
THE DINITZ PROBLEM
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1. Introduction

The so-called ”Dinitz conjecture,” now the ”Dinitz theorem,” was a simple-
sounding open question regarding the coloring of a graph or array, combining ele-
ments of combinatorics and graph theory. Proposed by Jeff Dinitz in the late Seven-
ties, it wasn’t solved until the early Nineties, when Fred Galvin produced a simple
solution. We follow David Glynn’s presentation of the material from [1, Chap-
ter 36], which combines elements we recognize from earlier talks, including Daniel
Matthews’ discussion of the graph theory chapter ”Five-coloring plane graphs” and
Alden Mathieu’s combinatorics presentation on ”Three famous theorems on finite
sets.”

2. Dinitz’s Problem

Question. Given n2 cells arranged in an (n×n) square array, let (i, j) denote the
cell in row i and column j. For each cell (i, j), we have a color set of C(i, j) of n
colors.

Is it always possible to color the whole array, by selecting colors from C(i, j) for
each cell, such that the colors in each row and column are distinct?

It is easiest to visualize this array coloring as a Latin square.

Definition 2.1. A Latin square is an (n × n) array, where the n2 cells are filled
with the numbers {1, 2, ..., n} such that each number appears exactly once in each
row and column.

For an (n × n) Latin square with a choice of the same n colors for each cell,
this is always possible. Consider the Latin square below. We label the first row
arbitrarily with distinct colors for each cell, and permute the row as we progress
down the square. Coloring a Latin square in this way is identical to solving a
sudoku puzzle.

1 2 3
3 1 2
2 3 1

Table 1. A Latin square with distinct coloring in each row and column.

Question. What if the total set of colors has more than n colors? That is, is it
still possible to color the (n × n) array if C := ∪i,jC(i, j) > n but each cell (i, j)
has a set of n colors, C(i, j), to choose from?

Date: 14 November 2018.

1



2 ALDEN MATHIEU

Even with the simplest possible example, with a (2 × 2) Latin square with 3
colors to choose from, this is not always possible:

{1,2} {2,3} → 1 2
{1,3} {2,3} 3 3

Table 2. The (2× 2) array can fail to be distinctly colored with
an awkward choice of just 3 colors.

To prove the Dinitz conjecture, we will restate it in terms of graph theory to
make our proof easier.

3. Graph Theory

3.1. Background.

Definition 3.1. A simple graph G = (V,E) is an undirected graph without loops
or multiple edges: that is, a simple graph is a collection of V vertices which are
connected by E edges such that any pair of vertices in G is connected by at most
1 edge.

Definition 3.2. A bipartite graph G = (V,E) is a graph whose vertex set V can
be partitioned into two disjoint sets X,Y such that every edge has one endpoint in
X and the other endpoint in Y .

Definition 3.3. A coloring (specifically, a vertex coloring) of a graph is an assign-
ment of a color to each vertex from a given set of colors, such that it is proper (no
pair of adjacent vertices share the same color).

Bipartite graphs can be equivalently defined as those graphs which are 2-colorable.

Definition 3.4. The chromatic number of a graph G, denoted χ(G), is the smallest
number of colors that one can assign to the vertices such that the coloring is proper.

The chromatic number of a graph can also be visualized as the minimal number
of independent sets which partition the set of vertices V .

Definition 3.5. The list coloring is a coloring of the vertices v in V , denoted L(v),
where the list of allowed colors for each vertex is a subset of all colors in the graph.

Hence, the list chromatic number of a graph G, denoted χl(G), is the minimum
k such that if every color set C(v) has size k for all vertices v in V , then a list
coloring exists. We note that χ(G) ≤ χl(G) always, since an ordinary coloring is a
special case of list coloring.

3.2. Reframing the Dinitz problem. We reframe the Dinitz problem by assign-
ing a vertex to each cell of our (n×n) array, changing our Latin square problem to
a graph theory problem. Our graph, Sn, has n2 vertices, with two vertices adjacent
if and only if they are in the same row or column (see Figure 1).

Since we have n2 vertices and any n cells in a row are pairwise adjacent, and
recalling our Latin square (Table 1), we clearly require at least n colors. Since we
have shown the existence of Latin squares, we infer that χ(Sn) = n.

Given that this is the ”Dinitz theorem,” and not the ”disproven Dinitz conjec-
ture,” we proceed to prove the restated Dinitz problem:

Theorem 3.6 (Dinitz theorem). χl(Sn) = n, ∀n
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(a) A (3× 3) array (b) The associated graph S3

Figure 1. Associating a graph to an array

Remarks 3.7. It is not true that χ(G) = χl(G) for any graph G. Consider the
exercise given in the book and depicted below (Figure 2). As a complete bipartite
graph, K2,4 has a chromatic number of 2 but is demonstrated not to be 2-list-
colorable; χl(K2,4) = 3.

Figure 2. K2,4 is 3-list-colorable

A 1979 paper by Erdős, Rubin and Taylor [2] demonstrates that there is no
bound on how much the list chromatic number of a graph can exceed the chromatic
number of the graph as the list of colors grows.

To prove the Dinitz theorem, we will need two results and a few further graph
theory concepts.

Definition 3.8. An induced subgraph GA is the subgraph of G which has the set
of vertices A ⊆ V and the set of all edges of G which connect the vertices in A.
GA is the subgraph induced by A.
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Definition 3.9. A directed graph, denoted
−→
G(V,E), is a graph on which each edge

has an orientation or direction. The notation u → v denotes the directed edge
starting at vertex u and ending at vertex v.

Definition 3.10. For a vertex v in a graph, we denote the degree of v by d(v).
The degree of v is the number of edges which connect to v.

We therefore define the outdegree d+(v) as the number of directed edges which
start at v. Similiarly, the indegree d−(v) is the number of directed edges which end
at v.

We also have that d(v) = d+(v) + d−(v).

Definition 3.11. A set of vertices S in a graph are independent if they are pairwise
non-adjacent; that is, for every pair of vertices of S, there is no connecting edge
between them.

Definition 3.12 (Kernel). Let
−→
G = (V,E) be a directed graph. A kernel K ⊆ V

is a subset of the vertices such that

i) K is independent in G
ii) for every vertex u ∈ V \K, there is a vertex v ∈ K such that u → v. That is,

all vertices not in K have an edge directed into K.

We now can state the first result.

4. First Result

Lemma 4.1. Let
−→
G(V,E) be a directed graph, and suppose for all v ∈ V there is

a color set C(v) such that |C(v)| ≥ d+(v) + 1. Then, if every induced subgraph of
−→
G has a kernel, then G has a list coloring with C(v) as the color set.

Proof. We use induction on the number of vertices. If there is only one vertex, the
lemma is trivial; we consider only |V | > 1.

Let c be a color, c ∈ C = ∪v∈V C(v). Define A(c) := {v ∈ V : c ∈ C(v)}, the
set of vertices with color c in the restricted list C(v). Therefore GA(c) has a kernel:
K(c). Because all the vertices in K(c) are independent (by definition 3.12(i)), we
are able to color all the vertices in K(c) with the color c. We then delete K(c) from
G and delete c from C.

Now we let G′ be the induced subgraph on V \K(c) and let the reduced C ′(v) =
C(v)\{c}. For all vertices u in A(c)\K(c), we have reduced the outdegree by at
least 1 (by definition 3.12(ii)), so the condition |C ′(u)| ≥ d+(u) + 1 still holds.
Similarly, the condition holds for vertices outside A(c) since the sets C(v) were not

changed. Thus, our new graph
−→
G′ has a list coloring.

By adding our removed colors back in, we can see that by induction we get a list

coloring for
−→
G . �

4.1. Strategy. We now see that we need to find an orientation of edges of our
associated graph Sn such that

i) d+(v) ≤ n− 1, for all vertices v
ii) every induced subgraph has a kernel

Hence, for our second result, we require concepts which should be somewhat
familiar from an earlier presentation on Hall’s marriage theorem.
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5. Second Result

Definition 5.1. A matching M in a bipartite graph G is a set of edges such that
no pair of edges share an endpoint.

Definition 5.2. For all vertices v ∈ V of a graph G(V,E), we consider the set
N(v), the set of adjacent vertices to v. We assume for all v there is a preferential
ranking or ordering of the set N(v) = {z1 > z2 > · · · > zd(v)} where the highest
preference for v is the vertex z1 and the lowest is zd(v).

While the common analogy is to partners in marriages, a more apt and less sexist
model might be a student’s course choices in the CAO and a college’s admissions
offers.

Definition 5.3. A stable matching M of the bipartite graph G(V,E) is a matching
such that, if edge uv is not in the matching M , then either

i) uy ∈ M with y > v in N(u) (that is, u has a higher preference for y than for
v); or

ii) xv ∈ M with x > u in N(v) (that is, v has a higher preference for x than for
u); or

iii) both.

Thus, in our CAO interpretation, a matching is stable if it never happens that
a student s is not planning to attend a university u, but s prefers u to their current
offer and u prefers student s to their current prospective cohort. (If student s
would rather go to university u, and u would rather have s attend, then the current
dissatisfactory matching obviously would not be stable.)

We consider a diagram of a bipartite graph, with a set of students {a, b, c, d} and
a set of universities {A,B,C,D} with their respective ranking sets. While a largest
matching exists (the thin lines), it is not stable. For example, student c prefers
university A and vice versa; the bold lines indicate the smaller stable matching.

Figure 3. Tough luck for d.

We now state the second result.

Lemma 5.4. A stable matching always exists.

Proof. We consider an algorithm: in round 1, all universities offer an spot u ∈ U to
their top choice. If a student receives more than one offer, they select their highest
preference; if they only receive one offer, they keep it. If a spot in a university
isn’t accepted, it goes into the pool of rejections (R ⊆ U) and is offered in the next
round.
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In round 2, all the universities with spots in R offer to their next choice. The
students compare their offers (if any) to their first round offers (if any) and select
their highest preference. The rest are rejected and form the new pool of rejections
R.

And so on. A university who has offered to their last choice of student and is
again turned down drops out from the pool R and from further consideration (our
model algorithm doesn’t account for last-minute still-open course listings on the
CAO site). Eventually, R is empty, having seen every university either fill its spot
or drop out of consideration, and the algorithm stops.

We claim that, when the algorithm stops, the universities that have successfully
filled their spot and the corresponding students form a stable matching M .

Note that the universities accepted by a student are accepted in increasing prefer-
ence (of the student), since in each round the student picks their highest preference
between their current offer and the new offer. Hence, if su is in the set of edges but
su /∈M , then either: u never offered a spot to s, implying that ut ∈M with t > s
in N(u) (criterion 5.3(i)); or s rejected a spot at u, implying that sc ∈ M with
c > u in N(s) (criterion 5.3(ii)). But this exactly describes a stable matching. �

With our two results, we now are able to formulate Galvin’s proof of the Dinitz
theorem.

6. Bringing It Home

We restate the theorem 3.6 for convenience:

Theorem 6.1 (Dinitz theorem). χl(Sn) = n, ∀n
Proof. Let (i, j) denote the vertices of Sn. We have (i, j) adjacent to (r, s) if and
only if i = r or j = s.

We construct
−→
Sn. We consider an arbitrary Latin square L with elements

{1, 2, ..., n} and denote by L(i, j) the number in cell (i, j). We then define an
orientation horizontally by (i, j) → (i, j′) if L(i, j) < L(i, j′) and vertically by
(i, j) → (i′, j) if L(i, j) > L(i′, j). Thus the Latin square and associated graph in
Fig. 1 have the following orientation:

Figure 4. Defining an orientation on S3

If L(i, j) = k then there are n−k cells in row i with entries larger than k and k−1
cells in column j with entries smaller than k. Hence, d+(v) = n− k+ k− 1 = n− 1
and we have proved our first requirement.
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It remains to show that every induced subgraph has a kernel.
We consider a subset A ⊆ V of vertices and associate to A the bipartite graph

G = (X ∪ Y,A) with X = Y = {1, 2, ..., n}, and X the set of rows of L and Y the
set of columns. Then (i, j) ∈ A implies that ij ∈ G is an edge, i ∈ X, j ∈ Y . In the
diagram below, the cells of A are shaded and correspond to the matching on the
associated bipartite graph G.

Figure 5. The cells in A are shaded and correspond to the match-
ing on the graph.

We use the above described orientation on Sn to define a ranking on the vertices
of G: j′ > j in N(i) if (i, j) → (i, j′) ∈ Sn and similarly i′ > i in N(j) if (i, j) →
(i′, j) ∈ Sn. By the lemma 5.4, G has a stable matching M . We claim that M ⊆ A
is a kernel. M is a subset of A since it is a set of edges in G and hence a set
of vertices. Firstly, we know that M is independent in A because, as edges in
G, they do not share vertices. Secondly, if (i, j) ∈ A\M , then either (i, j′) ∈ M
and j′ > j and thus (i, j) → (i, j′) ∈ Sn, or else (i′, j) ∈ M and i′ > i and thus
(i, j)→ (i′, j) ∈ Sn. Thus, M satisfies the conditions that define a kernel. �

Thus we have finally shown that in fact, it is always possible to n-list-color the
graph Sn and thus an (n× n) array.
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