

Maxwell equations		GSÅ
Ampere's law:		
$\oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \int_{A} \mathbf{j} \cdot d\mathbf{A} + \frac{d}{dt} \int_{A} \mathbf{D} \cdot d\mathbf{A}$	from	$ abla imes \mathbf{H} = \mathbf{j} + rac{\partial}{\partial t} \mathbf{D}$
Faraday's law:		
$\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} \ = \ -\frac{d}{dt} \int_{A} \mathbf{B} \cdot d\mathbf{A}$	from	$ abla imes {f E} = -rac{\partial}{\partial t} {f B}$
Gauss's theorem:		
$\oint_{\partial V} \mathbf{D} \cdot d\mathbf{A} \ = \ Q$	from	$\nabla \cdot \mathbf{D} = \rho$
Magnetic field has no charges:		
$\oint_{\partial V} \mathbf{B} \cdot d\mathbf{A} = 0$	from	$\nabla \cdot \mathbf{B} = 0$
GSI Helmholtzzentrum für Schwerionenforschung GmbH C. Muehle	/ Magnets a	nd Special Magnets 6

Magnet	Advantage	Disadvantage
O (Window frame)	Symmetrical	Bedstead coils or cylindrical coils with high flux leakage
C	Saves space at one side, Simple coil assembly	Asymmetrical, bedstead coil, heavy yoke
Н	Symmetrical, Simple pancake coils	Bad field quality (compared to WF)

	Aluminum (pure, > 99.5%)	Copper (OFHC- Oxygen free high conductivity)			
Price (large quantities)	2.7-3.4 EUR/kg	8-16 EUR/kg			
Conductivity	36 S m/mm ²	58 S m/mm ²			
Specific weight	2,70 g/cm ³	8,96 g/cm ³			
Linear expansion coefficient	23*10 ⁻⁶ K ⁻¹	17*10 ⁻⁶ K ⁻¹			
Elasticity modulus	72.000 N/mm ²	123.000 N/mm ²			
Keystoning effect	Smaller	Higher			
Oxydation	In air. Dissolves in mixed copper/aluminum cooling circuits	Small			
Conclusions (for same N*I)	Larger Lighter Higher transparancy for particles Lower investment costs Higher operating costs => Rather for detector magnets	Smaller Heavier Reduced transparancy for particles Higher investment costs Lower operating costs => Rather for accelerator magnets			

Radiation		GSJ	
	Beam loss		
Intended	l Una	Unavoidable Any beam loss process: Charge exchange reaction (at residual gas particles, at el. septum wires) Resonances	
Targets Charge state sepa Mass separation	Any bean aration Charge e (at residu septum w Resonand		
The materials for the expected radiation le	magnet must be choosen acc vel. Coil insulation is the most	ording to the sensitive one.	
The materials for the expected radiation le Standard epoxy resin	magnet must be choosen acc vel. Coil insulation is the most Improved plastics (e.g. Isocyanates, Polyimide)	ording to the sensitive one. Fully anorganic	

