
·~ „ '
" / '

Interner Bericht

Fachbereich Informatik

Universität Kaiserslautern · Postfach 3049 · D-6750 Kaiserslautern

. ' . '

ON HOW TO CONSTRUCT EFFICIENTLY

PARSABLE GRAMMARS

by

Pete4 Schl~cht~ge4

'l'l/80 Feb4ua41J 1980

ON HOW TO CONSTRUCT EFFICIENTLY PARSABLE GRAMMARS

by

Peter Schlichtiger

Universität Kaiserslautern

Fachbereich Informatik

D- 6750 Kaiserslautern

Federal Republic of Germany

1. Introduction

All grammar classes, parser-generators have so far been built for, share

two important properties:

1) an efficient parser can be generated for any grammar of the class

and

2) all language features commonly appearing in programming languages

can be described (as far as they can at all be described by a

context-free granunar) •

Taking the view-point of an user of parser-generators, one further

prope~ty will be of importance:

3) given some language, it should be easy to construct a grammar of

the required type for it.

Although very desirable, this third requirement is only very poorly

met by the wellknown grarornar classes used for parser-generators.

There are different reasons for this. The main reason seems to be either

a too restricted grammar class (this for instance is the main reason

why the construction of a LL(l)-grammar can become very cumbersome),

or a definition, which is too complex to guide the construction of a

granunar (this for instance is true for LR(1) -grammars).

Partitioned chain grammars, like all grammars used for parser-generators,

satisfy the above requirements 1) and 2) (see [Schlichtiger2,3 79)).

They dif fer from these classes in their response to the third require­

ment. Partitioned chain grarrunars define a large grammar class and po­

ssess an intelligible definition as well. They will therefore be easier

to construct than one of the other types of grammars.Yet,the construc­

tion of a partioned chain grannnar will of course not be trivial. That

is why this paper introduces several algorithms to support their con-

- 2 -

struction.

Section 2 of this paper gives a formal definition of partitioned chain

grammars and section 3 states some results on the graromar- and language

class. Section 4 introduces several algorithms and shows, how these

can be used to ease the construction of a partitioned chain grarnmar.

The reader is assumed to be familiar with the basic concepts of context­

free grammars and parsing as described in [Aho.Ullman 72] .

A context-free grammar (abbreviated cfg) is denoted by G=(N,T,P,S),

where - N is the set of nonterminals (denoted by A,B,C,D, ...)

- T is the set of terrninals (denoted by a,b,c,d, ...)

- P is the set of productions

- S E N is the startsymbol

N U T is denoted by V , the elernents of which will be denoted by X,Y,Z.

Elements of T* will be denoted by u,v,w,x,y,z; elements of v* by a,ß,y,

6, The symbol l is reserved for the empty word.

2. Definitions

The definition of a grammar, which is supposed tobe understood easily,

must avoid using complex structures like derivations. Basing a grammar

definition on too simple structures will on the other hand severly re­

strict the granunar class defined. In this situation chains (first

introduced by A.Nijholt in [Nijholt 77)) realize a good compromise.

The example of partitioned chain grammars will show, that chains,

although they are a much simpler structure than derivations, permit

the definition of large gramrnar classes.

DEFINITION: (chain)

Let G=(N,T,P,S) be a cfg.

If X E V , then CH(X) , the set of chains of X , is defined by
0 0

CH(X) ={<X , ..• ,X>
o o n n~p, X ..• X l E N*, XE (Nl.rrU{i}) and

o n- n

X => X o => ••• ~ X CJ , o. E V* , l~i~n }
o L 1 1 L L n n i

Note, that chains, as they are defined here, differ from the chains de­

fined by A.Nijholt in that they may contain a nonterminal or E as their

last element. Furthermore note, that <E> is not a chain.

- 3 -

A very i mportant notion in connection with the definition of partitioned

chain grammars i s that of a k-follow set of a chain.

DEFINITION: (k-follow set o f a chain)

Let G=(N,T,P,S) be a cfg and

Furthermore let A -+ pxo be a

be a chain in CH(X) and let

global follow set of A Then

let - be an equivalence relation on

production in P, let TT =<X , ••• ,X >
o n

Fk(A) be a subset of followk (A) ,

• ,..LX a , a. E v*, l~i~n
n n l.

the

}

N.

is called the k-follow set of chain n with respect to A-+JJ!O

the underlined symbol marks the beginning of cha in TT

,where

Although this definition might seem a little complicated at first sight,

it actually describes a quite simple relationship between a lookahead

of k symbols and a chain. This relationship is depicted in the follow­

ing figure

s

Figure 2.1

V
.X y z

* * * * where p ,.. u , X „ v , a ~ x , a • y , z E follow(A) and
n n

Different chains, which may appear in a similar context, must to a cer­

tain extend be distinguishable on account of the lookahead. The follow­

ing definition describes exactly which differences have to be recogniced.

DEFINITION: (canflict chain)

Let G=(N,T,P,S) be a cfg and let = be an equivalence relation on N.

Two chai ns TTl =<X , ... ,X> E CH{X) , TT 2 = <Y , ••• ,Y > E CH{Y) ,X ,Y E V,
o n o o ro o o o

- 4 -

are called conflict chains (with respect to -) of ty2e

~ iff n,m>o and X = y and X
n-1 "1- Ym-1 n m

b) iff n=O , m>O and X = y
n m

c) iff X ET and y = f.
n m

DEFINITION: (PC(k)-grammar)

Let G=(N,T,P,S) be a cfg and let k~ O be an integer.

The augmented grammar for G is defined to be the grammar

G = (NU{S'},TU{ß},PU{S'+ßS},S'), where ß is not in T and S' is a
not in N.

G is a i:artitioned ~hain grammars with k symbols lookahead (abbreviated

PC(k)-grammar) iff there is an equivalence relation = on NU{S'}, such

that the following conditions hold for G a

1) if A-+pXcr , B+pYcr E(PU{S'+~S}) ,p#E and A - B then

·\

a) fk(n 1 ,cr,followk(A)) n fk(n 2 ,cr,followk(B)) = ~
for any two conflict chains n

1
E CH(X), n

2
E CH(Y) of type a) or b)

and

b) firstk(a fk(n 1 ,a,followk(A)) n fk(n 2 ,cr,followk(B)) = ~

for any two conflict chains n
1

E CH(X), n
2

E CH(Y) of type c),

where n
1

= <X, •.. ,a> ,a ET.

2) if A+p and B-+pcr ,A = B, are different productions in P then

followk(A) n firstk(cr followk(B)) = ~-

The class of PC(k)-grammars can be extended by paying closer attention

to the context a production appears in in the derivation tree. As will

be seen in the sequel,the right-context a of a production A+pXcr

in some rightmost derivation * S 'it aAz 'it apXcrz serves our purpose best.

By making use of the right-context of a production the definition of

PC (k)-grannnars can be changed tir; the definition of what will be called

an EPC(k)-graramar (abbreviation for ~xtended PC(k)-grammar). Both

definitions will actually only differ in the follow sets they use.

Instead of considering the global follow set of the left-hand side of

a production, the definition of EPC(k)-grammars will use follow sets,

which also depend on the right-context of the production. These

follow sets will therefore be called contextdependent.

- 5 -

DEFINITION: (contextdependent fol.low set)

Let G=(N,T,P,S) be a cfg and let k>O = be an integer.

The contextdependent k-follow set of a nonterminal A with respect to

the right-context ~ (abbreviated cdfk(a,A)) is defined by

cdfk(a,A) = {y 1 S f aAz and y = k(z) }

REMARK :

cdfk(a,A) = ~ if there is no rightmost derivation such that a is

a valid right-context of A.

- cdfk(a,A) c followk(A)

The definition of EPC(k)-grammars is now attained by replacing every

global follow set by contextdependent follow sets as shown below.

DEFINITION: (EPC (k) -grammar)

Let G=(N,T,P,S) be a cfg and let k~p be an integer.

The augmented grammar G
a

is defined as in the definition of PC(k)-

grammars.

G is an EPC(k)-grarnmar iff there is an equivalence relation _ on NU{S'},

such that the following conditions hold for G
a

1) if A~pxo , B+pYa E (PU{s'~ßS}) ,p~E and A - B , then

2)

a) fk(n 1 ,o,cdfk(a,A)) n fk(n 2 ,a,cdfk(a,B)) = ~

and

b)

if

for any two conflict chains n
1

E CH(X) , n
2

E CH(Y) of type a) or b)

and any a E(ßV*U{E})

firstk(a fk(n 1 ,o,cdfk(a,A)) n fk(n 2 ,o,cdfk(a,B)) = 0
for any two conflict chains n l E CH (X) , n

2
E CH(Y) of type c) ,

where TI l =<X, •.. , a> ,a E T, and any a E (ßV*U{ e:})

A-+p and a+pcr ,A :::; B, are different productions in P then

for any a E(bV*U{E})

3. Partitioned chain grammars and languages

The definition of PC(k)-grarnmars gives the constructor of a grammar a

much better understanding of how his graromar should look like than for

instance the definition of LR(k)-grammars. It would nevertheless be

rather difficult to construct a PC(k)-grammar if very many different

conflict chains would have to be considered. Luckily this will however

- 6 -

not be the case with grammars for prograrnming languages. The chains

that have to be considered in such grarnmars are on the contrary

rather short (an average length of about 3 or 4 should be

realistic). There are mainly two reasons for this:

1) Only chains, which do not contain any nonterminal more than

k+l times (k,the length of the lookahead, will usually be 1)

have to be examined.

Note, that this implies that PC(k)-grammars may contain left re­

cursive nonterminals for k>O.

2) The constructor of a grammar will use a certain nonterminal in a

very limited environment only; he would otherwise run the risk

of losing overview over his grammar. Chains will therefore hardly

contain very many different nonterminals.

The following theorems show, that PC(k)- and EPC(k)-grammars form

a large grammar- and language class compared to other classes used

for parser-generators. The corresponding proofs have been omitted in

this paper for the sake of brevity •

. THEOREM 3 • 1

1) The class of EPC(k)-grammars properly contains the class of PC(k)­

grammars for any k>O. Both classes coincide for k=O.

2) The class of LL(k)-grammars is a proper subset of the class of

EPC(k)-grammars and the class of PC(k)-grammars properly contains

all streng LL(k)-grammars.

3) The class of simple chain grammars (see [Nijholt 77,78]) is a

proper subset of the cla.ss of PC (0) -grammars. It is equal to the

class of all ~-free PC(O)-grammars with respect to the equivalence

relation

4) The partitioned LL(k)-gramrnars (see [Friede 79]), which are an ex­

tension of the strict deterministic grammars (see [Harrison,Havel

73]), are a proper subset of the class of PC(k)-grammars.

5) The class of predictive LR(k)-gramroars (see [Soisalon,Ukkonen 76]) is

a proper subset of the class of all EPC(k)-grarnmars. It is

equal to the class of all EPC(k)-grammars with respect to the

equivalence relation =

6) Every EPC(k)-granunar is LR(k).

- 7 -

THEOREM 3.2

1) For every k>O the class of EPC(k)-grammars generates the same language

class as the class of PC(k)-grammars.

2) The PC(O)-grammars generate all deterministic prefix-free context­

free languages.

3) For any k~l the class of PC(k)-grammars generates all the deter­

ministic context-free languages.

4) For every k~l PC(k)-grammars with respect to the equivalence re­

lation = generate exactly all LL(k)-languages.

4. Supporting the construction of partitioned chain grammars

The preceding chapters showed, that partitioned chain grammars form a

large grammar class and possess a comprehensible definition as well.

It should therefore in general be easier to construct a partitioned

chain grammar than some other type of grammar, which does not share

this property. This advantage of partitioned chain grammars can be

increased further by combining the advantage of the simple defini-

tion of PC(k)-grammars with respect to the equivalence relation = with

the advantage of the larger grammar class of general PC(k)-grammars

or even EPC(k)-grammars in the following manner:

Let k=1 , as this is the only case of any practical relevance.

The constructor is given the definition of a PC(l)-grammar with respect

to the equivalence relation =. Th2 grammar G=(N,T,P,S) he will con­

struct will however most probably not ' be PC(l) with respect to

The construction of a grammar, which really is PC(l), can then be sup­

ported by a kind cf 'construction supporting system' , which works as

follows:

First of all it will have to find out according to which partition of

N G is PC(l).

There is a quite trivial way of doing so. One siroply has to take one

partition after another (there are only finite many different partitions

of N) · and check if G is PC(l) with respect to it. This method however

has two major drawbacks. Firstly it is very inefficient and if G is not

PC(l) it secondly does not provide the constructor of G with any

information about how he should try to modify his grammar in order to

make it PC(l).

These drawbacks are avoided by the following algorithm

- 8 -

ALGORITHM 4.1

input :

output:

method:

a c fg G=(N,T,P, S) where N={A
1

, ..• ,An}

if G is PC(l) : a partition W according to which G

is PC (1)

if G is not PC(l) a partition W and a list of conflicts

with respect to W

W := {{A
1

}, ..• ,{An}}; eo the partition induced on N by oc

conflict ·= false;

repeat

w := W;

for all productions A-+a,B+ß E (PU{S'+ßS }), where A _ B do

begin

a: if a=pXo , ß=pYcr and P#E

then begin

al: for all chains n=<Y , ... ,Y > E CH(Y), where m>O ,Y =X and
o m m

n does not contain any nonterminal more than twice

do if fl (<X>,o,follow
1

(A)) 0 fl (n,cr,follow
1

(B) # ~

then begin

conflict := true;

report that there are conflict chains <X> and n of

type b) such that A+p~o, B+pyo violate condition la)

of PC(l)-grammars with respect to the partition w;
end;

a2: if there is a chain n
2
= <Y, .• ,€> E CH(Y)

.then for all a ET such that there is a chain <X, ... ,a> E CH(X)

end;

do if a E f
1

(n
2

,o,follow
1

(B))

then begin

conflict := true;

report that there are conflict chains <X, .. ,a>,

<Y, .•• ,€> of type c) such that A+p~o , B+p~o

violate condition lb) of PC(l)-grammars

with respect to the partition w;
end;

b; if (A-+a) # (B~ß) and ß=ao ,oEv* and follow
1

(A) n first
1

(o follow
1

(B))#0

then begin

conflict := true;

end;

- 9 -

report that A4-a , B+ß violate condition 2) of PC(l)-granunars

with respect to the partition W.

end;

if not conflict

then for all productions A-+a. , B+ß E (PU{S'+6S}) , where A - B da

c: if a=pxcr , ß=pYa and Pi€

then for all chains n
1

=<X , ... ,X >ECH(X), n
2
=<Y , ... ,Y >ECH(Y) ,where

o n o m
n,m>o ,Xn= Ym, and where neither n

1
nor n

2
contain

any nonterminal more than twice

da if X 'f. Y n-1 m-1
and

fl (n
1

,cr,follow
1

(A)) n fl (n
2

,a,follow
1

(B)) # ~

then begin

eo the class of X in W is denoted by [x] oc

w := (W - [xn-1]) - [Ym-1];

w := W U {[xn_1] U [Ym_ 1]}

end;

until conflict or W = W

The only conflicts, that can be solved by introducing a partition of

the nonterminal alphabet into a grammar, are violations of condition la)

by conflict chains of type a) (this case is marked by c: in algorithm

4.1). It suffices to change the partition by joining the classes of

the last but one element of both conflict chains to eliminate such a

conflict (as the resulting partition will contain the last but one

element of both chains in the same class, they no langer are

conflict chains).

If any conflict of some other t ype (marked by al:,or a2: ,or a3: in al­

gorithm 4.1) occurs during the construction of a partition by the algo­

rithm, the grammar cannot be PC(l). Thus the constructor will have to

eliminate these conflicts by himself. For that purpose algorithm 4.1

provides him with the partition W constructed so far and a precise

description of all conflicts of the kind marked by al: , or a2: ,or b:

in algorithm 4.1 occuring with respect to W. Note, that conflicts of

these types are much easier to survey than the kind of conf lict removed

from the grammar by the algorithm.

After all reported conflicts h;wp hePn eU.minated by the constructor,

\

- 10 -

the modified grammar can again be examined by algorithm 4.1 . The algo-

rithm will either find, that the grarrunar now is PC(l) with respect to W,

or it will again have to change W by joining different classes because

some conflict chains of type a) violate condition la). In the latter

case new conflicts of the kind marked by al: , a2: , or b: may occur

with respect to the changed partition. These conflicts will again have

tobe eliminated by the constructor, before algorithm 4.1 can continue

to construct a valid partition in the manner already described.

Used in this stepwise fashion, algorithm 4.1 will be a great help in

the construction of PC(l)-grammars. It however still requires some as-

sistance by the constructor, if the grammar is not PC(l). One way to

reduce the amount of assistance needed during the construction is

to let the constructor decide not to eliminate the conflicts reported

to him, but to ask the construction supporting system to check

whether the gramrnar is EPC(l). Only if the grammar is not EPC(l)

either, will the constructor in this case be borthered.

Two algorithms are necessary to check whether a given grammar G=(N,T,P,S)

is EPC (1):

First of all the construction supporting system has to compute all

different pairs (cdf
1

(y,A) ,cdf
1

(y,B)) ,yEV*, A,B E N, of nonempty

contextdependent 1-follow sets. The algorithm doing so is closely

related to the wellknown algorithm for constructing the canonical

collection of sets of LR(l)-items (see [Aho,Ullrnan 72]). This is an

immediate consequence of the following observation:

Let r
1

(y) be a set of valid LR(l)-items for the viable prefix y •

Then the following holds for any LR(l)-item (A-+. a ' a] E r
1

(y)

(A-+. a , a] E r
1

(y) iff * ' A-+u E and a =
1

(w) 3 S R yAw p .

Hence cdfl (y,A) { a 1 [A-+.a ' a] E r 1 (y) }.

Let P
1

(A,B) , A,B E N, denote the set of all pairs (cdf
1

(y,A) ,cdf
1

(y,B)),

y E v*, cdf
1

(y,A)i ~ and cdf 1 (y,B)i~ . Then the following extension of

the algorithm for constructing the cononical collection of sets of LR(l)­

items will do, to cornpute all different pairs:

for all r
1

(y) belonging to the canonical collection of sets of

LR (1) -i tems

do for all A,B E N do

- 11 -

if

then

{a 1 [A+.a , a] E: I (y)} :f 0 and
1

pl (A,B) = p1 (A,B) u ({a![A+.a ,a]

{b 1 [B+. ß I b] E I (y)} .,, f/J
1

E 11 (y)} I {bj[B+.ß ,b] E Il (y)});

For further details see [schlichtigerl 7~ •

After all sets of pairs P
1

(A,B) have been computed, · · a part1t1on according

to which G will be EPC(1) has to be constructed. This can be accomplish­

ed by a straightforward modification of algorithm 4.1, which replaces

all global 1-follow sets by contextdependent 1-follow sets. Instead of
for instance asking if

fl (n 1 ,cr,follow1 (A)) n fl (n
2

,cr,follow
1

(B)) ":f 0

the algorithm has to check whether

f 1 (n 1
,cr,cdf

1
(y,A)) n fl (n

2
,cr,cdf

1
(y,B) :f f/J

for all pairs (cdf
1

(y,A) ,cdf
1

(y,B)) ,yE:v*, in P
1

(A,B).

If this algorithm finds, that G is not EPC(l), the constructor will

be asked to eliminate the reported conflicts. By modifying G step by

step as described before, an EPC(l)-grammar can be constructed.

If G is EPC (1) , i t can be transformed into an equi valent PC (1) -grammar

'G = cN',T,P',s>, where

,..., G 1 * - N = {<A,cdf
1

(y,A)> AE: N, SR yAw in G }

,..., G G 1 - P = {<A,cdf
1

(y,A)> +<a,cdf
1

(y,A)> A+a E P , <A, cdf~(y,A)> E N },
G where <a,cdf
1

(y,A)> is defined as follows:

- if a E T* G then <a,cdf
1

(y ,A)>= a

- if a = zoBlzl ··· zi-lBizi ••· zm-1Bmzm

m~l, z ,z . E T* and B.E N , 1~i~m
- 0 1 1 --

G then <a,cdf
1

(y,A)>=

The main idea behind this transformation is to replace each occurence

of a nonterminal A

terminal of the form

characterized by its
,.,J

1-follow set in G ,

the contextdependent

context y in G.

in some right-sentential form yAw by a new non-
G ,...,

<A,cdf 1 (y,A)> E N. This new nonterminal is

right-Eontext y in such a way, that its global

follow~(<A,cdf~(y,A)>), is equal to cdf~(y,A),
1-follow set of A with respect to the right-

,...., ,..., ,...,
Consequently G will be PC(l) with respect to a partition W of N

- 12 -

which is def ined by :
G G

<A,cdfl (y,A)> =w <B,cdfl (y,B)> iff

if G was EPC(l) with respect to w.
~

G possesses one further important property as far as parsing is con-

cerned. It right covers the origi nal grammar G. That is, each right
~

parse according to G can be trans.formed into a valid right parse

for the same input word according to G by a homomorphism. The homo­

morphism h needed in this case is very simple. It is defined by:
G G

h(<A,cdf
1

(y,A)> + <a,cdf
1

(y,A)>) = A + a .

Before generating a parser for a PC(l)-grammar G ,constructed with the

help of a construction supporting system like the one described above,

the user is strongly recommended to look at his grammar once more. The

partition W computed by algorithm 4.1 is the finest partition accor­

ding to which G is PC(l). That is, W is a refinement of any other

partition according to which G is PC(l) too. The main reason for

choosing the finest partition instead of for instance the coarsest one

is, that the delay of error d e tection of the parser caused by the use

of a partition can be considerably aggravated by using a coarse parti­

tion. On the other hand,the parser will use less space if a coarse

partition is chosen. The only reasonable way out of this dilernma is

to let the constructor of the grarnmar decide to what extend he wants

to delay error detection in f a vour of more space-efficiency. It should

therefore be left to the use r to find a coarser partition if he wishes,

all the more as such a partition can be attained very easily by join­

ing classes of W. Of course not all unions of classes of W will

result in a partition according to which G is PC(l), but the only

PC(l)-conflicts that can occur are easily recognized (they have tobe

of the kind marked by al: , a 2 : , and b: in algorithm 4.1) and can

therefore be avoided.

5. Conclusion

Partitioned chain grammars form a new class of efficiently parsable

grammars. They differ from other grannnar classes wellknown in syntax

analysis in that they are comparatively easy to construct. Ease of

construction, which must be considered a very important argument in

- 13 -

favour of using parser-generators, can be increased even further for

partitioned chain grammars by making use of the various possibilities

to support the construction of such grammars.

6. References

[Aha, Ullman 72]

(DeRemer 71]

(Friede 79]

(Ginsburg,Greibach 66]

(Harrison,Havel 73]

[Harrison,Havel 74]

[Mayer 78]

(Nijholt 77]

(Nijholt 78J

(Nijholtl 79)

[Nijholt2 79]

[Rosenkrantz,Lewis 70)

A.V.Aho,J.D.Ullman : The Theory of Parsing,

Translation and Compiling I,II (1972) ,

Prentice Hall, Inc.

F.L.DeRemer : Simple LR(k)-Grammars ,

CACM 14 (1971) , 453-460

D.Friede : Partitioned LL(k) Grammars ,

Lecture Notes in Computer Science 71 (1979) ,245-255

S.Ginsburg,S.A.Greibach : Deterministic Context­

Free Languages , Information and Control 9 ,620-648

M.A.Harrison,I.M.Havel : Strict Deterministic

Grammars , JCSS 7 (1973) , 237-277

M.A.Harrison,I.M.Havel : On the Parsing of

Deterministic Languages , JACM 21 (1974) , 525-548

O.Mayer : Syntaxanalyse , Bibliographisches

Institut Mannheim (1978)

A.Nijholt : Simple Chain Grammars , Lecture Notes

in Computer Science 52 (1977) , 352-364

A.Nijholt : On the Parsing and Covering of Simple

Chain Grammars , Lecture Notes in Computer Science

62 (1978) ' 330-344

A.Nijholt Simple Chain Grammars and Languages

Theoretical Computer Science 9 (1979) , 282-309

A.Nijholt : Structure Preserving Transformation

on Non-Left-Recursive Grammars , Lecture Notes

in Computer Science 71 (1979), 446-459

D.J.Rosenkrantz,P.M.Lewis II : Deterministic Left

Corner Parsing , IEEE Conf. Rec. of the ll'th An.

Symp. on Switching and Automata Theory (1970),139-152

[Schlichtigerl 79]

[Schlichtiger2 79]

[Schlichtiger3 79]

[Soisalon,Ukkonen 76]

[Ukkonen 79]

- 14 -

P.Schlichtiger : Kettengrammatiken - ein Konzept

zur Definition handhabbarer Grammatikklassen mit

effizientem Analyseverhalten , Doctorial Thesis

University of Kaiserslautern(1979)

P.Schlichtiger : Partitioned Chain Grammars ,

Interner Bericht 20/79 (1979), University of

Kaiserslautern

P.Schlichtiger On the Parsing of Partitioned

Chain Grammars , Interner Bericht 21/79 (1979),

University of Kaiserslautern

E.Soisalon-Soininen,E.Ukkonen : A Characterisation

of LL(k)-Languages , Proc. of the 3rd Coll. on

Automata, Languages and Programming (1976) , 20-30

E.Ukkonen : A Modification of the LR(k) Method for

Constructing Compact Bottom-up Parsers , Lecture

Notes in Computer Science 71 (1979) , 646-658

B-löhVt ..un Fa.c.hbVtuc.h In.6otuna.:ti.k. ell.6c.hie..n.e..n.e.. IntVtn.e.. BeM..c.h:te..:

1.

2.

3.

4.

Va.u..6 ma.nn., P eJt.6 c.h, W,i.nteJL.6 .tun
"Conc.wvr.e..nt Lo9,i.k.".

Ba.lze.ILt
"V,i.e.. P1tog.1tamm,i.eJL.6 p.1ta.c.he.. PLASMA 18".

Ave..nha.u6 , Ma.dle..neJL
"S.t>U.ng Ma..tc.hbig a.nd Algo/tilhm,i.c. P1toble.m6 ,i.n. GJtou.p.6".

Pa..toc.k.
"J a.h!tu b eM..c.h:t d e.6 r YI. 6 otuna.:ti.k.Jte..c.he..nz e..nt.Jtwn.6 " •

'

Ja.n. 19

Feb.lt. 19

Mäli.z 19

Mäli.z 19

5. Ha.Jt.te..Yl..6tun, Hu.b.6c.hne.,i.dVt, Ro.6eb.1tock, W,i.edema.nn ApJt,i.i. 19
"Ebt SC/ MP Mulü-M,i.k.Jto1techne1t-Sy.titem zUJt S.tJta.ße..nv Vtk.e.h!t.6-

6.

1.

Va..te.nVL 6 M.ti u.ng".

Va.u6ma.nn.
"MOVULA 1/32
A vell.6.<.ori. 06 MOVULA 601t .the.. INTERVATA 1/32".

BVtg.6.tJtäßeJL
"Ebt AMembi.Vt 6ÜJL L-löp-WVtk. unVt L.Wp- Ma..6c.hine..".

.~MZ 19

Ja.n.. 19

8. Ha.Jt.te.Yl..6tun Feb1t. 19
" V Vta.Ug em un.Vtun.g d Vt P Jt.<.nz,i.p,i.en M,i.k.Jto p.1to g JtammieJL.tVt
R e..c.hn.e.M.tJtu.k..tUJte..n." •

9. V.le..c.k.ma.nn. Ju.n,i. 19
"E n.twwt 6 .6 pe..zWM .<.Vt.tVt R e.c.hri.Vtne..tz e. zUJt U ntell.6 .tii..tzun.g
Mo dula.Jt Vt P Jto g Jt.ammi.Vtung" .

1 o. Ha.Jt.te.Yl..6.tun., v. Pu..t.tk.a.mVt Ju.n,i. n
"AYl..6 ä.tz e. 6 ÜJL I nte..g Jt.<.Vt.te..n. H aJLdwalte../ So 6.tJ.Axvt e.. E nt.wuJt. 6'' .

11 • Ko WLa.d Ma.,i. 19
"Mync.h!ton.Vt Va..te..np6a.d zUJt lo.t>e.n. Kopplung von Mik.Jto-
1te.c.hn.e1tn." •

7 2 • H a.Jt.te..Yl..6 tun J u.n,i. 7 9
"LSI Chip Vu.<.gn: 61tom Evofu..tion. to Re..vofu..tion".

13. Ha.Jt.te..Mtun, Hö1tb.t>.t, v. Pu..t.tk.a.mVt Ju.n,i. 19
"LoMel.y c.ou.ple..d M,{.c.Jto.6 - V.Wrubute..d Fun.c.tion
AJtc.hite..c..tUJtu: a. Vu,lgn. KU a.n.d Ve..vel.opme..nt Tool".

14. KoWLa.d Aug. 79
"Commu.n<.c.a.:ti.on And Tuting In a. Loo.tiel.y Couple..d Multi
M.lc.1toc.ompu..tVt Sy.6.tem".

15. Ha.Jt.te..Yl..6tun, v. Pu..t.tk.a.mVt Juli 79
"KARL
A HaJLdwalt.e.. Vuc.Jt.<.ption La.ngu.age.. M Pa.Jt.t o& a. CAV Tool
601t VLSI".

16. Ave..ri.hau-6, Ma.dle..ri.Vt Juli 19
"AN ALGORITHM FOR THE WORV PROBLEM IN HNN EXTENSIONS

ANV THE VEPENVENCE OF ITS COMPLEXTTY ON THE GROUP

REPRESENT A TI ON".

11. IJ~hm e.Jt J a.rr.. 80

~ "1mple.me.ntle.1tungA~e.~hnL~~n 6üJL Mon.<..to1t.e".

1 s. N e.hme.IL J a.rr.. 80
~ "The Implemerr.ta.tiorr. 06 Corr.cu1t.1t.err.c.y 601t. a. PL/1-like ~

La.11gua.ge.".

1 9. Pa.toc.k.
II Ja.hJt.e..6 be.Jt.iC.ht d e..6 In601t.ma.tik.1t.e.c.he.nze.rr.t1t.um.6 11

• Fe.b1t.. 80

2 0. Sc.hLlc.hti g e.IL Nov. 19
"PARTITZONEV CHAZN GRAMMARS".

2 1 • Sc.hlic.htige.IL Vez. 19
"ON THE PARSING OF PART1T10NEV CHAIN GRA/.fMARS".

2 2. Sc.hlic.htige1t. Feb1t. 80
"ON HOW TO CONSTRUCT EFF1C1ENTLY PARSABLE GRAMMARS".

