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Jordan	canonical	form	theory	and	practice	pdf

Start	at	call	number:	Canonical	form	of	matrices	over	a	field.	In	linear	algebra,	the	Frobenius	normal	form	or	rational	canonical	form	of	a	square	matrix	A	with	entries	in	a	field	F	is	a	canonical	form	for	matrices	obtained	by	conjugation	by	invertible	matrices	over	F.	The	form	reflects	a	minimal	decomposition	of	the	vector	space	into	subspaces	that	are
cyclic	for	A	(i.e.,	spanned	by	some	vector	and	its	repeated	images	under	A).	Since	only	one	normal	form	can	be	reached	from	a	given	matrix	(whence	the	"canonical"),	a	matrix	B	is	similar	to	A	if	and	only	if	it	has	the	same	rational	canonical	form	as	A.	Since	this	form	can	be	found	without	any	operations	that	might	change	when	extending	the	field	F
(whence	the	"rational"),	notably	without	factoring	polynomials,	this	shows	that	whether	two	matrices	are	similar	does	not	change	upon	field	extensions.	The	form	is	named	after	German	mathematician	Ferdinand	Georg	Frobenius.	Some	authors	use	the	term	rational	canonical	form	for	a	somewhat	different	form	that	is	more	properly	called	the	primary
rational	canonical	form.	

Since	this	form	can	be	found	without	any	operations	that	might	change	when	extending	the	field	F	(whence	the	"rational"),	notably	without	factoring	polynomials,	this	shows	that	whether	two	matrices	are	similar	does	not	change	upon	field	extensions.	The	form	is	named	after	German	mathematician	Ferdinand	Georg	Frobenius.	Some	authors	use	the
term	rational	canonical	form	for	a	somewhat	different	form	that	is	more	properly	called	the	primary	rational	canonical	form.	Instead	of	decomposing	into	a	minimum	number	of	cyclic	subspaces,	the	primary	form	decomposes	into	a	maximum	number	of	cyclic	subspaces.	It	is	also	defined	over	F,	but	has	somewhat	different	properties:	finding	the	form
requires	factorization	of	polynomials,	and	as	a	consequence	the	primary	rational	canonical	form	may	change	when	the	same	matrix	is	considered	over	an	extension	field	of	F.	This	article	mainly	deals	with	the	form	that	does	not	require	factorization,	and	explicitly	mentions	"primary"	when	the	form	using	factorization	is	meant.	Motivation	When	trying
to	find	out	whether	two	square	matrices	A	and	B	are	similar,	one	approach	is	to	try,	for	each	of	them,	to	decompose	the	vector	space	as	far	as	possible	into	a	direct	sum	of	stable	subspaces,	and	compare	the	respective	actions	on	these	subspaces.	For	instance	if	both	are	diagonalizable,	then	one	can	take	the	decomposition	into	eigenspaces	(for	which
the	action	is	as	simple	as	it	can	get,	namely	by	a	scalar),	and	then	similarity	can	be	decided	by	comparing	eigenvalues	and	their	multiplicities.	While	in	practice	this	is	often	a	quite	insightful	approach,	there	are	various	drawbacks	this	has	as	a	general	method.	First,	it	requires	finding	all	eigenvalues,	say	as	roots	of	the	characteristic	polynomial,	but	it
may	not	be	possible	to	give	an	explicit	expression	for	them.	Second,	a	complete	set	of	eigenvalues	might	exist	only	in	an	extension	of	the	field	one	is	working	over,	and	then	one	does	not	get	a	proof	of	similarity	over	the	original	field.	Finally	A	and	B	might	not	be	diagonalizable	even	over	this	larger	field,	in	which	case	one	must	instead	use	a
decomposition	into	generalized	eigenspaces,	and	possibly	into	Jordan	blocks.	

It	is	also	defined	over	F,	but	has	somewhat	different	properties:	finding	the	form	requires	factorization	of	polynomials,	and	as	a	consequence	the	primary	rational	canonical	form	may	change	when	the	same	matrix	is	considered	over	an	extension	field	of	F.	This	article	mainly	deals	with	the	form	that	does	not	require	factorization,	and	explicitly
mentions	"primary"	when	the	form	using	factorization	is	meant.	Motivation	When	trying	to	find	out	whether	two	square	matrices	A	and	B	are	similar,	one	approach	is	to	try,	for	each	of	them,	to	decompose	the	vector	space	as	far	as	possible	into	a	direct	sum	of	stable	subspaces,	and	compare	the	respective	actions	on	these	subspaces.	For	instance	if
both	are	diagonalizable,	then	one	can	take	the	decomposition	into	eigenspaces	(for	which	the	action	is	as	simple	as	it	can	get,	namely	by	a	scalar),	and	then	similarity	can	be	decided	by	comparing	eigenvalues	and	their	multiplicities.	While	in	practice	this	is	often	a	quite	insightful	approach,	there	are	various	drawbacks	this	has	as	a	general	method.
First,	it	requires	finding	all	eigenvalues,	say	as	roots	of	the	characteristic	polynomial,	but	it	may	not	be	possible	to	give	an	explicit	expression	for	them.	Second,	a	complete	set	of	eigenvalues	might	exist	only	in	an	extension	of	the	field	one	is	working	over,	and	then	one	does	not	get	a	proof	of	similarity	over	the	original	field.	Finally	A	and	B	might	not
be	diagonalizable	even	over	this	larger	field,	in	which	case	one	must	instead	use	a	decomposition	into	generalized	eigenspaces,	and	possibly	into	Jordan	blocks.	But	obtaining	such	a	fine	decomposition	is	not	necessary	to	just	decide	whether	two	matrices	are	similar.	The	rational	canonical	form	is	based	on	instead	using	a	direct	sum	decomposition	into
stable	subspaces	that	are	as	large	as	possible,	while	still	allowing	a	very	simple	description	of	the	action	on	each	of	them.	

Since	this	form	can	be	found	without	any	operations	that	might	change	when	extending	the	field	F	(whence	the	"rational"),	notably	without	factoring	polynomials,	this	shows	that	whether	two	matrices	are	similar	does	not	change	upon	field	extensions.	The	form	is	named	after	German	mathematician	Ferdinand	Georg	Frobenius.	
Some	authors	use	the	term	rational	canonical	form	for	a	somewhat	different	form	that	is	more	properly	called	the	primary	rational	canonical	form.	Instead	of	decomposing	into	a	minimum	number	of	cyclic	subspaces,	the	primary	form	decomposes	into	a	maximum	number	of	cyclic	subspaces.	It	is	also	defined	over	F,	but	has	somewhat	different
properties:	finding	the	form	requires	factorization	of	polynomials,	and	as	a	consequence	the	primary	rational	canonical	form	may	change	when	the	same	matrix	is	considered	over	an	extension	field	of	F.	This	article	mainly	deals	with	the	form	that	does	not	require	factorization,	and	explicitly	mentions	"primary"	when	the	form	using	factorization	is
meant.	Motivation	When	trying	to	find	out	whether	two	square	matrices	A	and	B	are	similar,	one	approach	is	to	try,	for	each	of	them,	to	decompose	the	vector	space	as	far	as	possible	into	a	direct	sum	of	stable	subspaces,	and	compare	the	respective	actions	on	these	subspaces.	For	instance	if	both	are	diagonalizable,	then	one	can	take	the
decomposition	into	eigenspaces	(for	which	the	action	is	as	simple	as	it	can	get,	namely	by	a	scalar),	and	then	similarity	can	be	decided	by	comparing	eigenvalues	and	their	multiplicities.	
While	in	practice	this	is	often	a	quite	insightful	approach,	there	are	various	drawbacks	this	has	as	a	general	method.	

This	article	mainly	deals	with	the	form	that	does	not	require	factorization,	and	explicitly	mentions	"primary"	when	the	form	using	factorization	is	meant.	Motivation	When	trying	to	find	out	whether	two	square	matrices	A	and	B	are	similar,	one	approach	is	to	try,	for	each	of	them,	to	decompose	the	vector	space	as	far	as	possible	into	a	direct	sum	of
stable	subspaces,	and	compare	the	respective	actions	on	these	subspaces.	For	instance	if	both	are	diagonalizable,	then	one	can	take	the	decomposition	into	eigenspaces	(for	which	the	action	is	as	simple	as	it	can	get,	namely	by	a	scalar),	and	then	similarity	can	be	decided	by	comparing	eigenvalues	and	their	multiplicities.	While	in	practice	this	is	often
a	quite	insightful	approach,	there	are	various	drawbacks	this	has	as	a	general	method.	First,	it	requires	finding	all	eigenvalues,	say	as	roots	of	the	characteristic	polynomial,	but	it	may	not	be	possible	to	give	an	explicit	expression	for	them.	Second,	a	complete	set	of	eigenvalues	might	exist	only	in	an	extension	of	the	field	one	is	working	over,	and	then
one	does	not	get	a	proof	of	similarity	over	the	original	field.	Finally	A	and	B	might	not	be	diagonalizable	even	over	this	larger	field,	in	which	case	one	must	instead	use	a	decomposition	into	generalized	eigenspaces,	and	possibly	into	Jordan	blocks.	But	obtaining	such	a	fine	decomposition	is	not	necessary	to	just	decide	whether	two	matrices	are	similar.
The	rational	canonical	form	is	based	on	instead	using	a	direct	sum	decomposition	into	stable	subspaces	that	are	as	large	as	possible,	while	still	allowing	a	very	simple	description	of	the	action	on	each	of	them.	These	subspaces	must	be	generated	by	a	single	nonzero	vector	v	and	all	its	images	by	repeated	application	of	the	linear	operator	associated	to
the	matrix;	such	subspaces	are	called	cyclic	subspaces	(by	analogy	with	cyclic	subgroups)	and	they	are	clearly	stable	under	the	linear	operator.	A	basis	of	such	a	subspace	is	obtained	by	taking	v	and	its	successive	images	as	long	as	they	are	linearly	independent.	The	matrix	of	the	linear	operator	with	respect	to	such	a	basis	is	the	companion	matrix	of	a
monic	polynomial;	this	polynomial	(the	minimal	polynomial	of	the	operator	restricted	to	the	subspace,	which	notion	is	analogous	to	that	of	the	order	of	a	cyclic	subgroup)	determines	the	action	of	the	operator	on	the	cyclic	subspace	up	to	isomorphism,	and	is	independent	of	the	choice	of	the	vector	v	generating	the	subspace.	A	direct	sum
decomposition	into	cyclic	subspaces	always	exists,	and	finding	one	does	not	require	factoring	polynomials.	However	it	is	possible	that	cyclic	subspaces	do	allow	a	decomposition	as	direct	sum	of	smaller	cyclic	subspaces	(essentially	by	the	Chinese	remainder	theorem).	Therefore,	just	having	for	both	matrices	some	decomposition	of	the	space	into	cyclic
subspaces,	and	knowing	the	corresponding	minimal	polynomials,	is	not	in	itself	sufficient	to	decide	their	similarity.	An	additional	condition	is	imposed	to	ensure	that	for	similar	matrices	one	gets	decompositions	into	cyclic	subspaces	that	exactly	match:	in	the	list	of	associated	minimal	polynomials	each	one	must	divide	the	next	(and	the	constant
polynomial	1	is	forbidden	to	exclude	trivial	cyclic	subspaces	of	dimension	0).	The	resulting	list	of	polynomials	are	called	the	invariant	factors	of	(the	K[X]-module	defined	by)	the	matrix,	and	two	matrices	are	similar	if	and	only	if	they	have	identical	lists	of	invariant	factors.	The	rational	canonical	form	of	a	matrix	A	is	obtained	by	expressing	it	on	a	basis
adapted	to	a	decomposition	into	cyclic	subspaces	whose	associated	minimal	polynomials	are	the	invariant	factors	of	A;	two	matrices	are	similar	if	and	only	if	they	have	the	same	rational	canonical	form.	Example	Consider	the	following	matrix	A,	over	Q:	A	=	(	−	1	3	−	1	0	−	2	0	0	−	2	−	1	−	1	1	1	−	2	−	1	0	−	1	−	2	−	6	4	3	−	8	−	4	−	2	1	−	1	8	−	3	−	1	5	2
3	−	3	0	0	0	0	0	0	0	1	0	0	0	0	−	1	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	4	0	1	0	)	.	{\displaystyle	\scriptstyle	A={\begin{pmatrix}-1&3&-1&0&-2&0&0&-2\\-1&-1&1&1&-2&-1&0&-1\\-2&-6&4&3&-8&-4&-2&1\\-1&8&-3&-1&5&2&3&-3\\0&0&0&0&0&0&0&1\\0&0&0&0&-1&0&0&0\\1&0&0&0&2&0&0&0\\0&0&0&0&4&0&1&0\end{pmatrix}}.}	A	has	minimal
polynomial	μ	=	X	6	−	4	X	4	−	2	X	3	+	4	X	2	+	4	X	+	1	{\displaystyle	\mu	=X^{6}-4X^{4}-2X^{3}+4X^{2}+4X+1}	,	so	that	the	dimension	of	a	subspace	generated	by	the	repeated	images	of	a	single	vector	is	at	most	6.	The	characteristic	polynomial	is	χ	=	X	8	−	X	7	−	5	X	6	+	2	X	5	+	10	X	4	+	2	X	3	−	7	X	2	−	5	X	−	1	{\displaystyle	\chi	=X^{8}-
X^{7}-5X^{6}+2X^{5}+10X^{4}+2X^{3}-7X^{2}-5X-1}	,	which	is	a	multiple	of	the	minimal	polynomial	by	a	factor	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	.	There	always	exist	vectors	such	that	the	cyclic	subspace	that	they	generate	has	the	same	minimal	polynomial	as	the	operator	has	on	the	whole	space;	indeed	most	vectors	will	have	this
property,	and	in	this	case	the	first	standard	basis	vector	e	1	{\displaystyle	e_{1}}	does	so:	the	vectors	A	k	(	e	1	)	{\displaystyle	A^{k}(e_{1})}	for	k	=	0	,	1	,	…	,	5	{\displaystyle	k=0,1,\ldots	,5}	are	linearly	independent	and	span	a	cyclic	subspace	with	minimal	polynomial	μ	{\displaystyle	\mu	}	.	There	exist	complementary	stable	subspaces	(of
dimension	2)	to	this	cyclic	subspace,	and	the	space	generated	by	vectors	v	=	(	3	,	4	,	8	,	0	,	−	1	,	0	,	2	,	−	1	)	⊤	{\displaystyle	v=(3,4,8,0,-1,0,2,-1)^{\top	}}	and	w	=	(	5	,	4	,	5	,	9	,	−	1	,	1	,	1	,	−	2	)	⊤	{\displaystyle	w=(5,4,5,9,-1,1,1,-2)^{\top	}}	is	an	example.	In	fact	one	has	A	⋅	v	=	w	{\displaystyle	A\cdot	v=w}	,	so	the	complementary	subspace	is	a
cyclic	subspace	generated	by	v	{\displaystyle	v}	;	it	has	minimal	polynomial	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	.	Since	μ	{\displaystyle	\mu	}	is	the	minimal	polynomial	of	the	whole	space,	it	is	clear	that	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	must	divide	μ	{\displaystyle	\mu	}	(and	it	is	easily	checked	that	it	does),	and	we	have	found	the	invariant
factors	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	and	μ	=	X	6	−	4	X	4	−	2	X	3	+	4	X	2	+	4	X	+	1	{\displaystyle	\mu	=X^{6}-4X^{4}-2X^{3}+4X^{2}+4X+1}	of	A.	Then	the	rational	canonical	form	of	A	is	the	block	diagonal	matrix	with	the	corresponding	companion	matrices	as	diagonal	blocks,	namely	C	=	(	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	−
1	0	0	1	0	0	0	0	−	4	0	0	0	1	0	0	0	−	4	0	0	0	0	1	0	0	2	0	0	0	0	0	1	0	4	0	0	0	0	0	0	1	0	)	.	{\displaystyle	\scriptstyle	C={\begin{pmatrix}0&1&0&0&0&0&0&0\\1&1&0&0&0&0&0&0\\0&0&0&0&0&0&0&-1\\0&0&1&0&0&0&0&-4\\0&0&0&1&0&0&0&-4\\0&0&0&0&1&0&0&2\\0&0&0&0&0&1&0&4\\0&0&0&0&0&0&1&0\end{pmatrix}}.}	A	basis	on
which	this	form	is	attained	is	formed	by	the	vectors	v	,	w	{\displaystyle	v,w}	above,	followed	by	A	k	(	e	1	)	{\displaystyle	A^{k}(e_{1})}	for	k	=	0	,	1	,	…	,	5	{\displaystyle	k=0,1,\ldots	,5}	;	explicitly	this	means	that	for	P	=	(	3	5	1	−	1	0	0	−	4	0	4	4	0	−	1	−	1	−	2	−	3	−	5	8	5	0	−	2	−	5	−	2	−	11	−	6	0	9	0	−	1	3	−	2	0	0	−	1	−	1	0	0	0	1	−	1	4	0	1	0	0	0	0	−	1
1	2	1	0	1	−	1	0	2	−	6	−	1	−	2	0	0	1	−	1	4	−	2	)	{\displaystyle	\scriptstyle	P={\begin{pmatrix}3&5&1&-1&0&0&-4&0\\4&4&0&-1&-1&-2&-3&-5\\8&5&0&-2&-5&-2&-11&-6\\0&9&0&-1&3&-2&0&0\\-1&-1&0&0&0&1&-1&4\\0&1&0&0&0&0&-1&1\\2&1&0&1&-1&0&2&-6\\-1&-2&0&0&1&-1&4&-2\end{pmatrix}}}	,	one	has	A	=	P	C	P	−	1	.
{\displaystyle	A=PCP^{-1}.}	General	case	and	theory	Fix	a	base	field	F	and	a	finite-dimensional	vector	space	V	over	F.	Given	a	polynomial	P	∈	F[X],	there	is	associated	to	it	a	companion	matrix	CP	whose	characteristic	polynomial	and	minimal	polynomial	are	both	equal	to	P.	



The	form	is	named	after	German	mathematician	Ferdinand	Georg	Frobenius.	Some	authors	use	the	term	rational	canonical	form	for	a	somewhat	different	form	that	is	more	properly	called	the	primary	rational	canonical	form.	Instead	of	decomposing	into	a	minimum	number	of	cyclic	subspaces,	the	primary	form	decomposes	into	a	maximum	number	of
cyclic	subspaces.	It	is	also	defined	over	F,	but	has	somewhat	different	properties:	finding	the	form	requires	factorization	of	polynomials,	and	as	a	consequence	the	primary	rational	canonical	form	may	change	when	the	same	matrix	is	considered	over	an	extension	field	of	F.	This	article	mainly	deals	with	the	form	that	does	not	require	factorization,	and
explicitly	mentions	"primary"	when	the	form	using	factorization	is	meant.	Motivation	When	trying	to	find	out	whether	two	square	matrices	A	and	B	are	similar,	one	approach	is	to	try,	for	each	of	them,	to	decompose	the	vector	space	as	far	as	possible	into	a	direct	sum	of	stable	subspaces,	and	compare	the	respective	actions	on	these	subspaces.	For
instance	if	both	are	diagonalizable,	then	one	can	take	the	decomposition	into	eigenspaces	(for	which	the	action	is	as	simple	as	it	can	get,	namely	by	a	scalar),	and	then	similarity	can	be	decided	by	comparing	eigenvalues	and	their	multiplicities.	While	in	practice	this	is	often	a	quite	insightful	approach,	there	are	various	drawbacks	this	has	as	a	general
method.	First,	it	requires	finding	all	eigenvalues,	say	as	roots	of	the	characteristic	polynomial,	but	it	may	not	be	possible	to	give	an	explicit	expression	for	them.	Second,	a	complete	set	of	eigenvalues	might	exist	only	in	an	extension	of	the	field	one	is	working	over,	and	then	one	does	not	get	a	proof	of	similarity	over	the	original	field.	Finally	A	and	B
might	not	be	diagonalizable	even	over	this	larger	field,	in	which	case	one	must	instead	use	a	decomposition	into	generalized	eigenspaces,	and	possibly	into	Jordan	blocks.	But	obtaining	such	a	fine	decomposition	is	not	necessary	to	just	decide	whether	two	matrices	are	similar.	The	rational	canonical	form	is	based	on	instead	using	a	direct	sum
decomposition	into	stable	subspaces	that	are	as	large	as	possible,	while	still	allowing	a	very	simple	description	of	the	action	on	each	of	them.	These	subspaces	must	be	generated	by	a	single	nonzero	vector	v	and	all	its	images	by	repeated	application	of	the	linear	operator	associated	to	the	matrix;	such	subspaces	are	called	cyclic	subspaces	(by	analogy
with	cyclic	subgroups)	and	they	are	clearly	stable	under	the	linear	operator.	A	basis	of	such	a	subspace	is	obtained	by	taking	v	and	its	successive	images	as	long	as	they	are	linearly	independent.	The	matrix	of	the	linear	operator	with	respect	to	such	a	basis	is	the	companion	matrix	of	a	monic	polynomial;	this	polynomial	(the	minimal	polynomial	of	the
operator	restricted	to	the	subspace,	which	notion	is	analogous	to	that	of	the	order	of	a	cyclic	subgroup)	determines	the	action	of	the	operator	on	the	cyclic	subspace	up	to	isomorphism,	and	is	independent	of	the	choice	of	the	vector	v	generating	the	subspace.	A	direct	sum	decomposition	into	cyclic	subspaces	always	exists,	and	finding	one	does	not
require	factoring	polynomials.	However	it	is	possible	that	cyclic	subspaces	do	allow	a	decomposition	as	direct	sum	of	smaller	cyclic	subspaces	(essentially	by	the	Chinese	remainder	theorem).	Therefore,	just	having	for	both	matrices	some	decomposition	of	the	space	into	cyclic	subspaces,	and	knowing	the	corresponding	minimal	polynomials,	is	not	in
itself	sufficient	to	decide	their	similarity.	An	additional	condition	is	imposed	to	ensure	that	for	similar	matrices	one	gets	decompositions	into	cyclic	subspaces	that	exactly	match:	in	the	list	of	associated	minimal	polynomials	each	one	must	divide	the	next	(and	the	constant	polynomial	1	is	forbidden	to	exclude	trivial	cyclic	subspaces	of	dimension	0).	The
resulting	list	of	polynomials	are	called	the	invariant	factors	of	(the	K[X]-module	defined	by)	the	matrix,	and	two	matrices	are	similar	if	and	only	if	they	have	identical	lists	of	invariant	factors.	The	rational	canonical	form	of	a	matrix	A	is	obtained	by	expressing	it	on	a	basis	adapted	to	a	decomposition	into	cyclic	subspaces	whose	associated	minimal
polynomials	are	the	invariant	factors	of	A;	two	matrices	are	similar	if	and	only	if	they	have	the	same	rational	canonical	form.	Example	Consider	the	following	matrix	A,	over	Q:	A	=	(	−	1	3	−	1	0	−	2	0	0	−	2	−	1	−	1	1	1	−	2	−	1	0	−	1	−	2	−	6	4	3	−	8	−	4	−	2	1	−	1	8	−	3	−	1	5	2	3	−	3	0	0	0	0	0	0	0	1	0	0	0	0	−	1	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	4	0	1	0	)	.
{\displaystyle	\scriptstyle	A={\begin{pmatrix}-1&3&-1&0&-2&0&0&-2\\-1&-1&1&1&-2&-1&0&-1\\-2&-6&4&3&-8&-4&-2&1\\-1&8&-3&-1&5&2&3&-3\\0&0&0&0&0&0&0&1\\0&0&0&0&-1&0&0&0\\1&0&0&0&2&0&0&0\\0&0&0&0&4&0&1&0\end{pmatrix}}.}	A	has	minimal	polynomial	μ	=	X	6	−	4	X	4	−	2	X	3	+	4	X	2	+	4	X	+	1	{\displaystyle	\mu
=X^{6}-4X^{4}-2X^{3}+4X^{2}+4X+1}	,	so	that	the	dimension	of	a	subspace	generated	by	the	repeated	images	of	a	single	vector	is	at	most	6.	The	characteristic	polynomial	is	χ	=	X	8	−	X	7	−	5	X	6	+	2	X	5	+	10	X	4	+	2	X	3	−	7	X	2	−	5	X	−	1	{\displaystyle	\chi	=X^{8}-X^{7}-5X^{6}+2X^{5}+10X^{4}+2X^{3}-7X^{2}-5X-1}	,	which	is	a
multiple	of	the	minimal	polynomial	by	a	factor	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	.	There	always	exist	vectors	such	that	the	cyclic	subspace	that	they	generate	has	the	same	minimal	polynomial	as	the	operator	has	on	the	whole	space;	indeed	most	vectors	will	have	this	property,	and	in	this	case	the	first	standard	basis	vector	e	1	{\displaystyle
e_{1}}	does	so:	the	vectors	A	k	(	e	1	)	{\displaystyle	A^{k}(e_{1})}	for	k	=	0	,	1	,	…	,	5	{\displaystyle	k=0,1,\ldots	,5}	are	linearly	independent	and	span	a	cyclic	subspace	with	minimal	polynomial	μ	{\displaystyle	\mu	}	.	There	exist	complementary	stable	subspaces	(of	dimension	2)	to	this	cyclic	subspace,	and	the	space	generated	by	vectors	v	=	(	3	,	4
,	8	,	0	,	−	1	,	0	,	2	,	−	1	)	⊤	{\displaystyle	v=(3,4,8,0,-1,0,2,-1)^{\top	}}	and	w	=	(	5	,	4	,	5	,	9	,	−	1	,	1	,	1	,	−	2	)	⊤	{\displaystyle	w=(5,4,5,9,-1,1,1,-2)^{\top	}}	is	an	example.	In	fact	one	has	A	⋅	v	=	w	{\displaystyle	A\cdot	v=w}	,	so	the	complementary	subspace	is	a	cyclic	subspace	generated	by	v	{\displaystyle	v}	;	it	has	minimal	polynomial	X	2	−	X	−
1	{\displaystyle	X^{2}-X-1}	.	
Since	μ	{\displaystyle	\mu	}	is	the	minimal	polynomial	of	the	whole	space,	it	is	clear	that	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	must	divide	μ	{\displaystyle	\mu	}	(and	it	is	easily	checked	that	it	does),	and	we	have	found	the	invariant	factors	X	2	−	X	−	1	{\displaystyle	X^{2}-X-1}	and	μ	=	X	6	−	4	X	4	−	2	X	3	+	4	X	2	+	4	X	+	1	{\displaystyle	\mu
=X^{6}-4X^{4}-2X^{3}+4X^{2}+4X+1}	of	A.	Then	the	rational	canonical	form	of	A	is	the	block	diagonal	matrix	with	the	corresponding	companion	matrices	as	diagonal	blocks,	namely	C	=	(	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	−	1	0	0	1	0	0	0	0	−	4	0	0	0	1	0	0	0	−	4	0	0	0	0	1	0	0	2	0	0	0	0	0	1	0	4	0	0	0	0	0	0	1	0	)	.	{\displaystyle	\scriptstyle	C=
{\begin{pmatrix}0&1&0&0&0&0&0&0\\1&1&0&0&0&0&0&0\\0&0&0&0&0&0&0&-1\\0&0&1&0&0&0&0&-4\\0&0&0&1&0&0&0&-4\\0&0&0&0&1&0&0&2\\0&0&0&0&0&1&0&4\\0&0&0&0&0&0&1&0\end{pmatrix}}.}	A	basis	on	which	this	form	is	attained	is	formed	by	the	vectors	v	,	w	{\displaystyle	v,w}	above,	followed	by	A	k	(	e	1	)
{\displaystyle	A^{k}(e_{1})}	for	k	=	0	,	1	,	…	,	5	{\displaystyle	k=0,1,\ldots	,5}	;	explicitly	this	means	that	for	P	=	(	3	5	1	−	1	0	0	−	4	0	4	4	0	−	1	−	1	−	2	−	3	−	5	8	5	0	−	2	−	5	−	2	−	11	−	6	0	9	0	−	1	3	−	2	0	0	−	1	−	1	0	0	0	1	−	1	4	0	1	0	0	0	0	−	1	1	2	1	0	1	−	1	0	2	−	6	−	1	−	2	0	0	1	−	1	4	−	2	)	{\displaystyle	\scriptstyle	P=
{\begin{pmatrix}3&5&1&-1&0&0&-4&0\\4&4&0&-1&-1&-2&-3&-5\\8&5&0&-2&-5&-2&-11&-6\\0&9&0&-1&3&-2&0&0\\-1&-1&0&0&0&1&-1&4\\0&1&0&0&0&0&-1&1\\2&1&0&1&-1&0&2&-6\\-1&-2&0&0&1&-1&4&-2\end{pmatrix}}}	,	one	has	A	=	P	C	P	−	1	.	{\displaystyle	A=PCP^{-1}.}	General	case	and	theory	Fix	a	base	field	F	and	a	finite-
dimensional	vector	space	V	over	F.	Given	a	polynomial	P	∈	F[X],	there	is	associated	to	it	a	companion	matrix	CP	whose	characteristic	polynomial	and	minimal	polynomial	are	both	equal	to	P.	Theorem:	Let	V	be	a	finite-dimensional	vector	space	over	a	field	F,	and	A	a	square	matrix	over	F.	Then	V	(viewed	as	an	F[X]-module	with	the	action	of	X	given	by
A)	admits	a	F[X]-module	isomorphism	V	≅	F[X]/f1	⊕	…	⊕	F[X]/fk	where	the	fi	∈	F[X]	may	be	taken	to	be	monic	polynomials	of	positive	degree	(so	they	are	non-units	in	F[X])	that	satisfy	the	relations	f1	|	f2	|	…	|	fk	where	"a	|	b"	is	notation	for	"a	divides	b";	with	these	conditions	the	list	of	polynomials	fi	is	unique.	Sketch	of	Proof:	Apply	the	structure
theorem	for	finitely	generated	modules	over	a	principal	ideal	domain	to	V,	viewing	it	as	an	F[X]-module.	The	structure	theorem	provides	a	decomposition	into	cyclic	factors,	each	of	which	is	a	quotient	of	F[X]	by	a	proper	ideal;	the	zero	ideal	cannot	be	present	since	the	resulting	free	module	would	be	infinite-dimensional	as	F	vector	space,	while	V	is
finite-dimensional.	For	the	polynomials	fi	one	then	takes	the	unique	monic	generators	of	the	respective	ideals,	and	since	the	structure	theorem	ensures	containment	of	every	ideal	in	the	preceding	ideal,	one	obtains	the	divisibility	conditions	for	the	fi.	See	[DF]	for	details.	Given	an	arbitrary	square	matrix,	the	elementary	divisors	used	in	the
construction	of	the	Jordan	normal	form	do	not	exist	over	F[X],	so	the	invariant	factors	fi	as	given	above	must	be	used	instead.	The	last	of	these	factors	fk	is	then	the	minimal	polynomial,	which	all	the	invariant	factors	therefore	divide,	and	the	product	of	the	invariant	factors	gives	the	characteristic	polynomial.	Note	that	this	implies	that	the	minimal
polynomial	divides	the	characteristic	polynomial	(which	is	essentially	the	Cayley-Hamilton	theorem),	and	that	every	irreducible	factor	of	the	characteristic	polynomial	also	divides	the	minimal	polynomial	(possibly	with	lower	multiplicity).	For	each	invariant	factor	fi	one	takes	its	companion	matrix	Cfi,	and	the	block	diagonal	matrix	formed	from	these
blocks	yields	the	rational	canonical	form	of	A.	When	the	minimal	polynomial	is	identical	to	the	characteristic	polynomial	(the	case	k	=	1),	the	Frobenius	normal	form	is	the	companion	matrix	of	the	characteristic	polynomial.	As	the	rational	canonical	form	is	uniquely	determined	by	the	unique	invariant	factors	associated	to	A,	and	these	invariant	factors
are	independent	of	basis,	it	follows	that	two	square	matrices	A	and	B	are	similar	if	and	only	if	they	have	the	same	rational	canonical	form.	A	rational	normal	form	generalizing	the	Jordan	normal	form	The	Frobenius	normal	form	does	not	reflect	any	form	of	factorization	of	the	characteristic	polynomial,	even	if	it	does	exist	over	the	ground	field	F.	This
implies	that	it	is	invariant	when	F	is	replaced	by	a	different	field	(as	long	as	it	contains	the	entries	of	the	original	matrix	A).	On	the	other	hand,	this	makes	the	Frobenius	normal	form	rather	different	from	other	normal	forms	that	do	depend	on	factoring	the	characteristic	polynomial,	notably	the	diagonal	form	(if	A	is	diagonalizable)	or	more	generally
the	Jordan	normal	form	(if	the	characteristic	polynomial	splits	into	linear	factors).	For	instance,	the	Frobenius	normal	form	of	a	diagonal	matrix	with	distinct	diagonal	entries	is	just	the	companion	matrix	of	its	characteristic	polynomial.	There	is	another	way	to	define	a	normal	form,	that,	like	the	Frobenius	normal	form,	is	always	defined	over	the	same
field	F	as	A,	but	that	does	reflect	a	possible	factorization	of	the	characteristic	polynomial	(or	equivalently	the	minimal	polynomial)	into	irreducible	factors	over	F,	and	which	reduces	to	the	Jordan	normal	form	when	this	factorization	only	contains	linear	factors	(corresponding	to	eigenvalues).	This	form[1]	is	sometimes	called	the	generalized	Jordan
normal	form,	or	primary	rational	canonical	form.	It	is	based	on	the	fact	that	the	vector	space	can	be	canonically	decomposed	into	a	direct	sum	of	stable	subspaces	corresponding	to	the	distinct	irreducible	factors	P	of	the	characteristic	polynomial	(as	stated	by	the	lemme	des	noyaux	[fr][2]),	where	the	characteristic	polynomial	of	each	summand	is	a
power	of	the	corresponding	P.	These	summands	can	be	further	decomposed,	non-canonically,	as	a	direct	sum	of	cyclic	F[x]-modules	(like	is	done	for	the	Frobenius	normal	form	above),	where	the	characteristic	polynomial	of	each	summand	is	still	a	(generally	smaller)	power	of	P.	The	primary	rational	canonical	form	is	a	block	diagonal	matrix
corresponding	to	such	a	decomposition	into	cyclic	modules,	with	a	particular	form	called	generalized	Jordan	block	in	the	diagonal	blocks,	corresponding	to	a	particular	choice	of	a	basis	for	the	cyclic	modules.	This	generalized	Jordan	block	is	itself	a	block	matrix	of	the	form	(	C	0	⋯	0	U	C	⋯	0	⋮	⋱	⋱	⋮	0	⋯	U	C	)	{\displaystyle	\scriptstyle
{\begin{pmatrix}C&0&\cdots	&0\\U&C&\cdots	&0\\\vdots	&\ddots	&\ddots	&\vdots	\\0&\cdots	&U&C\end{pmatrix}}}	where	C	is	the	companion	matrix	of	the	irreducible	polynomial	P,	and	U	is	a	matrix	whose	sole	nonzero	entry	is	a	1	in	the	upper	right	hand	corner.	For	the	case	of	a	linear	irreducible	factor	P	=	x	−	λ,	these	blocks	are	reduced	to
single	entries	C	=	λ	and	U	=	1	and,	one	finds	a	(transposed)	Jordan	block.	In	any	generalized	Jordan	block,	all	entries	immediately	below	the	main	diagonal	are	1.	A	basis	of	the	cyclic	module	giving	rise	to	this	form	is	obtained	by	choosing	a	generating	vector	v	(one	that	is	not	annihilated	by	Pk−1(A)	where	the	minimal	polynomial	of	the	cyclic	module
is	Pk),	and	taking	as	basis	v	,	A	(	v	)	,	A	2	(	v	)	,	…	,	A	d	−	1	(	v	)	,			P	(	A	)	(	v	)	,	A	(	P	(	A	)	(	v	)	)	,	…	,	A	d	−	1	(	P	(	A	)	(	v	)	)	,			P	2	(	A	)	(	v	)	,	…	,			P	k	−	1	(	A	)	(	v	)	,	…	,	A	d	−	1	(	P	k	−	1	(	A	)	(	v	)	)	{\displaystyle	v,A(v),A^{2}(v),\ldots	,A^{d-1}(v),~P(A)(v),A(P(A)(v)),\ldots	,A^{d-1}(P(A)(v)),~P^{2}(A)(v),\ldots	,~P^{k-1}(A)(v),\ldots	,A^{d-1}(P^{k-1}
(A)(v))}	where	d	=	deg(P).	See	also	Smith	normal	form	References	[DF]	David	S.	Dummit	and	Richard	M.	Foote.	Abstract	Algebra.	2nd	Edition,	John	Wiley	&	Sons.	pp.	442,	446,	452-458.	ISBN	0-471-36857-1.	^	Phani	Bhushan	Bhattacharya,	Surender	Kumar	Jain,	S.	R.	Nagpaul,	Basic	abstract	algebra,	Theorem	5.4,	p.423	^	Xavier	Gourdon,	Les	maths
en	tête,	Mathématiques	pour	M',	Algèbre,	1998,	Ellipses,	Th.	1	p.	173	External	links	Rational	Canonical	Form	(Mathworld)	Algorithms	An	O(n3)	Algorithm	for	Frobenius	Normal	Form	An	Algorithm	for	the	Frobenius	Normal	Form	(pdf)	A	rational	canonical	form	Algorithm	(pdf)	Retrieved	from	"


