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1. Introduction and the method

• Motivation – Lattice QCD

• Tensor Network approach

2. The Schwinger model

• Short reminder

• Hamiltonian approach

3. Results

• Chiral condensate (T = 0)

• Chiral condensate (T > 0)

• Finite density (T = 0)

4. Prospects
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the Schwinger model with Matrix Prod-
uct States,” JHEP 1311 (2013) 158,
[arXiv:1305.3765 [hep-lat]]

• M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen
and H. Saito, “Thermal evolution of the
Schwinger model with Matrix Product Op-
erators,” Phys. Rev. D92 (2015) 034519,
[arXiv:1505.00279 [hep-lat]]

• M. C. Bañuls, K. Cichy, K. Jansen
and H. Saito, “Chiral condensate in the
Schwinger model with Matrix Product Op-
erators,” Phys. Rev. D93 (2016) 094512,
[arXiv:1603.05002 [hep-lat]]

• M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen,
S. Kühn and H. Saito, “The multi-flavor
Schwinger model – Overcoming the sign
problem with matrix product states,” in
preparation
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• The most common approach to Lattice QCD simulations consists in
sampling the QCD path integral numerically via the Monte Carlo method.

• The QCD path integral: Z =
∫
Dψ̄DψDU e−Sgauge[U ]−Sferm[ψ,ψ̄,U ].

• The fermionic degrees of freedom can be integrated out:

Z =
∫
DU e−Sgauge[U ]

∏Nf

f=1 det(D̂f [U ]),

where det(D̂f [U ]) is the determinant of the Dirac operator matrix for fermion
flavour f .

• The fermionic determinant det(D̂f [U ]) is by far the highest cost in a MC

simulation. But, due to γ5-Hermiticity (γ5D̂fγ5 = D̂†
f ) it is real, so MC

simulations are possible:

det
(
γ5(D̂f +m)γ5

)
= det

(
D̂†
f +m

)
= det

(
D̂f +m

)†
.

• First approximation ⇒ neglect the determinant (“quenched approximation”) –
commonly used until early 2000s.

• Dynamical simulations ⇒ take the determinant into account.



Problems of Lattice QCD
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LQCD simulations led to spectacular successes.
However, there are some areas where progress
is hard to achieve:

• non-vanishing chemical potential µ – if µ 6= 0,
the determinant becomes complex:
det

(

γ5(D̂f +m+ µγ0)γ5
)

= det
(

D̂
†
f +m− µγ0

)

=

= det
(

D̂f +m− µ∗γ0

)†
,

determinant real only if µ taken to be purely imaginary.
Ways to tackle the problem: reweighting, Taylor expansion, analytic
continuation from imaginary µ.

• LQCD works in Euclidean space, related to Minkowski space by analytic
continuation – hence time is imaginary. Hence, it is not possible to simulate
real-time phenomena, i.e. non-equilibrium dynamics.

Alternative approaches wanted for these classes of problems!

Tensor Networks?

[ K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74 (2011) 14001]
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The name Tensor Network comes from the description of the wave
function of a system in terms of a network of interconnected tensors.
Poetic analogies:

• like decomposition in terms of LEGO pieces, where entanglement
plays the role of glue connecting the pieces

• tensor as DNA of wave function

R. Orus, A Practical Introduction to Tensor Networks, Annals of Physics 349

(2014) 117-158, arXiv:1306.2164 [cond-mat.str-el]
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• An arbitrary state from a Hilbert space of an N -body interacting
system needs in general an exponential number of coefficients –
thus computational complexity increases very fast and prohibits
exact diagonalization of systems larger than e.g.:

⋆ O(20) Heisenberg spins (with a naive approach) or

⋆ O(40) Heisenberg spins (using symmetries etc.).

• However, physical states (ground states, thermal states) of most
systems are far from arbitrary.

• In many cases, they can be described by Tensor Network states
that have only a polynomial number of parameters.

• In other words, only a small “corner” of the Hilbert space is
physically relevant.
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Type symbol graphical symbol

scalar A
vector Aα

tensor of rank-2 Aαβ
tensor of rank-3 Aαβγ

Some contractions:

Result symbol graphical symbol

scalar AαBα
tensor of rank-2 AαβBβγ

tensor of rank-4 AαβγBγδǫCζδηDηβθ



Matrix Product States

Krzysztof Cichy XIIth Quark Confinement and the Hadron Spectrum – 2016 – 8 / 31

• A particularly successful and efficient family of Tensor Network states is called
Matrix Product States (MPS).

• The MPS ansatz for some state |Ψ〉 has the following form:

|Ψ〉 =
d∑

i0...iN−1=1

tr
(
Ai00 . . . A

iN−1

N−1

)
|i0 . . . iN−1〉,

where:
|ik〉 are individual basis states for each site (k = 0, . . . , d− 1),
d – dimension of one-site Hilbert space,
each Aij is a D-dimensional matrix
and D is called the bond dimension.

|Ψ〉
Ak

〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
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• The description of a general state requires dN numbers –
exponential growth with system size.

• MPS representation with bond dimension D has only NdD2

coefficients – polynomial growth with system size.

• Still, contraction of the MPS gives dN coefficients for all dN basis
states. However, they are not independent – they have an
underlying tensor structure.
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• Every state has an MPS representation – with bond dimension of
at most D = dN/2, the number of numbers that characterizes an
MPS becomes dN .

• In this sense, MPS is just a representation that might or might
not give some practical advantages.

• However, one typically refers to the name MPS when there exists
some MPS representation with a relatively small D, which in
particular does not grow with the system size.

Practical usefulness of MPS results from the facts:

1. Many of states in quantum 1D systems have a small D
representation or are well-approximated by one.

2. One can efficiently obtain such approximating MPS.

[D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix Product State

Representations, Quantum Inf. Comput. 7, 401 (2007), arXiv:quant-ph/0608197]



Why should MPS work?

Seminar outline

Introduction

Lattice QCD

Tensor Networks

Graphical notation

Matrix Product
States
Why can MPS be
useful?
Why should MPS
work?
Ground state and
excited states

Thermal properties

Higher dimensions?

Road to QCD

The Schwinger
model

Results

Summary

Backup slides

Krzysztof Cichy XIIth Quark Confinement and the Hadron Spectrum – 2016 – 11 / 31

• Low D description is possible when the system has little
entanglement.

• General result about entanglement in quantum systems:
The entanglement between a subsystem and the rest grows with

the boundary of the subsystem. (area law)

• For 1D non-critical systems with correlation length ξ, the
entanglement entropy S of a subchain scales like:

S ∝ log(ξ).

• For 1D critical systems, ξ has to be replaced with an extensive
scale like the length of the subsystem L:

S ∝ log(L).

• But this is still exponentially better than the entanglement present
in a random state: S ∝ L.

[D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix Product State

Representations, Quantum Inf. Comput. 7, 401 (2007), arXiv:quant-ph/0608197]
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• The ground state can be found variationally by successively
minimizing the energy 〈Ψ|H|Ψ〉

〈Ψ|Ψ〉 with respect to each tensor Aj
until convergence is achieved.

• The minimization is performed by varying one tensor at a time,
and sweeping back and forth over the chain until convergence.

• Having the ground state, one can find ground state expectation
values of any operator of interest.

• After having found the ground state of the system, we can also
project it out and then look for the ground state of the projected
system, thus obtaining excitations of the system.

|Ψ〉
Ak

〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
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• The thermal expectation value of any operator O is given by:

〈O〉 = Tr [Oρ(β)]
Tr [ρ(β)]

where ρ(β) – thermal equilibrium density operator at inverse
temperature β.

• The approximation to the thermal state, ρ(β) ∝ e−βH , can be
computed using imaginary time evolution acting on the identity
matrix, which corresponds (up to normalization) to the exact
thermal state at infinite temperature.

[F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix product density

operators: Simulation of finite-temperature and dissipative systems,

Phys. Rev. Lett. 93, 207204 (2004)]
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• Although MPS is universal, it is not well-suited to describe an
area law for 2D (or higher) as the required D would grow
exponentially with the system size.

• A natural generalization to higher dimensions is Projected
Entangled Pair States (PEPS).
[F. Verstraete and J. Cirac, Renormalization algorithms for quantum-many

body systems in two and higher dimensions, arXiv: cond-mat/0407066.

• Properties of PEPS are quite different from those of MPS.

• They have built-in the area law for general dimension:
entanglement entropy of a subsystem scales with the size of its
boundary.

Picture from: R. Orus, A Practical Introduction to Tensor Networks, Annals of

Physics 349 (2014) 117-158, arXiv:1306.2164 [cond-mat.str-el]
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The way to apply TNS to QCD is a long one.

• START: Schwinger model, i.e. an Abelian gauge theory with U(1)
gauge group, 1+1 dimensions

L = −1

4
FµνF

µν + ψ̄(i 6∂ − g 6A−m)ψ

• NATURAL NEXT STEP: non-Abelian gauge theories (SU(2),
SU(3)) in 1+1 dimensions

• AND ALSO: go to 2+1 dimensions

• FINALLY: go to 3+1 dimensions, non-Abelian gauge group SU(3)
for QCD

All these next steps non-trivial and challenging.
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The Schwinger model is QED in 1+1 dimensions:
[ J. S. Schwinger, “Gauge Invariance and Mass. 2.,” Phys. Rev. 128 (1962) 2425.]

L = −1

4
FµνF

µν + ψ̄(i 6∂ − g 6A−m)ψ

where ψ is a 2-component spinor field.

• Simplest gauge theory, but physics still surprisingly rich,

• in several aspects resembles much more complex theories (QCD):

⋆ confinement,

⋆ chiral symmetry breaking (via anomaly, not spontaneous),

• standard toy model for testing lattice techniques.

Most prominent feature of the Schwinger model: non-perturbative
generation of mass gap!

The mass gap can be calculated analytically: MV

g
= 1√

π
≈ 0.564189584.



Multi-flavour Schwinger model as a spin model
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H = −xiNf−1

Nf−1∑

f=0

N−2∑

n=0

[
σ+Nfn+f

σzNfn+f+1 . . . σ
z
Nfn+Nf+f−1σ

−
Nfn+Nf+f

+

(−1)Nf−1σ−Nfn+f
σzNfn+f+1 . . . σ

z
Nfn+Nf+f−1σ

+
Nfn+Nf+f

]
+

+

NfN−1∑

k=0

α1(k)1 +

NfN−1∑

k=0

α(k)σzk +

NfN−1∑

k=0

NfN−1∑

k′=k+1

β′(k′)σzkσ
z
k′ ,

with:

α1(k) =
l20
Nf

(
1− δk/F,N−1

)
+ l0 (1− (k/Nf )%2)+

1

2
Mk%Nf

+
1

8
(N +Nf −1)+ ξ,

α(k) = l0(N−k/Nf−1)+
µ̃k%Nf

2
+
1

2
Mk%Nf

(−1)k/Nf+
Nf

4
(N − k/Nf − (k/Nf )%2) ,

β′(k) =
1

2
(N − k/Nf − 1 + 2ξ) ,

HOPPING TERM

HOPPING TERM H.c.

INHOMOGENEOUS
OFFSET

INHOMOGENEOUS
MAGNETIC FIELD

GAUGE TERM
long-distance interaction!
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We wanted to find:

• ground state energy (1-flavour)

• vector and scalar mass gap (1-flavour)

• chiral condensate (1,2-flavours)

• particle number differences (2-flavours)

for selected values of the fermion mass m/g = 0, 0.125, . . ..

Simulate with finite D (bond dimension), N (system size), x ≡ 1
a2g2

(inverse coupling, commonly denoted by β in LGT literature).

We need:

• large enough D – check D ∈ [40, 200],

• infinite volume limit: N → ∞ – choose N ∈ [50, 850] (note that
N ∝ √

x),

• continuum limit: x→ ∞ – choose x ∈ [9, 1000].
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• The Schwinger model posesses a U(1)A chiral symmetry, which is
broken by the chiral anomaly.

• This symmetry breaking is signaled by a non-zero value of the
chiral condensate:

Σ =

√
x

N

∑

n

(−1)n
1 + σzn

2

−→ compute GS expectation value of Σ.

• The naively computed condensate has a logarithmic divergence
∝ m

g log ag. This divergence can be subtracted off by subtracting
the free theory contribution (in the infinite volume limit):

Σ
(bulk)
free (m/g, x) =

m

πg

1√
1 + m2

g2x

K

(
1

1 + m2

g2x

)
,

where K(u) is the complete elliptic integral of the first kind.
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Subtracted condensate

m/g
Our result Buyens et al. Exact (m = 0)

MPS MPS or Hosotani (m > 0)

0 0.159929(7) 0.159929(1) 0.159929

0.0625 0.1139657(8) – 0.1314

0.125 0.0920205(5) 0.092019(2) 0.1088

0.25 0.0666457(3) 0.066647(4) 0.0775

0.5 0.0423492(20) 0.042349(2) 0.0464

1.0 0.0238535(28) 0.023851(8) 0.0247

Exact result (massless case): Σ
g = 1

2π3/2 e
γE ≈ 0.1599288.

[K. Van Acoleyen, B. Buyens, J. Haegeman and F. Verstraete, “Matrix product

states for Hamiltonian lattice gauge theories,” PoS LATTICE 2014 (2014) 308]

[Y. Hosotani, “Chiral dynamics in weak, intermediate, and strong coupling QED

in two-dimensions,” In: Nagoya 1996, Perspectives of strong coupling gauge

theories, 390-397 [hep-th/9703153]. ]



Thermal case – continuum extrapolation (Nf = 1)
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Analytical result from: [ I. Sachs, A. Wipf, “Finite Temperature Schwinger Model,” Helv.

Phys. Acta 65, 652 (1992), arXiv:1005.1822 [hep-th] ]
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R. Rodriguez, “Bosonized massive N flavor Schwinger model,” J. Phys. A 31 (1998) 9925 ]
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Recently, we analyzed the first case for which a MC simulation would
encounter the sign problem :
the 2-flavour Schwinger model with a chemical potential.
Quantity of interest:
the difference in particle numbers N1 −N2 vs. µI/2π ∝ µ1 − µ2.

Analytical computation (m = 0):
[R. Narayanan, “Two flavor massless

Schwinger model on a torus at a finite

chemical potential,” Phys. Rev. D 86

(2012) 125008 ]
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Continuum extrapolation of jumps
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PRELIMINARY phase diagram µI/2π vs. m/g
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• Proof of concept – the MPS approach can be used to extract:

⋆ mass spectrum (GS energy, masses of lightest particles of a
theory),

⋆ ground state expectation values (chiral condensate),

⋆ thermal properties (chiral condensate),

⋆ properties at finite density (jump locations).

• The latter is a demonstration that tensor networks can overcome
the sign problem!

• Precision better or comparable to best results in the literature, in
some cases better than 0.001%.



Prospects
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• We want to look into aspects of lattice
gauge theories where the standard methods
have problems:

⋆ thermodynamics at non-zero chemical
potential,

⋆ non-equilibrium properties.

• Already underway: chemical potential and non-Abelian SU(2) case.

• But still 1+1 dimensions...

• Ultimate aim: full QCD , i.e.:

⋆ a non-Abelian theory with SU(3) gauge group,

⋆ in 3+1 dimensions.

• Needs a lot of work of the Tensor Network + lattice gauge theory
community...

[K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74 (2011) 14001]
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• Gapped 1D systems are well described by MPS with a relatively
small bond dimension D, independent of the system size.

• The precise mathematical statement is for gapped local
Hamiltonians, about the ground state only, and says that MPS
approximate the ground state exponentially well (with increasing
D, the error decreases exponentially).

• For non-gapped systems, D can grow with the system size, but
only logarithmically ⇒ so it is still effective in practice.

• MPS are especially effective in 1D, because they have built in area
law for 1D ⇒ other tensor network methods exist for higher
dimensions (see later)

• Still, MPS can be used in 2D and actually the best results for
certain 2D Hamiltonians are from MPS (e.g. frustrated
Heisenberg spin model on a kagome lattice).
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• The MPS description is not unique.

• However, there exists a unique description in terms of the
canonical MPS form.

• MPS satisfy 1D area law.

• Expectation value can always be done efficiently:

⋆ O(NdD3) time for open boundary conditions (OBC),

⋆ O(NdD5) time for periodic boundary conditions (PBC).

• Note that a great deal of properties of MPS can be proved
rigorously – hence the expectations that the approach works and
that it works efficiently have good ground.
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In analogy to the MPS description of quantum states, one can also
represent operators as Matrix Product Operators (MPOs).

• introduced in: [F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix

product density operators: Simulation of finite-temperature and dissipative

systems, Phys. Rev. Lett. 93, 207204 (2004)]

M. Zwolak, G. Vidal, Mixed-state dynamics in 1D quantum lattice systems: a

time-dependent superoperator renormalization algorithm, Phys. Rev. Lett.

93, 207205 (2004)]

• important properties also discussed in:
B. Pirvu, V. Murg, J.I. Cirac, F. Verstraete, Matrix product operator

representations, New J. of Phys. 12 025012 (2010)

Main idea:

−→



Excited states
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• After having found the ground state of the system, |Ψ0〉, we can construct the
projector onto the orthogonal subspace, Π0 = 1− |Ψ0〉〈Ψ0|.

• The projected Hamiltonian, Π0HΠ0, has |Ψ0〉 as eigenstate with zero
eigenvalue, and the first excited state as eigenstate with energy E1.

• Given that E1 < 0, what we can always ensure by adding an appropriate
constant to H, the first excitation corresponds then to the state that minimizes
the energy of the projected Hamiltonian:

E1 = min
|Ψ〉

〈Ψ|Π0HΠ0|Ψ〉
〈Ψ|Ψ〉 =

〈Ψ| (H − E0|Ψ0〉〈Ψ0|) |Ψ〉
〈Ψ|Ψ〉 .

• This minimization corresponds to finding the ground state of the effective
Hamiltonian Heff [1] = Π0HΠ0.

• The procedure can be concatenated to find subsequent energy levels, so that, to
find the M -th excited state, we will search for the ground state of the
Hamiltonian:

Heff [M ] = ΠM−1 . . .Π0HΠ0 . . .ΠM−1 = H −
M−1∑

k=0

Ek|Ψk〉〈Ψk|.



PEPS
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Picture from: R. Orus, A Practical Introduction to Tensor Networks, Annals of Physics 349 (2014)

117-158, arXiv:1306.2164 [cond-mat.str-el]

Main practical difference:

• exact contraction of two arbitrary PEPS (even one PEPS with itself) is an
exponentially hard problem (complexity class #P-Hard, related to counting the
number of solutions of NP-Complete problems).

• Hence, computing scalar products of PEPS is inefficient.

• However, clever numerical methods, e.g. cluster ideas, can be used to
approximate exact contractions.
M. Lubasch, J. I. Cirac, M.-C. Banuls, Unifying Projected Entangled Pair States contractions,

New J. Phys. 16, 033014 (2014), arXiv:1311.6696 [quant-ph]

M. Lubasch, J. I. Cirac, M.-C. Banuls, Algorithms for finite Projected Entangled Pair States,

Phys. Rev. B 90, 064425 (2014), arXiv:1405.3259 [quant-ph]



Active area of research – methods

Seminar outline

Introduction

The Schwinger
model

Results

Summary

Backup slides

MPS properties

Matrix Product
Operators

Excited states

PEPS

TN methods
Hamiltonian
approach

GS energy

Excited states

Mass gaps

Krzysztof Cichy XIIth Quark Confinement and the Hadron Spectrum – 2016 – 39 / 31

TN methods come under several acronyms:

• Density Matrix Renormalization Group (DMRG)

• Time-Evolving Block Decimation (TEBD)

• Projected Entangled Pair States (PEPS)

• Tensor Renormalization Group (TRG)

• Tensor-Entanglement Renormalization Group (TERG)

• Tensor Product Variational Approach (TPVA)

• Multi-scale Entanglement Renormalization Ansatz (MERA)

• Entanglement Renormalization (ER)

• Weighted Graph States (WGS)

• String-Bond States (SBS)

• Monte Carlo Matrix Product States (MCMPS)

• continuous Matrix Product States (cMPS)

• infinite Matrix Product States (iMPS)

• Time-Dependent Variational Principle (TDVP)

• Second Renormalization Group (SRG)

• Higher Order Tensor Renormalization Group (HOTRG)

• . . . and much more
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The Hamiltonian of the Schwinger model in the staggered discretization:

H =
x

2

N−1∑

n=0

(
σ+(n)eiθ(n)σ−(n+ 1) + σ+(n+ 1)e−iθ(n)σ−(n)

)
+

+
m

ag2

N−1∑

n=0

(
1 + (−1)nσ3(n)

)
+

N−1∑

n=0

L2(n),

where: x = 1/a2g2.

• Natural choice of basis: direct product of Ising basis {|i〉}, acted upon by Pauli
spin operators, and the ladder space of states {|l〉}:

|i0i1 . . . iN−2iN−1〉 ⊗ |l0,1l1,2 . . . lN−2,N−1lN−1,0〉,

• The gauge degrees of freedom li,i+1 can be eliminated using the Gauss law:

Ln − Ln−1 =
1

2
(σzn + (−1)n) ,

leaving the basis states as: |i0i1 . . . iM−2iM−1〉 ⊗ |l〉,
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GS energy. Continuum extrapolation
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• After having computed the GS energy, we want to compute the
masses of the two lightest bound states (“mesons”) of the theory:

⋆ vector meson,

⋆ scalar meson.

• Important: we have to recognize the vector and scalar states –
use the charge conjugation transformation:

⋆ PBC – C = −1 ⇒ vector state, C = +1 ⇒ scalar state,

⋆ OBC – C no longer an exact symmetry, but “enough” to
differentiate vector vs. scalar.

• Note: with OBC translational symmetry is lost – hence we also
have momentum excitations of the vector meson before we reach
the scalar.
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Vector binding energy
exact 0.5641895

m/g MPS with OBC DMRG result

0 0.56421(9) 0.56419(4)

0.125 0.53953(5) 0.53950(7)

0.25 0.51922(5) 0.51918(5)

0.5 0.48749(3) 0.48747(2)

Scalar binding energy
exact 1.12838

m/g MPS with OBC SCE result

0 1.1279(12) 1.11(3)

0.125 1.2155(28) 1.22(2)

0.25 1.2239(22) 1.24(3)

0.5 1.1998(17) 1.20(3)

DMRG result:
[T. Byrnes, P. Sriganesh, R. J. Bursill and C. J. Hamer, Phys. Rev. D 66 (2002) 013002 ]

SCE result:
[P. Sriganesh, R. Bursill and C. J. Hamer, Phys. Rev. D 62 (2000) 034508 ]
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