CLIC detector model and software tools for simulation and reconstruction

Muon Collider Workshop 2019

Marko Petric

On behalf of the CLICdp collaboration

CERN, 11 October 2019

Marko Petric (CERN) marko.petric@cern.ch

CLIC detector model and software tools

CLIC – Compact Linear Collider

- ► High-luminosity linear e⁺e⁻ collider
- The only mature multi-TeV option for future lepton colliders

Current scenario: Stage 1: $1ab^{-1} @ t\bar{t}/380 \text{ GeV}$ Precision SM Higgs and top physics Stage 2: $2.5 ab^{-1} @ 1.5 \text{ TeV}$: BSM, top and rare Higgs processes Stage 3: $5 ab^{-1} @ 3 \text{ TeV}$:

BSM, top and rare Higgs processes

Each stage corresponds to 7-8 years

https://clic.cern

CLIC physics and tracking performance requirements

Momentum resolution

Higgs recoil, $H \rightarrow \mu\mu$ or ℓ from BSM $\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

- ► Jet energy resolution W/Z/H di-jet separation $\frac{\sigma(E)}{E} \sim 3.5 - 5\%$ for E = 1000 - 50 GeV
- Impact parameter resolution

b/c tagging, Higgs couplings $\sigma_{r\phi} = \sqrt{a^2 + b^2 \cdot \text{GeV}^2/(p^2 \sin^3 \theta)}$ with $a = 5 \,\mu\text{m}$ and $b = 15 \,\mu\text{m}$

CLIC physics and tracking performance requirements

Momentum resolution

Higgs recoil, $H \rightarrow \mu\mu$ or ℓ from BSM $\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

Jet energy resolution

W/Z/H di-jet separation $\frac{\sigma(E)}{E} \sim 3.5 - 5\%$ for E = 1000 - 50 GeV

Impact parameter resolution

b/c tagging, Higgs couplings $\sigma_{r\phi} = \sqrt{a^2 + b^2 \cdot \text{GeV}^2/(p^2 \sin^3 \theta)}$ with $a = 5 \ \mu\text{m}$ and $b = 15 \ \mu\text{m}$

CLIC physics and tracking performance requirements

Momentum resolution

Higgs recoil, $H \rightarrow \mu\mu$ or ℓ from BSM $\frac{\sigma(\rho_T)}{\rho_T^2} \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

- ► Jet energy resolution W/Z/H di-jet separation $\frac{\sigma(E)}{E} \sim 3.5 - 5\%$ for E = 1000 - 50 GeV
- Impact parameter resolution

b/c tagging, Higgs couplings $\sigma_{r\phi} = \sqrt{a^2 + b^2 \cdot \text{GeV}^2/(p^2 \sin^3 \theta)}$ with $a = 5 \,\mu\text{m}$ and $b = 15 \,\mu\text{m}$

CLIC beam structure and beam-induced backgrounds

- ► Time stamp hits from the detectors (central det ⇔ physics event)
- Tracking timing requirements
 - ▶ 10 ns integration time
 - $10/\sqrt{12}$ ns hit resolution
- Background overlay (10 (20) beam crossings before (after) physics event)

CLIC: trains at 50 Hz, 1 train = 312 bunches

- entire bunch train available for offline reconstruction
- not all bunches crossings contain a "hard" interaction

Marko Petric (CERN) marko.petric@cern.ch

CLIC Detector Concept

B Field of 4 T

- Vertex: 3 double layers
 - ▶ Single-hit accuracy 3 µm
 - $0.2\% X_0$ per detection layer
 - Power pulsing \rightarrow 50 mW cm⁻²
 - Si tracker: r_{max} = 1.5 m
 - single point resolution = 7 μ m \times 90 μ m
 - detector: ~ $1\% X_0$ per layer
 - support & cables: ~ $2.5 \% X_0$
- Precise timing for background rejection
 - 10 ns stamping for tracks
 - I ns accuracy for calo. cluster

Low-mass → small multiple scattering

12.8 m

CLIC detector model and software tools

Linear Collider Software

- Linear collider community has used and developed common software for many years
 - Event data model (EDM) and persistency: LCIO
 - PODIO is being investigated in AIDA++
 - Particle flow reconstruction: PandoraPFA
- Adopted DD4hep geometry description to develop more common software this geometry information
- Interface generic reconstruction packages via thin wrappers to linear collider framework

DD4hep

- Complete Detector Description
 - Providing geometry, materials, visualization, readout, alignment, calibration
- Supports full experiment life cycle
 - Detector concept development, detector optimization, construction, operation
 - Facile transition from one stage to the next
- \blacktriangleright Single source of information \rightarrow consistent description
 - Use in simulation, reconstruction, analysis
- Ease of Use
- Few places for entering information
- Minimal dependencies
- AIDA-2020 and HSF member project

What is Detector description?

- Description of a tree-like hierarchy of 'detector elements'
 - Sub-detectors or parts of subdetectors
- Detector Element describes:
 - Geometry
 - points to placed logical volumes
 - Environmental conditions
 - Properties required to process event data
 - Extensions (optionally): experiment, sub-detector or activity specific data, measurement surfaces

Marko Petric (CERN) marko.petric@cern.ch

DD4hep – Generic Detector Palette

- ► Generic driver available → scalable and flexible
- Parameters are provided in compact XML files, e.g.

```
<detector id="15" name="HCal" type="GenericCalBarrel o1 v01" readout="HCalCollection">
 <envelope vis="HCALVis">
    <shape type="PolyhedraRegular" numsides="HCal sym" rmin="HCal rmin" rmax="HCal rmax" dz="HCal dz" material="Air"/>
    <rotation x="0*deg" y="0*deg" z="90*deg-180*deg/HCal_symmetry"/>
 </envelope>
 <dimensions numsides="HCal sym" rmin="HCal rmin" z="HCal dz*2"/>
 <laver repeat="(int) HCal lavers" vis="HCalLaverVis">
   <slice material="Steel235"</pre>
                                   thickness="0.5*mm" vis="HCalAbsorberVis" radiator="ves"/>
   <slice material="Steel235"</pre>
                                   thickness="19*mm" vis="HCalAbsorberVis" radiator="ves"/>
    <slice material="Polystyrene" thickness="3ymm"
                                                      sensitive="ves" limits="cal limits"/>
   <slice material="Copper"
                                   thickness="0.1*mm" vis="HCalCopperVis"/>
   <slice material="PCB"</pre>
                                   thickness="0.7*mm" vis="HCalPCBVis"/>
   <slice material="Steel235"</pre>
                                   thickness="0.5ymm" vis="HCalAbsorberVis" radiator="ves"/>
   <slice material="Air"</pre>
                                   thickness="2.7ymm" vis="InvisibleNoDaughters"/>
 </laver>
</detector>
```

- You can scale, change layers, radii and compositions...
- Propagate visualization attributes to Display
- Inspect \${DD4hep_ROOT}/DDDetectors/src or compact

Your Detector Palette

```
xml_det_t x_det = e;
Layering layering(x_det);
xml_comp_t staves = x_det.staves();
xml_dim_t dim = x_det.dimensions();
DetElement sdet(det_name, x_det.id());
Volume motherVol = theDetector.pickMotherVolume(sdet);
```

```
PolyhedraRegular polyhedra(numSides, rmin, rmax, detZ);
Volume envelopeVol(det_name, polyhedra, air);
```

```
for (xml_coll_t c(x_det, _U(layer)); c; ++c) {
    xml_comp_t x_layer = c;
    int n_repeat = x_layer.repeat();
    const Layer* lay = layering.layer(layer_num - 1);
    for (int j = 0; j < n_repeat; j++) {
        string layer_name = _toString(layer_num, "layer%d");
        double layer_thickness = lay--thickness();
        DetElement layer(stave, layer_name, layer_num);
        ...3
    }
    DECLARE_DETELEMENT(GenericCalBarrel_o1_v01, create_detector)</pre>
```

- Users can easily write their own detector drivers, if needed
- Detector geometry extendable with additional info.
- C++ model of separation of 'data' and 'behavior'
 - Classes consist of a single 'reference' to the data object

DDG4 – Gateway to Geant4

In-memory translation of geometry from TGeo to Geant4

- Materials, Solids, Limit sets, Regions
- Logical volumes, placed volumes and physical volumes
- External configuration:
 - Plugin mechanism
 - Property mechanism to configure plugin instances
 - Supports configuration via XML, Python or ROOT-AClick
- Use plugin mechanism to configure: Generation, Event Action, Tracking Action, Stepping Action, SensitiveDetector, PhysicsList...
- Provides out of the box MC truth handling with record reduction

DDG4 – Configuration example

- DDG4 is highly modular
- Very easily configurable through python

```
#...
gen = DDG4.GeneratorAction( kernel , "LCI0InputAction/LCI01" )
gen.Input = "LCI0FileReader|" + inputFile
#...
```

Or configure actions, filters, sequences, cuts

```
#...
part = DDG4.GeneratorAction(kernel, "Geant4ParticleHandler/ParticleHandler")
kernel.generatorAction().adopt(part)
part.SaveProcesses = ['Decay']
part.MinimalKineticEnergy = 1*MeV
part.KeepAllParticles = False
#...
user = DDG4.GeneratorAction(kernel,"Geant4TCUserParticleHandler/UserParticleHandler")
user.TrackingVolume_Zmax = DDG4.tracker_region_zmax
user.TrackingVolume_Rmax = DDG4.tracker_region_rmax
#...
```

DD4hep – Plugin Palettes

- Providing input handlers, sensitive detectors for most cases...
- Hard to provide Geant4 Sensitive Detectors for all cases
 - Couples detector 'construction' to reconstruction, MC truth and Hit production
 - Too dependent on technology and user needs

e.g. several possibilities for tracker

- Providing palette of most 'common' sensitive components for trackers and calorimeters
- Physics lists, Physics/particle constructors etc.
 - Wrapped factory plugins directly taken from Geant4
 - Users extend physics list (e.g. QGSP)
- Several IO handlers (LCIO, ROOT, StdHep, HepEvt, HepMC)

Marko Petric (CERN) marko.petric@cern.ch

CLIC detector model and software tools

A bit more about ddsim

- Get steering file ddsim --dumpSteeringFile > mySteer.py
 - Steering file includes documentation for parameters and examples
 - The python file contains a DD4hepSimulation object at global scope
 - Configure simulation directly from commandline

\$ ddsim --action.calo --action manActions --action.tracker --compactFile --crossingAngleBoost --dump --dumpParameter --dumpSteeringFile --enableDetailedShowerMode -h --enableGun --field.delta chord --field.delta intersection --field.delta one step --field.eps max --field eng min --field.equation --field.largest_step --field.min_chord_step --field.stepper --filter calo --filter.filters --filter.mapDetFilter

--filter.tracker -0 --gun.direction -- gun energy --gun.isotrop --gun.multiplicity --gun.particle --gun.position --help --inputFiles -M --macroFile - 17 ==numberOfFwents -0 --outputFile --output.inputStage --output.kernel --output.part --output.random

--part.keepAllParticles -- part minimalKineticEnergy --part.printEndTracking --part.printStartTracking --part.saveProcesses --physics.decays --physics.list --physicsList --physics.rangecut --printLevel --random.file --random.luxurv --random.replace gRandom --random.seed --random type --runTvpe -8 --skipNEvents --steeringFile -17 --vertexOffset --vertexSigma

DDRec: High Level Information

High level view onto the detectors through DDRec DataStructures extensions for DetElements

- Constructors fill DDRec DataStructures
- DataStructures allow to decouple detector implementation from reconstruction algorithms

DataStructures contain sufficient information to provide geometry information to particle flow clustering via PandoraPFA

Data Structure	Detector Type
ConicalSupportData	Cones and Tubes
FixedPadSizeTPCData	Cylindrical TPC
LayeredCalorimeterData	Sandwich Calorimeters
ZPlanarData	Planar Silicon Trackers
ZDiskPetalsData	Forward Silicon Trackers

Geometry for Track Reconstruction

Information needed for track reco.

- measurement of directions of hits
- local-to-global transforms
- material properties

DD4hep surfaces provide this

```
Surfaces can be auto. added
```

<plugin name="DD4hep_GenericSurfaceInstallerPlugin"> <argument value="TrackDet"/> <argument value="dimension=2"/> <argument value="u_x=-1."/>

<argument value= </plugin>

- Plugin loops over all DetElements
- Configure surface type and direction in volume
- Automatically average materials

Track Reconstruction

Track reconstruction using DD4hep surfaces

- Pattern recognition/track finding algorithms
 - From detector specific: Clupatra for TPC; mini-vector for vertex detector double layers
 - to geometry agnostic: pattern recognition in conformal space
- Track fitting, fairly generic: DDKalTest, aidaTT
 - ACTS might be long term replacement (AIDA++)
- Geometry: Interfaced via DDRec and Surfaces

DDKalTest using DD4hep surf. for track fitting

Marko Petric (CERN) marko.petric@cern.ch

Particle Flow Reconstruction

PandoraPFA: generic toolkit for pattern recognition algorithms in highly granular calorimeters

- Originally developed for ILC/CLIC
- Extended to work in LAr-TPC reconstruction for the DUNE experiment
- *ClientApplication*: DDMarlinPandora glues linear collider framework (Marlin), DD4hep, and PandoraPFA
- Passes DDRec DataStructures information, tracks, and calorimeter hits to PandoraPFA
- Converts PandoraPFA objects into LC EDM

18

Performance d_0 and p_T resolution for single μ

In good agreement with target values of required performance

CLIC detector model and software tools

9

Efficiency for displaced single μ

> Track generated uniformly along y axis with given opening angle

Efficiency for tt-bar @ 3 TeV

- Efficiency = pure reconstructed particles / reconstructable
 - pure = purity > 75% (hits belong to associated MC particles / total hits)
 - ▶ reconstructable = stable, $p_T > 0.1 \text{ GeV}$, unique hits ≥ 4

Efficiency and fake rate for tt-bar @ 3 TeV

More performance plots https://cds.cern.ch/record/2649437

Works also with different geometry - FCCee

- Z bosons at rest decaying into light quarks
- \blacktriangleright background from e^+e^- pairs

- Works also with different detectors e.g. FCCee CLD
- using DD4hep Detector description
- ▶ Smaller magnetic field $4T \rightarrow 2T$
- Larger tracker 1.5m \rightarrow 2.15m
- ▶ smaller beam-pipe 29mm → 15mm
- adapting pattern recognition parameters

Jet Energy Resolution

- Performance from light flavor di-jets
- Using PandoraPFA and FastJet (VLC R=0.7)
- In good agreement with target values of required performance
- More performance plots https://cds.cern.ch/record/2649437

Flavour Tagging

- Vertex finder reconstructs primary and secondary vertices
- Jet reconstruction using jet clustering algorithm
- Feed information into MVA to establish the flavourness of each jet

Summary and Conclusions

- CLIC offers a wealth of accurate e⁺e⁻ physics measurements
- CLICdet detector design fully optimized on full simulation
- Validated software for detector optimization and physics studies from Geant4 simulation to user analysis
 - Based on DD4hep
 - Reconstruction aimed at Si tracking, Particle flow
- Plans at CERN to create more synergy between software used for CLIC and
 - Replace underlying framework
 - Provide wrappers for relevant processors
 - Core components: DD4hep; later maybe PODIO and ACTS
 - Keep our software chain running to continue full simulation studies
- Docs: https://clic.cern/european-strategy