Section 8

Monday, July 22
CS 70: Discrete Mathematics and Probability Theory, Summer 2013

1. Out of 1000 computer science students, 400 belong to a club (and may work part time), 500 work part time (and may belong to a club), and 50 belong to a club and work part time.

1a. Suppose we choose a student uniformly at random. Let C be the event that the student belongs to a club and P the event that the student works part time. Draw a picture of the sample space Ω and the events C and P.
1 b . What is the probability that the student belongs to a club?
1c. What is the probability that the student works part time?
1 d . What is the probability that the student belongs to a club AND works part time?
1e. What is the probability that the student belongs to a club OR works part time?
2. Suppose you roll an ordinary die 5 times.

2a. What is the probability of getting at least one six?
2 b . What is the probability of getting exactly two sixes?
2c. What is the probability of getting a prime number of sixes?
3. Suppose you record the birthdays of a large group of people, one at a time until you have found a match, i.e., a birthday that has already been recorded.

3a. What is the probability that it takes more than 20 people for this to occur?
3 b . What is the probability that it takes exactly 20 people for this to occur?
3c. Suppose instead that you record the birthdays of a large group of people, one at a time, until you have found a person whose birthday matches your own birthday. What is the probability that it takes exactly 20 people for this to occur?
4. Suppose you select, uniformly at random, a sequence of nonnegative integers $x_{1}, x_{2}, \ldots, x_{10}$, each of which is ≤ 500. What is $\operatorname{Pr}\left[\sum_{i=1}^{10} x_{i}=437\right]$?

