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1. Introduction 

All grammar classes, parser-generators have so far been built for, share 

two important properties: 

1) an efficient parser can be generated for any grammar of the class 

and 

2) all language features commonly appearing in programming languages 

can be described (as far as they can at all be described by a 

context-free granunar) • 

Taking the view-point of an user of parser-generators, one further 

prope~ty will be of importance: 

3) given some language, it should be easy to construct a grammar of 

the required type for it. 

Although very desirable, this third requirement is only very poorly 

met by the wellknown grarornar classes used for parser-generators. 

There are different reasons for this. The main reason seems to be either 

a too restricted grammar class (this for instance is the main reason 

why the construction of a LL(l)-grammar can become very cumbersome), 

or a definition, which is too complex to guide the construction of a 

granunar (this for instance is true for LR(1 ) -grammars). 

Partitioned chain grammars, like all grammars used for parser-generators, 

satisfy the above requirements 1) and 2) (see [Schlichtiger2,3 79)). 

They dif fer from these classes in their response to the third require­

ment. Partitioned chain grarrunars define a large grammar class and po­

ssess an intelligible definition as well. They will therefore be easier 

to construct than one of the other types of grammars.Yet,the construc­

tion of a partioned chain grannnar will of course not be trivial. That 

is why this paper introduces several algorithms to support their con-
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struction. 

Section 2 of this paper gives a formal definition of partitioned chain 

grammars and section 3 states some results on the graromar- and language 

class. Section 4 introduces several algorithms and shows, how these 

can be used to ease the construction of a partitioned chain grarnmar. 

The reader is assumed to be familiar with the basic concepts of context­

free grammars and parsing as described in [Aho.Ullman 72] . 

A context-free grammar (abbreviated cfg) is denoted by G=(N,T,P,S), 

where - N is the set of nonterminals (denoted by A,B,C,D, ... ) 

- T is the set of terrninals (denoted by a,b,c,d, ... ) 

- P is the set of productions 

- S E N is the startsymbol 

N U T is denoted by V , the elernents of which will be denoted by X,Y,Z. 

Elements of T* will be denoted by u,v,w,x,y,z; elements of v* by a,ß,y, 

6, .... The symbol l is reserved for the empty word. 

2. Definitions 

The definition of a grammar, which is supposed tobe understood easily, 

must avoid using complex structures like derivations. Basing a grammar 

definition on too simple structures will on the other hand severly re­

strict the granunar class defined. In this situation chains (first 

introduced by A.Nijholt in [Nijholt 77)) realize a good compromise. 

The example of partitioned chain grammars will show, that chains, 

although they are a much simpler structure than derivations, permit 

the definition of large gramrnar classes. 

DEFINITION: (chain) 

Let G=(N,T,P,S) be a cfg. 

If X E V , then CH(X ) , the set of chains of X , is defined by 
0 0 

CH(X) ={<X , ..• ,X> 
o o n n~p, X ..• X l E N*, XE (Nl.rrU{i}) and 

o n- n 

X => X o => ••• ~ X CJ , o. E V* , l~i~n } 
o L 1 1 L L n n i 

Note, that chains, as they are defined here, differ from the chains de­

fined by A.Nijholt in that they may contain a nonterminal or E as their 

last element. Furthermore note, that <E> is not a chain. 
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A very i mportant notion in connection with the definition of partitioned 

chain grammars i s that of a k-follow set of a chain. 

DEFINITION: (k-follow set o f a chain) 

Let G=(N,T,P,S) be a cfg and 

Furthermore let A -+ pxo be a 

be a chain in CH(X) and let 

global follow set of A Then 

let - be an equivalence relation on 

production in P, let TT =<X , ••• ,X > 
o n 

Fk(A) be a subset of followk (A) , 

• ,..LX a , a. E v*, l~i~n 
n n l. 

the 

} 

N. 

is called the k-follow set of chain n with respect to A-+JJ!O 

the underlined symbol marks the beginning of cha in TT 

,where 

Although this definition might seem a little complicated at first sight, 

it actually describes a quite simple relationship between a lookahead 

of k symbols and a chain. This relationship is depicted in the follow­

ing figure 

s 

Figure 2.1 

V 
.X y z 

* * * * where p ,.. u , X „ v , a ~ x , a • y , z E follow(A) and 
n n 

Different chains, which may appear in a similar context, must to a cer­

tain extend be distinguishable on account of the lookahead. The follow­

ing definition describes exactly which differences have to be recogniced. 

DEFINITION: (canflict chain) 

Let G=(N,T,P,S) be a cfg and let = be an equivalence relation on N. 

Two chai ns TTl =<X , ... ,X> E CH{X) , TT 2 = <Y , ••• ,Y > E CH{Y) ,X ,Y E V, 
o n o o ro o o o 
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are called conflict chains (with respect to - ) of ty2e 

~ iff n,m>o and X = y and X 
n-1 "1- Ym-1 n m 

b) iff n=O , m>O and X = y 
n m 

c) iff X ET and y = f. 
n m 

DEFINITION: (PC(k)-grammar) 

Let G=(N,T,P,S) be a cfg and let k~ O be an integer. 

The augmented grammar for G is defined to be the grammar 

G = (NU{S'},TU{ß},PU{S'+ßS},S'), where ß is not in T and S' is a 
not in N. 

G is a i:artitioned ~hain grammars with k symbols lookahead (abbreviated 

PC(k)-grammar) iff there is an equivalence relation = on NU{S'}, such 

that the following conditions hold for G a 

1) if A-+pXcr , B+pYcr E(PU{S'+~S}) ,p#E and A - B then 

·\ 

a) fk(n 1 ,cr,followk(A)) n fk(n 2 ,cr,followk(B)) = ~ 
for any two conflict chains n

1
E CH(X), n

2
E CH(Y) of type a) or b) 

and 

b) firstk(a fk(n 1 ,a,followk(A)) n fk(n 2 ,cr,followk(B)) = ~ 

for any two conflict chains n
1

E CH(X), n
2

E CH(Y) of type c), 

where n
1 

= <X, •.. ,a> ,a ET. 

2) if A+p and B-+pcr ,A = B, are different productions in P then 

followk(A) n firstk(cr followk(B)) = ~-

The class of PC(k)-grammars can be extended by paying closer attention 

to the context a production appears in in the derivation tree. As will 

be seen in the sequel,the right-context a of a production A+pXcr 

in some rightmost derivation * S 'it aAz 'it apXcrz serves our purpose best. 

By making use of the right-context of a production the definition of 

PC (k)-grannnars can be changed tir; the definition of what will be called 

an EPC(k)-graramar (abbreviation for ~xtended PC(k)-grammar). Both 

definitions will actually only differ in the follow sets they use. 

Instead of considering the global follow set of the left-hand side of 

a production, the definition of EPC(k)-grammars will use follow sets, 

which also depend on the right-context of the production. These 

follow sets will therefore be called contextdependent. 
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DEFINITION: (contextdependent fol.low set) 

Let G=(N,T,P,S) be a cfg and let k>O = be an integer. 

The contextdependent k-follow set of a nonterminal A with respect to 

the right-context ~ (abbreviated cdfk(a,A) ) is defined by 

cdfk(a,A) = {y 1 S f aAz and y = k(z) } 

REMARK : 

cdfk(a,A) = ~ if there is no rightmost derivation such that a is 

a valid right-context of A. 

- cdfk(a,A) c followk(A) 

The definition of EPC(k)-grammars is now attained by replacing every 

global follow set by contextdependent follow sets as shown below. 

DEFINITION: (EPC (k) -grammar) 

Let G=(N,T,P,S) be a cfg and let k~p be an integer. 

The augmented grammar G 
a 

is defined as in the definition of PC(k)-

grammars. 

G is an EPC(k)-grarnmar iff there is an equivalence relation _ on NU{S'}, 

such that the following conditions hold for G 
a 

1) if A~pxo , B+pYa E (PU{s'~ßS}) ,p~E and A - B , then 

2) 

a) fk(n 1 ,o,cdfk(a,A)) n fk(n 2 ,a,cdfk(a,B)) = ~ 

and 

b) 

if 

for any two conflict chains n
1

E CH(X) , n
2

E CH(Y) of type a) or b) 

and any a E(ßV*U{E}) 

firstk(a fk(n 1 ,o,cdfk(a,A)) n fk(n 2 ,o,cdfk(a,B)) = 0 
for any two conflict chains n l E CH (X) , n

2
E CH(Y) of type c) , 

where TI l =<X, •.. , a> ,a E T, and any a E (ßV*U{ e:}) 

A-+p and a+pcr ,A :::; B, are different productions in P then 

for any a E(bV*U{E}) 

3. Partitioned chain grammars and languages 

The definition of PC(k)-grarnmars gives the constructor of a grammar a 

much better understanding of how his graromar should look like than for 

instance the definition of LR(k)-grammars. It would nevertheless be 

rather difficult to construct a PC(k)-grammar if very many different 

conflict chains would have to be considered. Luckily this will however 
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not be the case with grammars for prograrnming languages. The chains 

that have to be considered in such grarnmars are on the contrary 

rather short (an average length of about 3 or 4 should be 

realistic). There are mainly two reasons for this: 

1) Only chains, which do not contain any nonterminal more than 

k+l times (k,the length of the lookahead, will usually be 1) 

have to be examined. 

Note, that this implies that PC(k)-grammars may contain left re­

cursive nonterminals for k>O. 

2) The constructor of a grammar will use a certain nonterminal in a 

very limited environment only; he would otherwise run the risk 

of losing overview over his grammar. Chains will therefore hardly 

contain very many different nonterminals. 

The following theorems show, that PC(k)- and EPC(k)-grammars form 

a large grammar- and language class compared to other classes used 

for parser-generators. The corresponding proofs have been omitted in 

this paper for the sake of brevity • 

. THEOREM 3 • 1 

1) The class of EPC(k)-grammars properly contains the class of PC(k)­

grammars for any k>O. Both classes coincide for k=O. 

2) The class of LL(k)-grammars is a proper subset of the class of 

EPC(k)-grammars and the class of PC(k)-grammars properly contains 

all streng LL(k)-grammars. 

3) The class of simple chain grammars (see [Nijholt 77,78]) is a 

proper subset of the cla.ss of PC (0) -grammars. It is equal to the 

class of all ~-free PC(O)-grammars with respect to the equivalence 

relation 

4) The partitioned LL(k)-gramrnars (see [Friede 79]), which are an ex­

tension of the strict deterministic grammars (see [Harrison,Havel 

73]), are a proper subset of the class of PC(k)-grammars. 

5) The class of predictive LR(k)-gramroars (see [Soisalon,Ukkonen 76]) is 

a proper subset of the class of all EPC(k)-grarnmars. It is 

equal to the class of all EPC(k)-grammars with respect to the 

equivalence relation = 

6) Every EPC(k)-granunar is LR(k). 
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THEOREM 3.2 

1) For every k>O the class of EPC(k)-grammars generates the same language 

class as the class of PC(k)-grammars. 

2) The PC(O)-grammars generate all deterministic prefix-free context­

free languages. 

3) For any k~l the class of PC(k)-grammars generates all the deter­

ministic context-free languages. 

4) For every k~l PC(k)-grammars with respect to the equivalence re­

lation = generate exactly all LL(k)-languages. 

4. Supporting the construction of partitioned chain grammars 

The preceding chapters showed, that partitioned chain grammars form a 

large grammar class and possess a comprehensible definition as well. 

It should therefore in general be easier to construct a partitioned 

chain grammar than some other type of grammar, which does not share 

this property. This advantage of partitioned chain grammars can be 

increased further by combining the advantage of the simple defini-

tion of PC(k)-grammars with respect to the equivalence relation = with 

the advantage of the larger grammar class of general PC(k)-grammars 

or even EPC(k)-grammars in the following manner: 

Let k=1 , as this is the only case of any practical relevance. 

The constructor is given the definition of a PC(l)-grammar with respect 

to the equivalence relation =. Th2 grammar G=(N,T,P,S) he will con­

struct will however most probably not ' be PC(l) with respect to 

The construction of a grammar, which really is PC(l), can then be sup­

ported by a kind cf 'construction supporting system' , which works as 

follows: 

First of all it will have to find out according to which partition of 

N G is PC(l). 

There is a quite trivial way of doing so. One siroply has to take one 

partition after another (there are only finite many different partitions 

of N ) · and check if G is PC(l) with respect to it. This method however 

has two major drawbacks. Firstly it is very inefficient and if G is not 

PC(l) it secondly does not provide the constructor of G with any 

information about how he should try to modify his grammar in order to 

make it PC(l). 

These drawbacks are avoided by the following algorithm 
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ALGORITHM 4.1 

input : 

output: 

method: 

a c fg G=(N,T,P, S) where N={A
1

, ..• ,An} 

if G is PC(l) : a partition W according to which G 

is PC ( 1) 

if G is not PC(l ) a partition W and a list of conflicts 

with respect to W 

W := {{A
1

}, ..• ,{An}}; eo the partition induced on N by oc 

conflict ·= false; 

repeat 

w := W; 

for all productions A-+a,B+ß E (PU{S'+ßS }), where A _ B do 

begin 

a: if a=pXo , ß=pYcr and P#E 

then begin 

al: for all chains n=<Y , ... ,Y > E CH(Y), where m>O ,Y =X and 
o m m 

n does not contain any nonterminal more than twice 

do if fl (<X>,o,follow
1 

(A)) 0 fl (n,cr,follow
1 

(B) # ~ 

then begin 

conflict := true; 

report that there are conflict chains <X> and n of 

type b) such that A+p~o, B+pyo violate condition la) 

of PC(l)-grammars with respect to the partition w; 
end; 

a2: if there is a chain n
2
= <Y, .• ,€> E CH(Y) 

.then for all a ET such that there is a chain <X, ... ,a> E CH(X) 

end; 

do if a E f
1 

(n
2

,o,follow
1 

(B)) 

then begin 

conflict := true; 

report that there are conflict chains <X, .. ,a>, 

<Y, .•• ,€> of type c) such that A+p~o , B+p~o 

violate condition lb) of PC(l)-grammars 

with respect to the partition w; 
end; 

b; if (A-+a) # (B~ß) and ß=ao ,oEv* and follow
1 

(A) n first
1 

(o follow
1 

(B))#0 

then begin 

conflict := true; 
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report that A4-a , B+ß violate condition 2) of PC(l)-granunars 

with respect to the partition W. 

end; 

if not conflict 

then for all productions A-+a. , B+ß E (PU{S'+6S}) , where A - B da 

c: if a=pxcr , ß=pYa and Pi€ 

then for all chains n
1

=<X , ... ,X >ECH(X), n
2
=<Y , ... ,Y >ECH(Y) ,where 

o n o m 
n,m>o ,Xn= Ym, and where neither n

1 
nor n

2 
contain 

any nonterminal more than twice 

da if X 'f. Y n-1 m-1 
and 

fl (n
1

,cr,follow
1 

(A)) n fl (n
2

,a,follow
1 

(B)) # ~ 

then begin 

eo the class of X in W is denoted by [x] oc 

w := (W - [xn-1]) - [Ym-1]; 

w := W U {[xn_1] U [Ym_ 1]} 

end; 

until conflict or W = W 

The only conflicts, that can be solved by introducing a partition of 

the nonterminal alphabet into a grammar, are violations of condition la) 

by conflict chains of type a) (this case is marked by c: in algorithm 

4.1). It suffices to change the partition by joining the classes of 

the last but one element of both conflict chains to eliminate such a 

conflict (as the resulting partition will contain the last but one 

element of both chains in the same class, they no langer are 

conflict chains). 

If any conflict of some other t ype (marked by al:,or a2: ,or a3: in al­

gorithm 4.1) occurs during the construction of a partition by the algo­

rithm, the grammar cannot be PC(l). Thus the constructor will have to 

eliminate these conflicts by himself. For that purpose algorithm 4.1 

provides him with the partition W constructed so far and a precise 

description of all conflicts of the kind marked by al: , or a2: ,or b: 

in algorithm 4.1 occuring with respect to W. Note, that conflicts of 

these types are much easier to survey than the kind of conf lict removed 

from the grammar by the algorithm. 

After all reported conflicts h;wp hePn eU.minated by the constructor, 
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the modified grammar can again be examined by algorithm 4.1 . The algo-

rithm will either find, that the grarrunar now is PC(l) with respect to W, 

or it will again have to change W by joining different classes because 

some conflict chains of type a) violate condition la). In the latter 

case new conflicts of the kind marked by al: , a2: , or b: may occur 

with respect to the changed partition. These conflicts will again have 

tobe eliminated by the constructor, before algorithm 4.1 can continue 

to construct a valid partition in the manner already described. 

Used in this stepwise fashion, algorithm 4.1 will be a great help in 

the construction of PC(l)-grammars. It however still requires some as-

sistance by the constructor, if the grammar is not PC(l). One way to 

reduce the amount of assistance needed during the construction is 

to let the constructor decide not to eliminate the conflicts reported 

to him, but to ask the construction supporting system to check 

whether the gramrnar is EPC(l). Only if the grammar is not EPC(l) 

either, will the constructor in this case be borthered. 

Two algorithms are necessary to check whether a given grammar G=(N,T,P,S) 

is EPC (1): 

First of all the construction supporting system has to compute all 

different pairs (cdf
1 

(y,A) ,cdf
1 

(y,B)) ,yEV*, A,B E N, of nonempty 

contextdependent 1-follow sets. The algorithm doing so is closely 

related to the wellknown algorithm for constructing the canonical 

collection of sets of LR(l)-items (see [Aho,Ullrnan 72]). This is an 

immediate consequence of the following observation: 

Let r
1 

(y) be a set of valid LR(l)-items for the viable prefix y • 

Then the following holds for any LR(l)-item (A-+. a ' a] E r
1 

(y) 

(A-+. a , a] E r
1 

(y) iff * ' A-+u E and a = 
1 

(w) 3 S R yAw p . 

Hence cdfl (y,A) { a 1 [A-+.a ' a] E r 1 (y) }. 

Let P
1

(A,B) , A,B E N, denote the set of all pairs (cdf
1

(y,A) ,cdf
1

(y,B)), 

y E v*, cdf
1 

(y,A)i ~ and cdf 1 (y,B)i~ . Then the following extension of 

the algorithm for constructing the cononical collection of sets of LR(l)­

items will do, to cornpute all different pairs: 

for all r
1 

(y) belonging to the canonical collection of sets of 

LR (1) -i tems 

do for all A,B E N do 
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if 

then 

{a 1 [A+.a , a] E: I (y)} :f 0 and 
1 

pl (A,B) = p1 (A,B) u ({a![A+.a ,a] 

{b 1 [B+. ß I b] E I (y)} .,, f/J 
1 

E 11 (y)} I {bj[B+.ß ,b] E Il (y)}); 

For further details see [schlichtigerl 7~ • 

After all sets of pairs P
1

(A,B) have been computed, · · a part1t1on according 

to which G will be EPC(1) has to be constructed. This can be accomplish­

ed by a straightforward modification of algorithm 4.1, which replaces 

all global 1-follow sets by contextdependent 1-follow sets. Instead of 
for instance asking if 

fl (n 1 ,cr,follow1 (A)) n fl (n
2

,cr,follow
1 

(B)) ":f 0 

the algorithm has to check whether 

f 1 (n 1
,cr,cdf

1 
(y,A)) n fl (n

2
,cr,cdf

1 
(y,B) :f f/J 

for all pairs (cdf
1 

(y,A) ,cdf
1 

(y,B)) ,yE:v*, in P
1 

(A,B). 

If this algorithm finds, that G is not EPC(l), the constructor will 

be asked to eliminate the reported conflicts. By modifying G step by 

step as described before, an EPC(l)-grammar can be constructed. 

If G is EPC (1) , i t can be transformed into an equi valent PC (1) -grammar 

'G = cN',T,P',s>, where 

,..., G 1 * - N = {<A,cdf
1 

(y,A)> AE: N, SR yAw in G } 

,..., G G 1 - P = {<A,cdf
1 

(y,A)> +<a,cdf
1 

(y,A)> A+a E P , <A, cdf~(y,A)> E N }, 
G where <a,cdf
1 

(y,A)> is defined as follows: 

- if a E T* G then <a,cdf
1 

(y ,A)>= a 

- if a = zoBlzl ··· zi-lBizi ••· zm-1Bmzm 

m~l, z ,z . E T* and B.E N , 1~i~m 
- 0 1 1 --

G then <a,cdf
1 

(y,A)>= 

The main idea behind this transformation is to replace each occurence 

of a nonterminal A 

terminal of the form 

characterized by its 
,.,J 

1-follow set in G , 

the contextdependent 

context y in G. 

in some right-sentential form yAw by a new non-
G ,..., 

<A,cdf 1 (y,A)> E N. This new nonterminal is 

right-Eontext y in such a way, that its global 

follow~(<A,cdf~(y,A)>), is equal to cdf~(y,A), 
1-follow set of A with respect to the right-

,...., ,..., ,..., 
Consequently G will be PC(l) with respect to a partition W of N 
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which is def ined by : 
G G 

<A,cdfl (y,A)> =w <B,cdfl (y,B)> iff 

if G was EPC(l) with respect to w. 
~ 

G possesses one further important property as far as parsing is con-

cerned. It right covers the origi nal grammar G. That is, each right 
~ 

parse according to G can be trans.formed into a valid right parse 

for the same input word according to G by a homomorphism. The homo­

morphism h needed in this case is very simple. It is defined by: 
G G 

h( <A,cdf
1 

(y,A)> + <a,cdf
1 

(y,A)> ) = A + a . 

Before generating a parser for a PC(l)-grammar G ,constructed with the 

help of a construction supporting system like the one described above, 

the user is strongly recommended to look at his grammar once more. The 

partition W computed by algorithm 4.1 is the finest partition accor­

ding to which G is PC(l). That is, W is a refinement of any other 

partition according to which G is PC(l) too. The main reason for 

choosing the finest partition instead of for instance the coarsest one 

is, that the delay of error d e tection of the parser caused by the use 

of a partition can be considerably aggravated by using a coarse parti­

tion. On the other hand,the parser will use less space if a coarse 

partition is chosen. The only reasonable way out of this dilernma is 

to let the constructor of the grarnmar decide to what extend he wants 

to delay error detection in f a vour of more space-efficiency. It should 

therefore be left to the use r to find a coarser partition if he wishes, 

all the more as such a partition can be attained very easily by join­

ing classes of W. Of course not all unions of classes of W will 

result in a partition according to which G is PC(l), but the only 

PC(l)-conflicts that can occur are easily recognized (they have tobe 

of the kind marked by al: , a 2 : , and b: in algorithm 4.1) and can 

therefore be avoided. 

5. Conclusion 

Partitioned chain grammars form a new class of efficiently parsable 

grammars. They differ from other grannnar classes wellknown in syntax 

analysis in that they are comparatively easy to construct. Ease of 

construction, which must be considered a very important argument in 
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favour of using parser-generators, can be increased even further for 

partitioned chain grammars by making use of the various possibilities 

to support the construction of such grammars. 
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