

Einfluss der Wellenangriffsrichtung auf den Wellenauflauf

KFKI - Forschungsprojekt (BMBF KIS 015)

J. Möller, N. Ohle

H. Oumeraci, C. Zimmermann

Inhalt

- Darstellung des allgemeinen Zusammenhangs
- Beschreibung der Modellversuche in Kanada
- Ergebnisse der Kanada-Versuche
- Beschreibung der Modellversuche in Hannover
- Erste Ergebnisse der Hannover-Versuche
- Zusammenfassung der Versuchsergebnisse
- Ausblick auf die weitere Versuchsphase

LWI/FI

Schräger Wellenangriff

Bisherige Vorgehensweise:

R_{u. 2%} : Wellenauflaufhöhe, die von 2% aller ankommenden Wellen überschritten wird

$$\mathsf{R}_{u,2\%} = 1.6 \sqrt{\frac{\mathsf{g}}{2p}} \sqrt{\mathsf{H}_{\mathsf{S}}} \mathsf{T}_{\mathsf{P}} \mathsf{g}_{\mathsf{b}} \mathsf{g}_{\mathsf{q}} \mathsf{g}_{\mathsf{f}}$$

 $\gamma_{\theta} = 1 - 0,0022 \cdot \theta$ für kurzkämmigen Seegang

LWI/FI

- Unsicherheiten über den Einfluss der Wellenangriffsrichtung auf die Wellenauflaufhöhe
- Breite Streuung bei vorhandenen Ansätzen
- Bisher keine physikalische Erklärung für die Erhöhung des Wellenauflaufs infolge schräger Wellenangriffsrichtung und langkämmigen Seegangs

Modellversuche zum schrägen Wellenauflauf

Zielsetzung

 Ermittlung des Einflusses der Kurzkämmigkeit auf den Wellenauflauf

Modellversuche zum Wellenauflauf im Wellenbecken des NRC-CHC in Ottawa Kanada mit kurz- und langkämmigem Seegang und schrägem Wellenangriff an einer 1:6 geneigten Böschung

 Bestimmung des Einflusses der Wellenangriffsrichtung auf den Wellenauflauf

Modellversuche im Wellenbecken des Franzius-Instituts in Hannover mit langkämmigem Seegang und schrägem Wellenangriff für verschiedene Neigungen und Geometrien

Modellversuche in Kanada

Wellenbecken: 50x 30m Wellenbecken des NRC - CHC in Ottawa Kanada

Wellenmaschine: 60 einzeln steuerbare Segmente (je 0,5m breit, 2m hoch) zur Erzeugung von kurz- und langkämmigem Seegang

Modelldeich: 1:6 geneigte 20m lange glatte Böschung

Modellversuche in Kanada - Versuchsaufbau

LWI/FI

Modellversuche in Kanada - Versuchsaufbau

LWI/FI

Die Analyse der Daten aus den Modellversuchen wird unterteilt in 3 Teilaspekte:

- a) Homogenität des Wellenfeldes entlang des Deiches
- b) Bestimmung der a-Werte zum Wellenauflauf
- c) Bestimmung der γ -Werte zum Wellenauflauf

C Variation der Wellenhöhen zwischen 1,4% und 2,0% entlang des Deiches

C Variation der Wellenauflaufhöhen zwischen 1,1% und 3,7% entlang des Deiches

Bestimmung der Wellenauflaufparameter

Ermittlung des Einflusses von schrägem Wellenangriff und kurzkämmigem Seegang auf den Wellenauflauf

Vorgehen: Ermittlung der Koeffizienten a und γ_{θ} anhand der bestehenden Ansätze zum Wellenauflauf

R /
$$H_{m0} = a \xi_{0p}$$
Einfluss der Kurzkämmigkeit $a(\theta) = \gamma_{\theta} a(\theta=0)$ Einfluss der Wellenangriffsrichtung

Ergebnisse zum Einfluss der Wellenangriffsrichtung auf den Wellenauflauf

- C keine generelle Erhöhung des Wellenauflaufs
- C keine signifikanten Unterschiede zwischen kurz- und langkämmigen Versuchen

Modellversuche in Hannover

Wellenbecken des Franzius-Instituts in Hannover, Marienwerder Länge: 45m, Breite: 25m

Wellenmaschine:

Kenndaten:

Hergestellt vom Danish Hydraulics Institute für: Wassertiefe bis max. 0,7m Wellenhöhe bis H=0,45m

bei Wellenperioden bis T = 2,2s

5 Segmente (Breite je 5,0m)

Modelldeich:

glatte geneigte Böschung (derzeit 1:6) Länge: 15m

LWI/FI

Wellenhöhe H_{mo} Versuch: $\mathbf{q} = 30^{\circ}$ langkämmiger Seegang

C Variation der Wellenhöhen zwischen 2,5% und 5,0% entlang des Deiches

Wellenhöhe H_{mo} Versuch: $\mathbf{q} = 30^{\circ}$ langkämmiger Seegang

- ^C Untersuchungen in Hannover
- **C** Untersuchungen in Kanada

LWI/FI

Wellenauflaufhöhe R $_{u2\%}$ Versuch: $\mathbf{q} = 30^{\circ}$ langkämmiger Seegang

C Variation der Wellenauflaufhöhen zwischen 1,0% und 4,1% entlang des Deiches

Wellenauflaufhöhe R $_{u2\%}$ Versuch: $\mathbf{q} = 30^{\circ}$ langkämmiger Seegang

C Untersuchungen in Kanada

LWI/FI

Modellversuche in Hannover - Analyse der Ergebnisse

Modellversuche in Hannover - Analyse der Ergebnisse

Homogenität des Wellenfeldes

Die mittleren Abweichung der untersuchten Parameter (H_{m0}, T_P, R_{u2%}) entlang des Deiches betragen 3% ohne klaren Trend.

Kein signifikanter Einfluss von Rand- und Endeffekten auf die Messergebnisse!

Einfluss der Kurzkämmigkeit

Kein signifikanter Unterschied beim Koeffizienten a zwischen Versuchen mit lang- und kurzkämmigem Seegang, die Unterschiede in der Wellenauflaufhöhe liegen im Bereich der ermittelten Streuungen.

Kein signifikanter Unterschied beim Wellenauflauf für lang-und kurzkämmigen Seegang!

Einfluss des schrägen Wellenangriffs

Erhöhung der Wellenauflaufhöhe für kleine Wellenangriffswinkel maximal in der Größenordnung der Standardabweichungen der Messergebnisse.

Ausblick

- C Detaillierte Auswertung der Versuche (Einfluss von Shoaling, Refraktion, etc.)
- C Langkämmige Wellenauflaufversuche im Wellenbecken des Franzius-Instituts:
 - Einfluss verschiedener Deichprofile (Deichneigung, Berme, Knickprofil)
 - e Einfluss des Wasserstands
 - Erweiterung der Wellenangriffsrichtung
 - @ Ergänzung der Wellensteilheiten

Kontakt

Leichtweiß-Institut der Technischen Universität Braunschweig:

Janine Möller Telefon: +49 / 531 / 391-3985 Telefax: +49 / 531 / 391-8217 e-mail: Ja.Moeller@tu-bs.de

Franzius-Institut der Universität Hannover:

Nino Ohle Telelon: +49 / 511 / 762-4295 Telefax: +49 / 511 / 762-3737 e-mail: Nino.Ohle@fi.uni-hannover.de

