads described the peptide side chain and the remaining
four served as its backbone [181]. The peptide can rotate around its
internal dihedral, which is a unique freedom degree of the system,
to switch between amyloid-competent (β) and amyloid-protected
states (π), and the energy barrier between the two states modulates
the degree of amyloidogenicity of the peptide. For highly amyloid-
prone chains (HAPs), aggregation events occurred even at concen-
trations lower than the critical concentration of micelle (CMC),
and the fibril mass was accumulated directly through a single path-
way of a small nucleus without micelles, as well as intermediate
protofibrils with the growth rate strongly dependent on the peptide
concentration. Poorly amyloid-prone (PAPs) proteins nucleated
through multiple pathways with a large nucleus at concentrations
above CMC and fibril formation proceeded slowly through differ-
ent metastable intermediates. It was found that the concentration
of molecules has little impact on the fibril growth rate
[181, 182]. Their simulation results also indicated that HAPs
favorably formed the fibril morphology with the highest stability,
while for PAPs, the formation of the fibril shape was regulated by
kinetics [183]. Additionally, self-assembly of PAPs was accelerated
by the crowding effect, retarded by membranes as well as surfac-
tants, but does not play a clear role in membrane leakage. Whereas,
the process of fibril formation of HAPs promoted membrane leak-
age is lightly enhanced by membranes, but is not sensitive to
crowders and marginally influenced by surfactants [184–186].

4.7 The Bellesia–

Shea Model

Each amino acid residue in the Bellesia–Shea model [187] is repre-
sented by three beads, two beads for the backbone and one for the
sidechain. The authors introduced four different types of side
chains: hydrophobic, polar, positively and negatively charged, and
end group capped at both termini of the peptide to prevent edge-
to-edge aggregation. The dihedral potential of the backbone was
used to alter the β-sheet propensity of peptides. The model shared a
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similar self-assembly kinetics with the Pellarin–Caflisch CG model
[188], for HAPs the aggregation pathway included a small ordered
β-strand forming nucleus, which subsequently acted as a template
for fibril growth, while for PAPs, initially formed amorphous clus-
ters gradually transforming into ordered structures. Bellesia–Shea
model can capture diverse structures such as disordered oligomers,
beta barrels, and multilayer fibrils. Simulations in the presence of
absorbing solid foreign surfaces and lipid bilayers membranes
showed that both environments promote the formation of the
β-sheet motif near the surfaces [189].

5 On-Lattice Models for the Study of Protein Aggregation

This part discusses the most simplified on-lattice coarse-grained
models used to study protein aggregation. Such models are usually
designed to solve a specific problem and focus on general physical
principles, rather than on biology. In particular, we pay more
attention to the lattice model, originally constructed by Li, Klimov,
and Thirumalai [190], and then developed and extended by Li and
Co [191–195] to various systems.

5.1 The Irback-

–J�onsson–

Linnemann–Linse–

Wallin model

Irback et al. designed a model [196], in which the peptides are
represented by unit-length sticks located on lattice sites. Each
peptide consists of three vectors characterizing the backbone,
hydrogen bond, and side chain orientation (Fig. 5a). The move-
ment of sticks is enabled through a MC algorithm. MC simulations

Fig. 5 Monomers and fibril-like structures in several lattice models. (a) Stick model [196], (b) cuboid model
[197], (c) one-bead lattice model, (d) multi-bead lattice model [198] (the small part represents a fragment of
peptide)
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of more than 105 monomers allowed to capture the sigmoid kinet-
ics of fibrillar growth. In addition, the interplay between length and
width during the fibril nucleation indicated that the longitudinal
growth of fibril-like structures occurs only after their width reaches
a threshold value [196].

5.2 The Zhang–

Muthukumar Model

To study the nucleation and elongation of amyloid fibrils, Zhang
and Muthukumar developed a lattice model, in which monomers
are represented by cuboid unit cells in a cuboidal simulation box
(Fig. 5b) [197]. A unit cell can reflect an extended peptide, a folded
peptide, and a pair of peptides, and its random movements are
allowed by MC random walks. The simulation result showed that
the aggregation of monomers followed nucleation-dependent
behavior, in which the lag phase and elongation stage follow the
Ostwald ripening mechanism [197].

5.3 The Abeln-

–Vendruscolo–

Dobson–Frenkel Model

Abeln et al. have developed a multi-bead lattice model allowing to
study the interplay between fibrillization and folding processes
(Fig. 5d) [198, 199]. In this model, each residue comprises one
bead located at a lattice site and a vector representing the direction-
ality of the side chain. Vacant lattice sites describe the surrounding
solvent and possibly interact with both the backbone and side
chains. The classical MC simulation showed that a predefined fold-
ing structure can be achieved by careful design of the peptide
sequence. The authors also obtained the β-strand motif in both
folded structure and fibrillar species. In addition, Tran and cow-
orkers implemented the OPEP FF to the Abeln–Vendruscolo–
Dobson–Frenkel model and performed simulations of aggregation
of truncated Aβ peptides to estimate their critical nucleus
size [200].

5.4 The -

Li–Klimov–Straub–

Thirumalai Model

Inspiring by the oligomerization of the Aβ16–22 fragments, Li et al.
developed a simple on-lattice model, where a polypeptide chain has
eight beads +HHPPHH�. Here + and � stand for positively and
negatively charged beads, respectively, while P and H refer to polar
and hydrophobic residues (Fig. 5c) [190]. The interactions
between the pairs of residues were chosen so that they roughly
mimic the real properties. In Monte Carlo simulations, the peptides
changed their configuration through random local and global
moves in combination with the classical Metropolis algorithm.
The fibrillar structure (Fig. 5c) corresponds to the lowest energy.
The model can describe the typical sigmoidal dependence of the
fibril mass on the simulation time involving the lag, growth, and
saturation phases (Fig. 2). Furthermore, three popular types of
kinetics have been observed at various stages in the fibril formation
process, including nucleation and growth, templated assembly, as
well as nucleated conformational conversion [190].
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The Li–Klimov–Straub–Thirumalai model has been used to
systematically study the factors that govern the kinetics of protein
aggregation. It was found [191] that the stronger attractive elec-
trostatic and hydrophobic interactions between the polypeptide
chains, the faster fibril formation, which is consistent with the
experiment [201, 202]. Interestingly, the fibril formation time τfib
exponentially depends on the population of the fibril-prone mono-
meric state N* (Fig. 6a), PN*: τfib ¼ τ0fib exp �cPmax

N∗

� �
, where τ0fib

and c are fitting constants. Our studies using all-atom models
supported this conclusion [80].

Similar to the experimental [203] and simulation results
obtained using the Pellarin–Caflish models [181], for HAPs, we
observed a direct association of peptides to form rich β-strand clus-
ters during an early stage of aggregation. The fibril growth phase
appears only after the formation of a critical nucleus, from which
monomers favor to incorporate into the template. Based on this
argument, we designed various systems, including a rich β pre-
formed template and one separate peptide (Fig. 6b) and measured
adding time τadd (the time required for a peptide to assemble into its
template). Simulations showed that τadd increased until the size of
the preformed template reaches the critical nucleus size (Nc), above
which τadd becomes independent of the template size. The obtained
Nc value agreed well with the critical nucleus size estimated by the

Fig. 6 The factors governing the self-assembly rate uncovered by using Li–Klimov–Straub–Thirumalai lattice
model: (a) Fibril-prone state N*, (b) preformed template and adding monomer, (c) snapshot of polypeptide
chains surrounded by cubic crowders, (d) six peptides in a confined box, (e) fibril structure of six chains on a
hydrophilic smooth surface
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free energy scaling method [193, 204]. In addition, using all-atom
simulations,weproved that thepathways of fibril formation from the
immobilized template (monomers in the template were kept fixed)
must cross more intermediate states than paths starting from the
fluctuating template. Consequently, the fluctuating template
assisted the fibril formation better than the immobile template. As
a result, the template fluctuation can be considered as a factor
controlling the aggregation process, and the slow formation of
mature fibril structures during the saturation phase is probably due
to the rigidity of their preformed template [194].

To study the impact of the environment on the fibril growth
kinetics, cube crowders were added to the Li–Klimov–Straub–Thir-
umalai model (Fig. 5c). They can make self-avoiding random walks
and do not interact with each other, nor with peptides. Having
carried out simulations with various concentrations and sizes of
crowders, we captured the excluded volume effect of crowding
particles [205, 206]. For a given crowder size, the presence of the
milieu restricted the space for peptides resulting in accelerated self-
assembly of the chains. This observation well matched with the
previous theoretical [207] and experimental works
[185, 208]. However, when the size of crowders was sufficient
small, they hindered the aggregation process, and this dual effect
is consistent with the experiment of Cabaleiro-Lago et al.
[209]. Besides, the study of protein fibrils in a confinement space
was performed by switching periodic boundary conditions and
changing the size of the simulation box (Fig. 6d). The compromise
between energetic terms and entropy resulted in a U-shape depen-
dence of τfib on the size of the confining box [192].

Combing the Li–Klimov–Straub–Thirumalai model with
all-atom models, we were able to show that the higher the mechan-
ical stability of the fibril state, the faster the fibril formation [195]
which is partly consistent with the experiment. However, this
hypothesis requires further computational and theoretical support.

Finally, we also used our simplified model as a guide tool to
develop a phenomenological theory to explain the mechanism of
heat-induced degradation of fibrils and to explore the effect of
different surfaces on peptide assembly [210]. We have shown that
the time dependence of the fibril content, which can be measured
by the ThT fluorescence assay, obeys a bi-exponential function.
However, the number of unbounded chains, which can be probed
by tryptophan fluorescence, follows the logistic kinetics.

6 Conclusions

In conclusion, we highlight future directions in the development of
computational models to study protein folding and aggregation.
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A good example of use of the all-atom FF to study enormous
systems was done by Sugita, Feig and coauthors, who studied
bacterial cytoplasm with more than 100 million atoms in a nano-
second timescale [211]. These simulations showed possible pro-
blems with the FF, which were not possible to be identified in
simulations of smaller systems and presented view of proteins and
other biomacromolecules in crowding environment, whose behav-
ior can be significantly different than in bulk water [211] mostly
due to confined space and presence of nonspecific interactions
between molecules, which can affect protein stability [212], fold-
ing, and aggregation [213]. Although limited timescale of the
simulations did not allow study protein aggregation explicitly,
obtained results strongly suggest that this phenomenon should be
studied including other molecules, which are competing in inter-
actions, destabilizing the structure and promoting association
[214]. Due to the constant improvement and development of
both computational resources and methods [215, 216], in near
future such large-scale studies should become more affordable
and may even allow to use polarizable FFs [217, 218] to better
capture effects related to charge distribution. It is well known that
the presence of metal ions can change not only the aggregation rate
but the morphology of the aggregate [219]. For example, at high
concentrations of Cu2+, the aggregate of Aβ peptides becomes
amorphous. The development of FFs that adequately describe free
transition metal ions and their interaction with fibril-prone proteins
remains a challenge. Finally, machine learning is emerging as a
useful tool for constructing coarse-grained FFs from large ab initio
databases [220], and important advances in this direction can be
expected.
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