RM₁D

DC-Halbleiterrelais

Vorteile

- Ausgangs-MOSFET mit geringer Verlustleistung
- 100 ADC maximaler Ausgangsstrom bis zu 60 VDC
- 50 ADC maximaler Ausgangsstrom bis zu 200 VDC
- 10 ADC maximaler Ausgangsstrom bis zu 500 VDC
- Schaltfrequenz bis 1000 Hz
- 4-32 VDC Steuerspannungsbereich
- LED-Statusanzeige des Steuereingangs
- Abnehmbare Schutzabdeckung für IP 20
- Selbstabhebende Anschlußklemmen

Beschreibung

Mit der RM1D-Serie erweitert Carlo Gavazzi das Sortiment von DC-Halbleiterlösungen bis zu 100 A für Versorgungsspannungen bis zu 60 VDC, bis zu 50 A für Versorgungsspannungen von maximal 200 VDC und bis zu 10 A für Versorgungsspannungen von maximal 500 VDC. Die neue Serie ist für die Montage auf Schalttafeln sowie zur Montage auf Kühlkörpern geeignet. Die Schaltfunktion des RM1D wird durch eine Gleichspannung im Bereich von 4 bis 32 V gesteuert. Eine LED zeigt das Vorhandensein der Steuerspannung am SSR an.

Das **RM1D** ist die ideale Lösung, wenn die Antwortzeiten der Schaltfunktion, von EIN nach AUS und umgekehrt, für die Anwendung von entscheidender Bedeutung sind. Da es vollständig mit Halbleitern realisiert ist, ist das **RM1D** die erste Wahl für Anwendungen, welche sich durch eine hohe Anzahl von Schaltzyklen auszeichnen, da die Lebensdauer des Halbleiterrelais durch diese Schaltvorgänge nicht beeinträchtigt wird.

Die Spezifikationen beziehen sich auf eine Temperatur von 25°C, soweit nicht anders angegeben.

Anwendungen

Gleichstrom-Heizelemente, Magnetventile, Prüfgeräte, Anschluss und Trennung von Batterien

Ha

Hauptfunktion

- DC-Halbleiterrelais mit einer Isolierspannung von 3750 Vrms zwischen Ein- und Ausgang
- · Schnelle Reaktionszeiten zum ON und OFF
- · Für reibungslosen Betrieb über eine Vielzahl von Schaltzyklen vollständig mit Halbleitern realisiert

Bestellcode

-0				
		_		
	RM1D		ם	
	IXIVIID			۱

Fügen Sie an diesen Stellen die gewünschte Option ein . Beziehen Sie sich auf den Typenwahl für gültige Teilenummern.

Code	Option	Beschreibung	Hinweise
R		Helbleiterreleie /DM\	
M		Halbleiterrelais (RM)	
1		1-polige Schaltung	
D		DC-Schaltung	
	060	Nennspannung: 60 VDC (1-60 VDC)	
	200	Nennspannung: 200 VDC (1-200 VDC)	
	500	Nennspannung: 500 VDC (1-500 VDC)	
D		Steuerspannung: 4-32 VDC	4.5-32 VDC mit RM1D200, RM1D500
	10	Maximaler Nennbetriebsstrom (mit Kühlkörper): 10 ADC	Nicht verfügbar mit RM1D200D
	20	Maximaler Nennbetriebsstrom (mit Kühlkörper): 20 ADC	Nicht verfügbar mit RM1D500D
	50	Maximaler Nennbetriebsstrom (mit Kühlkörper): 50 ADC	Nicht verfügbar mit RM1D500D
	100	Maximaler Nennbetriebsstrom (mit Kühlkörper): 100 ADC	Nur mit RM1D060D erhältlich
HT	-	Vormontiertes Thermopad	Option, verfügbar auf Anfrage

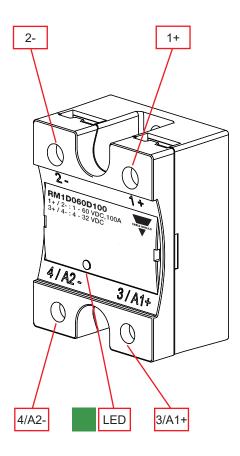
Typenwahl

Nennspannung	Stauaranannung	Maximaler Nennbetriebsstrom*							
	Steuerspannung	10 ADC	20 ADC	50 ADC	100 ADC				
1-60 VDC	4-32 VDC	RM1D060D10	RM1D060D20	RM1D060D50	RM1D060D100				
1-200 VDC	4.5.22.7/DC	-	RM1D200D20	RM1D200D50	-				
1-500 VDC	4.5-32 VDC	RM1D500D10	-	-	-				

^{*} Siehe Tabelle für Kühlkörperauswahl

Mit Carlo Gavazzi kompatible Komponenten

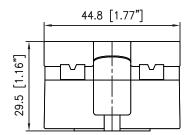
Zweck	Name/Code der Komponente	Hinweise
Kühlkörper	RHS	Kühlkörper und Lüfter
Schraubenkits für Halbleiterrelais- Montage	SRWKITM5X10MM	Packungsinhalt 20 Stck.
Gabelkabelschuh	RM635KP	Packungsinhalt 10 Stck.
Berührungsschutz	RMIP20	Packungsinhalt 10 Stck.
Thermopad	KK071CUT	Packungsinhalt 50 Stck.

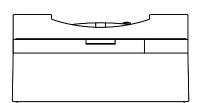

Weitere Dokumente

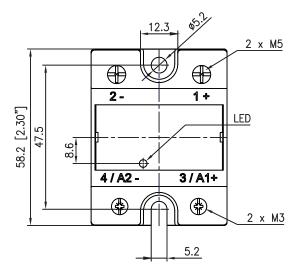
Informationen	Wo finden Sie es
Online-Tool zur Kühlkörperauswahl	http://www.gavazzi-automation.com/nsc/DE/DE/solid_state_relays

Struktur

Element	Komponente	Funktion
1+	Stromanschluss	Lastanschluss oder positiver Versorgungsanschluss
2-	Stromanschluss	Lastanschluss oder Erdungsanschluss
3/A1+	Steueranschlüsse	Versorgungs Signal steuern
4/A2-	Steueranschlüsse	Erdungsanschluss zur Steuerung
LED	Kontrollanzeige	Zeigt das Vorhandensein einer Steuerspannung an




Merkmale


Allgemeines

Material	Noryl, schwarz
Montage	Schalttafel
Berührungsschutz	IP20
Isolierung	Eingang gegen Ausgang gegen Gehäuse: 3750 Vrms Eingang gegen Ausgang: 3750 Vrms
Gewicht	ungefähr 83 g
LED-Anzeige	Grüne LED dauerhaft EIN, wenn Steuerspannung anliegt

Abmessungen

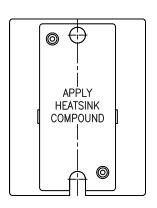
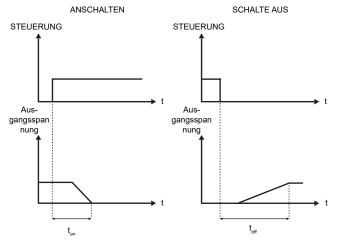


Fig. 1 RM1D Abmessungen

Abmessungen in mm, sofern nicht anders angegeben

Leistung


Ausgänge

		RM1D060				0200	RM1D500		
Nennbetriebsstrom: DC 1 Auslegung	10 ADC	20 ADC	50 ADC	100 ADC	20 ADC	50 ADC	10 ADC		
Absolute maximale Ausgangsspannung		60 V	DC		200 '	VDC	500 VDC		
Betriebsspannungsbereich, Ue		1-60	VDC		1-200 VDC	1-200 VDC (150 VDC*)	1-500 VDC		
Überspannungsschutz im Lastkreis		Integrierte Suppressordioden							
Leckstrom im Sperrzustand bei Nennspannung		0.1 mADC							
Minimaler Laststrom	5 mADC								
Periodischer Überlaststrom UL508: T_{AMB} =40°C, t_{ON} =1 s, t_{OFF} =9 s, 50 Zyklen	15 ADC	30 ADC	75 ADC	150 ADC	30 ADC	75 ADC	15 ADC		

Beachten Sie den Hinweis im Abschnitt "Anschlussbelegung"

Eingänge

	RM1D060	RM1D200 RM1D500			
Steuerspannungsbereich	4-32 VDC	4.5-32 VDC			
Einschaltspannung¹	4 VDC	4.5 VDC			
Ausschaltspannung	1.2 VDC				
Verpolspannung	32 VDC				
Schaltfrequenz	1000) Hz			
Einschaltverzögerungszeit @ V _{out} = 24 VDC, t _{on} ³	≤100	O µs			
Ausschaltverzögerungszeit, t_{off}^{3}	≤100 µs	≤150 µs			
Eingangsstrom bei 40°C	<16 mADC				

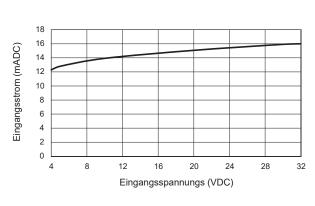


Fig. 2 Reaktionszeitmerkmale

Fig. 3 Eingangsspannungs-Eingangsstrom-Kennlinie

- 1: Die Einschaltspannung steigt auf 5,5VDC bei Umgebungstemperaturen tiefer als -20°C
- 2: Die Verlustleistung des Halbleiterrelais steigt proportional mit der Schaltfrequenz an. Dies führt zu einer Reduzierung des möglichen Schaltstroms(Abschnitt "Strom-Derating und Schaltfrequenz"
- 3: Für niedrige Ausgangsspannungen(<24 VDC) verlängert sich die Reaktionzeit

Strom-Derating und Schaltfrequenz

RM1D060D..

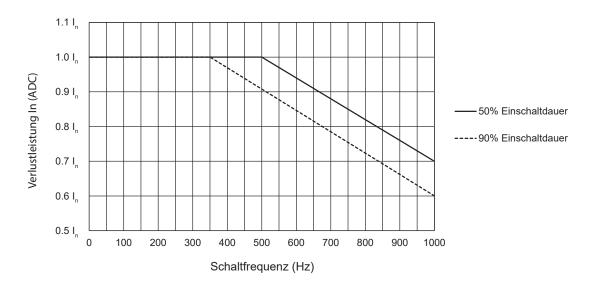


Fig. 4 Strom-Derating und Schaltfrequenz

RM1D200D..

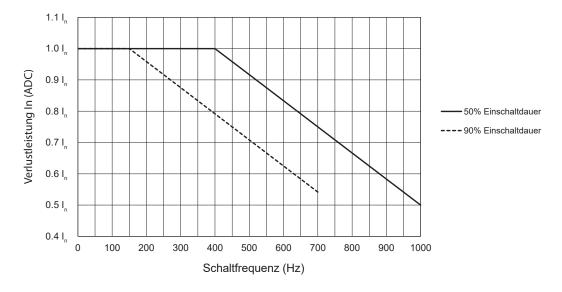


Fig. 5 Strom-Derating und Schaltfrequenz4

Strom-Derating und Schaltfrequenz

RM1D500D..

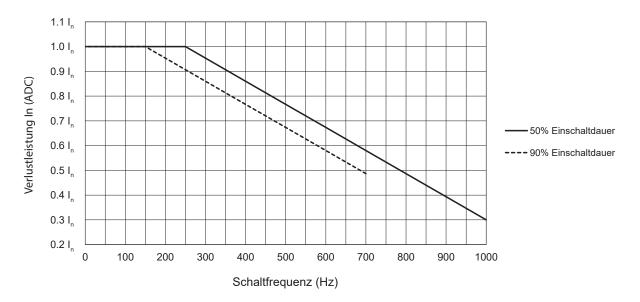


Fig. 6 Strom-Derating und Schaltfrequenz4

- 4. Bei einem Auslastungsgrad von 90 % ist die Schaltfrequenz des RM1D200D.. und RM1D500D.. auf 700 Hz begrenzt. Diese Begrenzung resultiert aus der Antwortzeit beim Abschalten, welche bei diesen Modellen 150 µs beträgt. Beispiel:
 - Bei einer Schaltfrequenz von 800 Hz und einem Auslastungsgrad von 90 % beträgt die Abschaltzeit 125 μs. Dies ist kürzer als die Zeit, welche das SSR zum Abschalten benötigt (150 μs). Daher würde der SSR-Ausgang niemals abgeschaltet werden.
 - Bei einer Schaltfrequenz von 600 Hz und einem Auslastungsgrad von 90 % beträgt die Abschaltzeit 167 μs. Dies ist länger als die Zeit, welche das SSR zum Abschalten benötigt (150 μs).

Verlustleistungskurve

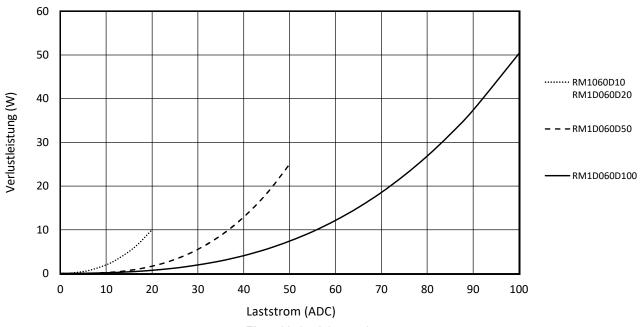


Fig. 7 Verlustleistungskurve

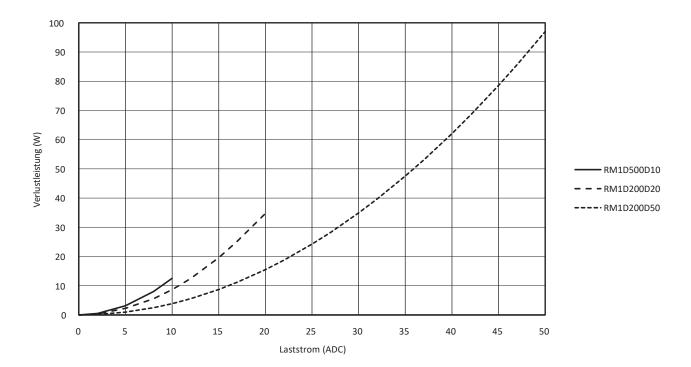


Fig. 8 Verlustleistungskurve

Kühlkörperdimensionierung

Hinweis: Die in den folgenden Tabellen angegebene Kühlkörperdimensionierung gilt nur dann, wenn eine dünne Schicht silikonbasierter Wärmeleitpaste (mit einem ähnlichen thermischen Widerstand wie für R_{thos} im Abschnitt "Thermische Daten" angegeben) eingesetzt wird. Das SSR überhitzt, falls die angegebene Kühlkörperdimensionierung für Kühlkörperkonstruktionen mit einer Wärmeleitpaste genutzt wird, deren R_{thos} höher liegt als im Abschnitt "Thermische Daten" angegeben.

Thermischer Widerstand [°C/W] von RM1D060D10, RM1D060D20

		Umgebungstemperatur [°C]							
Laststrom [A]	20	30	40	50	60	70	80		
20	nh	14.0	9.7	6.4	3.8	1.8	-		
18	nh	nh	14.0	8.9	5.2	2.5	0.25		
16	nh	nh	nh	13.3	7.5	3.5	0.51		
14	nh	nh	nh	nh	11.4	5.1	0.92		
12	nh	nh	nh	nh	nh	8.0	1.6		
10	nh	nh	nh	nh	nh	14.3	2.7		
8	nh	nh	nh	nh	nh	nh	5.0		
6	nh	nh	nh	nh	nh	nh	11.5		
4	nh	nh	nh	nh	nh	nh	nh		
2	nh	nh	nh	nh	nh	nh	nh		

Thermischer Widerstand [°C/W] von RM1D060D50

	Umgebungstemperatur [°C]							
Laststrom [A]	20	30	40	50	60	70	80	
50	4.3	3.3	2.4	1.6	0.9	0.22	-	
45	6.0	4.6	3.4	2.3	1.3	0.47	-	
40	8.8	6.7	4.9	3.3	2.0	0.82	-	
35	14.3	10.3	7.4	5.0	3.0	1.3	-	
30	nh	18.7	12.3	8.0	4.7	2.2	0.18	
25	nh	nh	nh	14.8	8.2	3.8	0.59	
20	nh	nh	nh	nh	17.5	7.2	1.4	
15	nh	nh	nh	nh	nh	18.5	3.2	
10	nh	nh	nh	nh	nh	nh	10.3	
5	nh	nh	nh	nh	nh	nh	nh	

Hinweis: 'nh' bedeutet, dass kein Kühlkörper erforderlich ist. Trotzdem sollte das Halbleiterrelais an einer Fläche befestigt werden, um optimale Wärmeableitung zu gewährleisten

Kühlkörperdimensionierung (Forts.)

Thermischer Widerstand [°C/W] von RM1D060D100

		Umgebungstemperatur [°C]							
Laststrom [A]	20	30	40	50	60	70	80		
100	1.8	1.4	1.1	0.73	0.4	-	-		
90	2.4	1.9	1.5	1.0	0.6	0.21	-		
80	3.3	2.7	2.0	1.4	0.88	0.37	-		
70	4.8	3.8	2.9	2.1	1.3	0.61	-		
60	7.6	5.9	4.4	3.1	2.0	0.98	-		
50	14.0	10.2	7.4	5.1	3.2	1.6	0.27		
40	nh	nh	15.5	9.9	5.9	2.9	0.64		
30	nh	nh	nh	nh	14.2	6.3	1.5		
20	nh	nh	nh	nh	nh	nh	4.2		
10	nh	nh	nh	nh	nh	nh	nh		

Thermischer Widerstand [°C/W] von RM1D200D20

		Umgebungstemperatur [°C]					
Laststrom [A]	20	30	40	50	60	70	80
20	3.4	2.8	2.2	1.7	1.2	0.71	0.27
18	4.8	3.9	3.1	2.4	1.7	1.1	0.53
16	7.1	5.7	4.5	3.4	2.5	1.7	0.91
14	11.5	9.0	6.9	5.2	3.8	2.6	1.5
12	nh	16.1	11.7	8.5	6.1	4.1	2.4
10	nh	nh	nh	16.3	10.6	6.7	3.9
8	nh	nh	nh	nh	nh	13.5	7.0
6	nh	nh	nh	nh	nh	nh	17.5
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Thermischer Widerstand [°C/W] von RM1D200D50

		Umgebungstemperatur [°C]					
Laststrom [A]	20	30	40	50	60	70	80
50	1.1	1.0	0.79	0.60	0.42	0.24	-
45	1.6	1.4	1.1	0.86	0.62	0.39	0.17
40	2.3	1.9	1.6	1.2	0.92	0.62	0.33
35	3.4	2.8	2.3	1.8	1.4	1.0	0.55
30	5.3	4.4	3.5	2.8	2.1	1.5	0.92
25	9.3	7.5	5.9	4.6	3.4	2.4	1.5
20	nh	16.5	11.9	8.7	6.2	4.2	2.5
15	nh	nh	nh	nh	15.6	9.2	5.1
10	nh	nh	nh	nh	nh	nh	17.5
5	nh	nh	nh	nh	nh	nh	nh

Hinweis: 'nh' bedeutet, dass kein Kühlkörper erforderlich ist. Trotzdem sollte das Halbleiterrelais an einer Fläche befestigt werden, um optimale Wärmeableitung zu gewährleisten

Kühlkörperdimensionierung (Forts.)

Thermischer Widerstand [°C/W] von RM1D500D10

	Umgebungstemperatur [°C]						
Laststrom [A]	20	30	40	50	60	70	80
10	10.7	8.3	6.4	4.7	3.3	2.2	1.1
9	17.0	12.6	9.4	6.8	4.8	3.1	1.7
8	nh	nh	14.8	10.4	7.2	4.6	2.6
7	nh	nh	nh	17.3	11.1	7.0	4.1
6	nh	nh	nh	nh	nh	11.3	6.1
5	nh	nh	nh	nh	nh	nh	10.2
4	nh	nh	nh	nh	nh	nh	nh
3	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh
1	nh	nh	nh	nh	nh	nh	nh

Kühlkörper Auswahl für Versionen mit vormontiertem Thermopad

Anmerkung: Die Kühlkörpertabelle unten gilt für Modelle mit vormontiertem Thermopad(RM1D..HT). Der thermische Widerstand Rthcs_HT des Pads ist im Datenblatt nachzulesen (siehe. KK071CUT). Im Falle eines Austausches ist sicher zu stellen, das das neue Thermopad den gleichen oder einen kleineren thermischen Widerstand hat.

Thermischer Widerstand [°C/W] of RM1D060D10HT, RM1D060D20HT

	Umgebungstemperatur [°C]						
Laststrom [A]	20	30	40	50	60	70	80
20	nh	13.7	9.3	6.0	3.5	1.4	-
18	nh	nh	13.7	8.6	4.9	2.1	-
16	nh	nh	nh	12.9	7.1	3.1	0.16
14	nh	nh	nh	nh	11.0	4.7	0.57
12	nh	nh	nh	nh	19.8	7.6	1.2
10	nh	nh	nh	nh	nh	14.0	2.3
8	nh	nh	nh	nh	nh	nh	4.7
6	nh	nh	nh	nh	nh	nh	11.1
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Hinweis: 'nh' bedeutet, dass kein Kühlkörper erforderlich ist. Trotzdem sollte das Halbleiterrelais an einer Fläche befestigt werden, um optimale Wärmeableitung zu gewährleisten

Kühlkörper Auswahl für Versionen mit vormontiertem Thermopad (cont.)

Thermischer Widerstand [°C/W] of RM1D060D50HT

	Umgebungstemperatur [°C]						
Laststrom [A]	20	30	40	50	60	70	80
50	4.0	3.0	2.1	1.3	0.55	-	-
45	5.7	4.3	3.0	2.0	1.0	0.12	-
40	8.5	6.3	4.5	3.0	1.6	0.47	-
35	13.9	10.0	7.0	4.6	2.6	1.0	-
30	nh	18.3	12.0	7.6	4.4	1.9	-
25	nh	nh	nh	14.4	7.8	3.4	0.24
20	nh	nh	nh	nh	17.2	6.8	1.0
15	nh	nh	nh	nh	nh	18.2	2.9
10	nh	nh	nh	nh	nh	nh	10.0
5	nh	nh	nh	nh	nh	nh	nh

Thermischer Widerstand [°C/W] of RM1D060D100HT

		Umgebungstemperatur [°C]					
Laststrom [A]	20	30	40	50	60	70	80
100	1.4	1.1	0.71	0.38	-	-	-
90	2.1	1.6	1.1	0.66	0.25	-	-
80	3.0	2.3	1.7	1.1	0.53	-	-
70	4.5	3.5	2.6	1.7	1.0	0.26	-
60	7.3	5.5	4.1	2.8	1.6	0.63	-
50	13.6	9.9	7.1	4.8	2.9	1.3	-
40	nh	nh	15.1	9.5	5.5	2.6	0.29
30	nh	nh	nh	nh	13.8	6.0	1.1
20	nh	nh	nh	nh	nh	nh	3.8
10	nh	nh	nh	nh	nh	nh	nh

Thermischer Widerstand [°C/W] of RM1D200D20HT

		Umgebungstemperatur [°C]					
Laststrom [A]	20	30	40	50	60	70	80
20	3.0	2.4	1.8	1.3	0.82	0.36	-
18	4.4	3.5	2.7	2.0	1.4	0.74	0.18
16	6.7	5.3	4.1	3.1	2.1	1.3	0.56
14	11.2	8.7	6.6	4.9	3.4	2.2	1.1
12	nh	16.2	11.7	8.4	5.8	3.7	2.1
10	nh	nh	nh	16.4	10.6	6.8	3.9
8	nh	nh	nh	nh	nh	13.7	7.1
6	nh	nh	nh	nh	nh	nh	17.7
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Hinweis: 'nh' bedeutet, dass kein Kühlkörper erforderlich ist. Trotzdem sollte das Halbleiterrelais an einer Fläche befestigt werden, um optimale Wärmeableitung zu gewährleisten

Kühlkörper Auswahl für Versionen mit vormontiertem Thermopad (cont.)

Thermischer Widerstand [°C/W] of RM1D200D50HT

		Umgebungstemperatur [°C]					
Laststrom [A]	20	30	40	50	60	70	80
50	0.84	0.64	0.44	0.25	-	-	-
45	1.3	1.0	0.76	0.51	0.27	-	-
40	2.0	1.6	1.2	0.89	0.57	0.27	-
35	3.0	2.5	2.0	1.5	1.0	0.60	0.20
30	4.9	4.0	3.2	2.4	1.8	1.1	0.57
25	9.2	7.3	5.7	4.3	3.1	2.1	1.2
20	nh	16.5	12.0	8.7	6.2	4.2	2.5
15	nh	nh	nh	nh	15.7	9.3	5.2
10	nh	nh	nh	nh	nh	nh	17.8
5	nh	nh	nh	nh	nh	nh	nh

Thermischer Widerstand [°C/W] of RM1D500D10HT

		Umgebungstemperatur [°C]					
Laststrom [A]	20	30	40	50	60	70	80
10	10.4	8.0	6.0	4.4	3.0	1.8	0.76
9	16.8	12.3	9.0	6.5	4.4	2.8	1.4
8	nh	nh	14.8	10.1	6.8	4.3	2.3
7	nh	nh	nh	17.4	11.2	6.9	3.7
6	nh	nh	nh	nh	nh	11.4	6.1
5	nh	nh	nh	nh	nh	nh	10.4
4	nh	nh	nh	nh	nh	nh	nh
3	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh
1	nh	nh	nh	nh	nh	nh	nh

Hinweis: 'nh' bedeutet, dass kein Kühlkörper erforderlich ist. Trotzdem sollte das Halbleiterrelais an einer Fläche befestigt werden, um optimale Wärmeableitung zu gewährleisten

Thermische Daten

	RM1D060D10 RM1D060D20 RM1D060D50	RM1D060D100	RM1D200D20	RM1D200D50	RM1D500D10
Max. Sperrschichttemperatur	175°C	175°C	150°C	150°C	150°C
Wärmewiderstand Chip zu Gehäuse, R _{thjc}	1.2°C/W	0.6°C/W	0.9°C/W	0.45°C/W	1.5°C/W
Wärmewiderstand Gehäuse gegen Kühlkörper, R _{thcs} ⁵	0.2°C/W	0.2°C/W	0.1°C/W	0.1°C/W	0.2°C/W
Wärmewiderstand Gehäuse gegen Kühlkörper, (RM1DHT), R _{thcs_HT} ⁶	0.55°C/W	0.55°C/W	0.55°C/W	0.55°C/W	0.55°C/W

- 5: Werte für Wärmewiderstand Gehäuse gegen Kühlblech gelten bei Auftrag eines dünnen Silikonfilms in Form von Wärmepaste HTS02S von Electrolube zwischen SSR und Kühlblech.
- 6: Thermal resistance case to heatsink values for RM1D..HT are applicable for the KK071CUT thermal pad that is preattached from the factory to the RM1D.

Carlo Gavazzi Ltd. 14 24/07/20 RM1D DS DE

► Kompatibilität und Konformität

Zulassungen	
Normen	LVD: EN/IEC 60947-1 EMCD: EN/IEC 61000-6-4, EN/IEC 61000-6-2 UR: UL508, E80573, NRNT2 cUR: CSA 22.2 No.14-18, E80573, NRNT8
Kurzschlussstromfestigkeit (SCCR)	5 kArms

Elektromagnetische Verträglichk	ceit (EMV) - Störfestigkeit
Störanfälligkeit gegen die Ent- ladung statischer Elektrizität	EN/IEC 61000-4-2 8 kV Luftentladung, 4 kV Kontakt (PC2)
Störfestigkeit gegen hochfrequente elektromagnet. Felder	EN/IEC 61000-4-3 10 V/m, von 80 MHz bis 1 GHz (PC1) 10 V/m, von 1 GHz bis 2.7 GHz (PC1)
Störfestigkeit gegen schnelle transiente elektrische Störgrößen / BURST	EN/IEC 61000-4-4 Lastkreis 5 kHz, 100 kHz: 2 kV (PC2) Steuerkreis 5 kHz, 100 kHz: 1 kV (PC2)
Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	EN/IEC 61000-4-6 10 V/m, von 0.15 bis 80 MHz (PC1)
Störfestigkeit gegen Störspannungen	EN/IEC 61000-4-5 Lastkreis, Leitung auf Leitung: 1 kV (PC2) Lastkreis, Leitung an Erde: 1 kV (PC2) Steuerkreis, Leitung an Erde: 1 kV (PC2)
Störfestigkeit gegen Spannungseinbrüche	EN/IEC 61000-4-11 0% für 10, 20, 5000 ms (PC2) 40% für 200 ms (PC2) 70% für 500 ms (PC2) 80% für 5000 ms (PC2)
Spannungseinbrüche, kurze Unterbrechungen und Span- nungsschwankungen	EN/IEC 61000-4-29 0% für 1, 3, 10, 30, 100, 300, 1000 ms (PC2) 30% für 10, 30, 100, 300, 1000 ms (PC2) 40% für 10, 30, 100, 300, 1000 ms (PC2) 60% für 10, 30, 100, 300, 1000 ms (PC2) 70% für 10, 30, 100, 300, 1000 ms (PC2) 80% auf min. 19.2 VDC für 10, 30, 100, 300, 1000, 3000, 10000 ms (PC2) 120% auf min. 29.8 VDC für 10, 30, 100, 300, 1000, 3000, 10000 ms (PC2)

Elektromagnetische Verträglichkeit (EMV) - Störaussendung						
ISM - Geräte - Funkstöreigen- schaften; Grenzwerte und Messverfahren (ausgestrahlt)	EN/IEC 55011 Class B: from 0.15 to 30 MHz					
ISM - Geräte - Funkstöreigen- schaften; Grenzwerte und Messverfahren (leitungsgefüh- rte)	EN/IEC 55011 Class B: from 30 MHz to 1 GHz					

Hinweis:

- Leistungskriterien 1 (PC1): Leistungsminderungen oder Funktionsverluste sind nicht zulässig, wenn das Produkt bestimmungsgemäß betrieben wird.
- Leistungskriterien 2 (PC2): Während des Tests sind Leistungsminderungen oder teilweise Funktionsverluste zulässig. Nach Abschluss des Tests muss das Produkt aber selbstständig in den bestimmungsgemäßen Betrieb übergehen.

Umgebungsbedingungen

Betriebstemperatur	-20°C bis 80°C (-4°F bis 176°F)					
Lagertemperatur	emperatur -40°C bis +100°C (-40°F bis +212°F)					
Relative Luftfeuchtigkeit	tigkeit 95% nicht kondensierend bei 40°C					
Verschmutzungsgrad	2					
Installationshöhe	0–1.000 m. Oberhalb von 1.000m fällt die Leistung bis zu einer Maximalhöhe von 2.000 m linear um 1 % des Einschaltstroms pro 100 m ab.					
Schwingungsfestigkeit	2 g / Achsen					
EU RoHS-konform	Ja					
China RoHS	25					

Die Erklärung in diesem Abschnitt ist in Übereinstimmung mit dem Standard der Volksrepublik China Electronic Industry Standard SJ/T11364-2014 erstellt: Kennzeichnung für den eingeschränkten Einsatz gefährlicher Stoffe in elektronischen und elektrischen Produkten.

	Giftige oder gefährliche Stoffe und Elemente							
Name des Bauteils	Blei (Pb)	Merkur (Hg)	Cadmium (Cd)	Sechswertiges Chrom (Cr(VI)	Polybromierte Biphenyle (PBB)	Polybromierte Diphenylether (PBDE)		
Montage der Aggregate	х	0	0	0	0	0		

O: Zeigt an, dass der genannte gefährliche Stoff, der in homogenen Materialien für diesen Teil enthalten ist, unterhalb der Grenzwertanforderung von GB/T 26572 liegt.

X: Zeigt an, dass der in einem der für diesen Teil verwendeten homogenen Materialien enthaltene gefährliche Stoff über der Grenzwertanforderung von GB/T 26572 liegt.

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014: 标注在电子电气产品中限定使用的有害物质

	有毒或有害物质与元素						
零件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(Vl))	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)	
功率单元	х	0	0	0	0	0	

O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。

X: 此零件某种材料中含有的该有害物高于GB/T 26572的限定。

Kurzschlussschutz

Art. Nr.	Unbeeinflusster Kurzschlussstrom [kArms]	Ferraz Shawmut (Mersen)			Siba		
		Max. Größe [A]	Art. Nr.	Spannung [VDC]	Max. Größe [A]	Art. Nr.	Spannung [VDC]
RM1D060D10		15	A4J15	300	16	5019006.16	660
RM1D060D20		25	A4J25		25	5019006.25	
RM1D060D50		70	A4J70		63	5019006.63	
RM1D060D100	5	125	A4J125		125	5019006.125	440
RM1D200D20		25A	HSJ25		25	5019006.25	
RM1D200D50		70A	HSJ70	500	63	5019006.63	660
RM1D500D10		15A	HSJ15		16	5019006.16	

18

Anschlussschaltpläne

Fig. 9 RM1D-Anschlussschaltpläne

Bei Gleichspannungsanlagen wirken die Leitungen der Versorgungsspannung als Spule. Dies kann beim Schalten der Last zu Spannungsspitzen führen, welche die Nennspannung des SSR überschreiten und somit Schäden am SSR hervorrufen. Der Ausgang RM1D ist durch einen integrierten Transil geschützt. Dieses integrierte Bauteil ist jedoch nicht für dauerhafte Nutzung ausgelegt, wie sie in Situationen mit wiederkehrenden Spannungsspitzen auftreten kann (zum Beispiel bei hohen Schaltfrequenzen). In diesem Fall wird der integrierte Transil vorzeitig ausfallen. Beim Betrieb der Modelle **RM1D200D.**. und **RM1D500D.**. mit Schaltfrequenzen > 1 Hz wird daher dringend empfohlen, am SSR-Ausgang wie in Abb. 9 dargestellt einen Kondensator C anzuschließen, um den SSR-Ausgang vor Beschädigungen durch unkontrollierte Spannungsspitzen zu schützen. Die Dimensionierung des Kondensators C richtet sich nach der Länge der Leitungen in der Anlage, dem Abstand zwischen den Leitungen und dem Kabelquerschnitt. Die Leitungslängen sollten so kurz wie möglich gehalten werden.

Wenn die Spannungsspitzen kontrolliert werden können und sichergestellt ist, dass sie die absolute maximale Nennspannung des SSR keinesfalls überschreiten, ist der Kondensator C nicht erforderlich (auch nicht bei hohen Schaltfrequenzen).

ACHTUNG!

Speziell beim **RM1D200D50** muss die absolute maximale Ausgangsspannung des SSR auf 150 VDC begrenzt werden, falls wie oben beschrieben aufgrund der hohen Schaltfrequenz ein Kondensator C notwendig ist.

Empfohlene Werte für C bei einer Anlage mit einer Gesamtleitungslänge von 5 m und einem Abstand von 0,1 mm zwischen den Leitungen:

- •330 nF beim RM1D200D20 mit Maximalwerten von 200 VDC, 20 ADC und einem Kabelguerschnitt von 2,5 mm²
- •680 nF in Reihe mit 1 Ω (10 W) beim **RM1D200D50** mit Maximalwerten von 150 VDC, 50 ADC und einem Kabelquerschnitt von 10 mm²
- •68 nF beim RM1D500D10 mit Maximalwerten von 500 VDC, 10 ADC und einem Kabelquerschnitt von 2,5 mm²

Die Nennspannung des Kondensators muss 2 × Betriebsspannung der Anlage betragen. Falls Sie andere Kabellängen und Werte verwenden, setzen Sie sich mit Ihrem Carlo-Gavazzi-Vertriebspartner in Verbindung.

^{*} Bei induktiven Lasten ist eine Suppressordiode D erforderlich.

^{**}Gilt nur für RM1D200.. und RM1D500..

Funktionsdiagramm

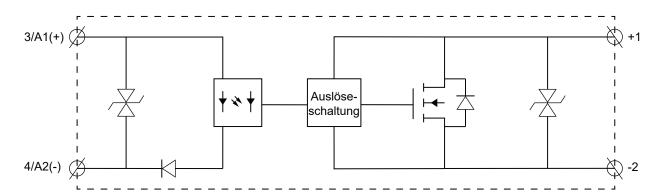


Fig. 10 RM1D Funktionsdiagramm

Installationsanleitung

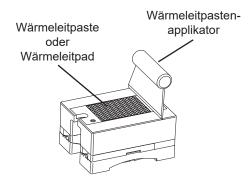


Fig. 11 Vor der Montage auf dem Kühlkörper muss auf der Grundfläche des SSR eine dünne Schicht wärmeleitender Silikonpaste gleichmäßig aufgetragen werden. Alternativ kann ein Wärmeleitpad eingesetzt werden. Das Material der Wärmekontaktfläche beeinflusst die thermische Leistungsfähigkeit. Stellen Sie sicher, dass der Kühlkörper ausreichend dimensioniert ist.

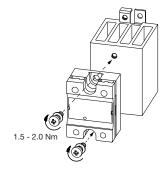


Fig. 12
Befestigungsschrauben M5
abwechselnd bis max. 0.5 Nm
anziehen und anschließend bis
max. 2.0 Nm fortsetzen. (Der
Einsatz von Unterlegscheiben
mit Sprengring ist zu
empfehlen), siehe Zubehör
(Schraubenkits).

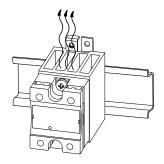


Fig. 13 Kühlkörper mit Kühlrippen in vertikaler Richtung montieren, um ungehinderten Luftstrom durch den Kühlkörper zu gewährleisten.

19

Anschlusseigenschaften

	1+	, 2-	3/A1+, 4/A2-			
Befestigungsschrauben (Halbleiterrelais gegen Kühlkörper)	M5, nicht im Lieferumfang des Halbleiterrelais enthalten (Zubehör: siehe SRWKITM5X10MM im Abschnitt "Referenzen")					
Befestigungsdrehmoment (Halbleiterrelais gegen Kühlkörper)	1.5 - 2.0 Nm (13.3 - 17.7 lb-in)					
Anschlüßleitungen	Kupferleitung 75°0	C (Cu) verwenden	Kupferleitung 60/75°C (Cu) verwenden			
Abisolierlänge, X	12 mm		8 mm			
Anschlusstyp	M5-Schraube mit Klemmscheibe	selbstabhebender	M3-Schraube mit selbstabhebender Klemmscheibe			
Starr (massiv und mehrdrahtig) UR/CSA-Nenndaten	1x 2.5 - 6.0 mm ² 2x 2.5 - 6.0 mm ² 1x 14 - 10 AWG 2x 14 - 10 AWG		1x 0.5 - 2.5 mm ² 1x 18 - 12 AWG	2x 0.5 - 2.5 mm ² 2x 18 - 12 AWG		
Flexibel mit Aderenhülse	1x 1.0 - 4.0 mm² 1x 18 - 12 AWG	2x 1.0 - 2.5 mm ² 2x 2.5 - 4.0 mm ² 2x 18 - 14 AWG 2x 14 - 12 AWG	1x 0.5 - 2.5 mm² 1x 18 - 12 AWG	2x 0.5 - 2.5 mm ² 2x 18 - 12 AWG		
Flexibel ohne Aderenhülse	1x 1.0 - 6.0 mm ² 1x 18 - 10 AWG	2x 1.0 - 2.5 mm ² 2x 2.5 - 6.0 mm ² 2x 18 - 14 AWG 2x 14 - 10 AWG	-	-		
Drehmomentangabe (+)	Pozidrive 2 2.4 Nm (21.2 lb-in)	Pozidrive 1 0.5 Nm (4.4 lb-in)			
Max. Ringgabel- oder Ringösendurchmesser	12 mm		7.5 mm			

COPYRIGHT ©2020

Der Inhalt kann geändert werden. PDF-Download: www.gavazziautomation.com