Full length article

Identification, ontogeny and expression analysis of a novel laboratory of genetics and physiology 2 (LGP2) transcript in Asian seabass, Lates calcarifer

Anutosh Paria ${ }^{1}$, A. Deepika, K. Sreedharan, M. Makesh, Aparna Chaudhari, C.S. Purushothaman, K.V. Rajendran*
ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India

A R T I C L E I N F O

Article history:

Received 17 October 2016
Received in revised form
18 January 2017
Accepted 20 January 2017
Available online 21 January 2017

Keywords:

Laboratory of genetics and physiology 2
LGP2
RLR
PRR
Asian seabass
Lates calcarifer
Bacterial infection
Poly I:C
Gene expression
Ontogeny

Abstract

LGP2 (laboratory of genetics and physiology 2) is an important member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), which plays a significant role in antiviral innate immunity. In this study, we have cloned the full-length cDNA sequence of LGP2 from Asian seabass, Lates calcarifer (AsLGP2). The complete $A s L G P 2$ cDNA sequence consisted of 2586 nucleotides encoding a putative protein of 681 amino acids with a molecular mass of 77.6 kDa . From the $A s L G P 2$ protein, four different conserved domains were predicted: a DExDc (DEAD/DEAH box helicase domain), a bacterial type III restriction enzyme domain (RES III), a HELICc (Helicase superfamily c-terminal domain and a RIG-I_C-RD (RIG-I Cterminal regulatory domain). The transcript of AsLGP2 could be detected in all the 11 tissues tested in healthy animals with high expression noticed in tissues facing external environment such as gill, hindgut and skin. The ontogenic expression profile of AsLGP2 implies a possible maternal transfer of this gene as it has been detected in all early embryonic developmental stages along with unfertilized eggs. Viral analogue, poly I:C, injection resulted in rapid up-regulated expression in different tissues with the highest modulation of expression observed in kidney followed by liver and gill. A rapid response of AsLGP2 expression was also observed in the different tissues of Vibrio alginolyticus-injected L. calcarifer, while significant change in expression was noticed following Staphylococcus aureus infection. Similarly, exposure to different pathogen-mimicking microbial analogues such as poly I:C, LPS and PGN resulted in enhanced expression of AsLGP2 in SISK cell-line. Taking together, these observations suggest that AsLGP2 can act as both antiviral and antibacterial cytosolic receptor and may play a significant role in embryonic and larval development in marine euryhaline teleosts like Asian seabass.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Retinoic acid-inducible gene 1- (RIG-I-) like receptors (RLRs) are a group of cytoplasmic pattern recognition receptors belonging to the family of DExD/H RNA helicases [1]. These helicases mainly sense intracellular viral nucleic acids and play a key role in building an effective protection strategy against invading infectious pathogens [2]. Three highly similar proteins constitute the RLRs family: RIG-I, melanoma differentiation-associated gene 5 (MDA5) and the

[^0]laboratory of genetics and physiology 2 gene (LGP2). All the three members of the RLR family contain a central DExD/H-box helicase domain and a C-terminal regulatory domain (CTD) [3-5]. The CTD domain exerts its function by regulating the RLR signalling and recognising specific foreign RNA substrates [6-8]. Two members of the RLR family, i.e., RIG-I and MDA5, contain two N-terminal caspase activation and recruitment domains (CARD), whereas LGP2 does not have any N -terminal domain [6,9,10]. The N -terminal CARD domains are required for downstream signalling by interacting and recruiting the adaptor protein MAVS (Mitochondrial antiviral signalling protein). The MAVS is the molecule which starts a downstream signalling cascade to activate different transcription factors like NF-kB and IRFs, and finally result in the production of type I IFNs and pro-inflammatory cytokines [5,11]. The LGP2 shares a close structural similarity with RIG-I and MDA5, and lacks a N-terminal
domain. Moreover, as LGP2 possesses strong affinity towards dsRNA, it can be hypothesized that LGP2 interferes in RLR signalling or may have separate function altogether from its other RLR family members [10,12-14]. Both RIG-I and MDA5 have almost similar function in antiviral immunity but they differ in the type of molecules they detect; RIG-I detects relatively shorter double-stranded RNAs (dsRNAs) ($<1 \mathrm{~kb}$) along with free 5^{\prime} triphosphate end structures and RNAs with complex secondary structures, whereas, MDA5 detects long dsRNAs ($>3 \mathrm{~kb}$) and RNA molecules with "non-self" - 5^{\prime} termini [15-20]. In contrast to the size-dependent detection of RNA molecules exhibited by RIG-I and MDA5, LGP2 can detect both dsRNA and single-stranded RNA (ssRNA) in a size- and 5'-triphos-phate-independent manner [3,21,22].

The specific role exhibited by LGP2 in innate immunity is still unclear. Initially, the LGP2 was identified as a negative regulator of RLR-signalling [9,23,24]. However, recent studies proved that LGP2 can have a positive role in antiviral innate immunity [25,26] in higher vertebrates. Moreover, it has been found that LGP2 can potentially enhance the MDA5-mediated antiviral signalling [14]. Thus, LGP2 acts as an inhibitory as well as stimulatory molecule in antiviral innate immunity; but these mechanisms are not mutually exclusive [10,27]. Apart from having a role in RLR-signalling, LGP2 also plays important functional roles in antiviral T-cell regulation [28] and adversely contributes in cancer cell resistance to ionizing radiation [29].

Cloning and functional characterization of LGP2 have been reported in many species of finfish including olive flounder, Paralichthys olivaceus [30], grass carp, Ctenopharyngodon idella [31], rainbow trout, Oncorhynchus mykiss [32], channel catfish, Ictalurus punctatus [33], common carp, Cyprinus carpio [34], seaperch, Lateolabrax japonicus [35] and large yellow croaker, Larimichthys crocea [36]. Almost all these previous studies on teleosts showed a positive regulatory role played by LGP2 in antiviral signalling against RNA and DNA viruses or viral analogue, poly I:C in vivo or in vitro. However, it has also been reported that the transcript level of LGP2 can be modulated by bacterial infection as well [33].

Asian seabass, Lates calcarifer is a highly valuable candidate species for aquaculture in tropical marine, brackish and freshwater throughout the South-Eastern Asia and Australia because of its resistance to salinity changes, high stocking density, high growth and fecundity [37]. However, one of the major concerns in the culture of this species is its susceptibility to different viral, parasitic and bacterial pathogens including nodavirus, Streptococcus iniae, marine vibrios and Cryptocaryon irritans [38-41]. Only limited information is available on the immune repertoires of L. calcarifer and how the immune system performs against different pathogenic invaders, especially in immune-gene level. Recently, few groups of antimicrobial peptides, copper zinc superoxide dismutase and DCSCRIPT have been characterized, and immune gene expression profiling against a parasite, Cryptocaryon irritans, been studied in L. calcarifer [42-45]. In a recent study, NLRC3, a pivotal cytosolic receptor with a possible antimicrobial activity has been cloned and characterized in L. calcarifer [46]. Here, we have cloned the fulllength cDNA sequence of LGP2, an important intracellular PRR from Asian seabass, L. calcarifer (AsLGP2), and also evaluated the phylogenetic relationship and ontogenetic developmental profile. We have also investigated the expression profile of AsLGP2 in different tissues of healthy and bacteria-infected or poly I:Cinjected animals in vivo. Further, the response of AsLGP2 towards different ligands such as poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in vitro has been investigated. The findings of this study would give a better insight on the functional role played by LGP2 in a euryhaline teleost model and also will provide a novel biological phenomenon of ontogenetic development of RLRs in bony fishes.

2. Materials and methods

2.1. Identification and cloning of full-length cDNA sequence of AsLGP2

Total RNA was extracted from the kidney tissue of healthy Asian seabass using RNeasy mini kit (Qiagen, USA) following the manufacturer's protocol. One microgramme of the extracted RNA was reverse-transcribed using First Strand cDNA Synthesis Kit (Thermo Scientific, USA). For amplifying an initial sequence of AsLGP2, primers (LGP2-F1\& LGP2-R1) were designed based on the conserved sequence of the available finfish sequences including P. olivaceus LGP2 mRNA (HM070372.1), Salmo salar LGP2 (NM_001140177.1) and O. mykiss LGP2 (FN396359.1). The PCR was performed following the PCR condition consisting of an initial denaturation step of 3 min at $94^{\circ} \mathrm{C}$, followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $56^{\circ} \mathrm{C}$ for 40 s and extension at $72^{\circ} \mathrm{C}$ for 1 min , and final elongation step at $72^{\circ} \mathrm{C}$ for 7 min . The amplified product was cloned into pTZ57R/T vector (Thermo Scientific, USA) and sequenced in both the directions using universal vector-specific primers. From the generated sequence, specific primers for 5^{\prime} and 3^{\prime}-RACE PCR were designed. RACE was performed using SMARTer ${ }^{\text {TM }}$ RACE cDNA amplification kit (Clontech, USA) following the manufacturer's protocol. Specific fragments amplified in the RACE PCR were purified and cloned into pTZ57R/T vector (Thermo Scientific, USA). Positive recombinant clones were sequenced in both directions using M13 forward and reverse universal primers. All the primers used in the study are tabulated in Table 1.

2.2. Bioinformatics tools used for sequence annotation and phylogenetic tree construction

The complete cDNA sequence of AsLGP2 was analysed with the BLAST (http://www.ncbi.nlm.nih.gov/blast) programme to get other homologous sequences and the homology percentage was predicted. The multiple alignment of AsLGP2 along with other LGP2 sequences of animals belonging to different taxa was done using the ClustalW2 programme (http://www.ebi.ac.uk/Tools/msa/ clustalw2/). The deduced amino acid sequence was analysed by Expert Protein Analysis System (ExPaSy) tools (http://www.expasy. org/tools/) and the protein domains were predicted by Simple

Table 1
Primers used in the study.

Primers	Sequence (5'-3')
Gene cloning	
LGP2-F1	CGACCGGAGGTGGAAAGAC
LGP2-R1	CCGGCGATGCAGTGAGA
LGP2-F2	CAGATCCTGGGTCTCACTG
LGP2-R2	TCATGTAAGTGATGCCGGTG
LGP2-F3	GCCACCGGCATCACTTACAT
LGP2-R3	GGGACATCCTTCCACTTCTTCA
RACE	
LGP2-5'-R1	TGTCCCTGGTGATGCAGTGA
LGP2-5'-NR1	CACTGACTGGCACCAGCTTGT
LGP2-3'-F1	GTACAAGAAGATCGCCCTGCTGCCC
LGP2-3'-NF1	TGGCAGGACAACTGTGAAGAAGTGG
UPM-long	CTAATACGACTCACTATAGGGCAAGCAG
	TGGTATCAACGCAGAGTCTAAT
UPM-short	ACGACTCACTATAGGGC
NUP	AAGCAGTGGTATCAACGCAGAGT
Real-time PCR	
AsLGP2-F	TGTCACCACACCCACAAGGA
AsLGP2-R	ATGCTCCACAGCCTTTCCA
EF- $1 \alpha-$ F	GTTGCCTTTGTCCCCATCTC
EF- $\alpha-$ R	CTCCAGCAGTGTGGTTCCA
β-actin-F	TACCACCGGTATCGTCATGGA
β-actin-R	CCACGCTCTGTCAGGATCTTC

Modular Architecture Research Tool (SMART) (http://smart.emblheidelberg.de/). The molecular mass (MM) and theoretical isoelectric point (pI) of the protein were calculated based upon its deduced amino acids by the Compute pI/Mw software (http://web. expasy.org/compute_pi/), and N-linked glycosylation sites in the amino acid sequence were predicted using NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/NetNGlyc 1.0 Server). A neighbour-joining phylogenetic tree was constructed using the MEGA 7 programme following the Poisson model with bootstrapped 1000 times.

2.3. Experimental animals and in vivo challenge experiments

Healthy Asian seabass juveniles ($\sim 15-20 \mathrm{~g}$) were procured from nearby commercial farms and maintained at 5% seawater with a commercial diet for two weeks before conducting the experiment. For the tissue distribution study of AsLGP2 in healthy animals, nine fishes divided into three separate pools were sacrificed and tissues including gill, heart, spleen, liver, midgut, hindgut, stomach, head kidney, trunk kidney, brain and skin were collected. To study whether AsLGP2 responds to bacterial infection, fishes were injected with $100 \mu \mathrm{~L}$ of $1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$ Vibrio alginolyticus ($\mathrm{ATCC}^{\circledR} 17749$) or $100 \mu \mathrm{~L}$ of $1 \times 10^{7} \mathrm{CFU} / \mathrm{mL}$ Staphylococcus aureus ($\mathrm{ATCC}^{\circledR} 11632$) suspended in PBS. For poly I:C stimulation, fish were injected with $100 \mu \mathrm{~L}$ of $1 \mathrm{mg} /$ mL poly I:C suspended in PBS. After injection, six animals each were sacrificed at $3,8,24,72 \mathrm{~h}$ and 5 days post-injection (dpi), and tissues such as gill, heart, spleen, kidney, liver and intestine were collected. Fish injected with sterile PBS were sampled similarly at each timepoint and used as control in all the challenge studies. Tissues from two animals constituted a single pooled sample and three such pools were used to study the gene expression.

2.4. Developmental stages and sample collection

Different embryonic and larval developmental stages of Asian seabass were collected from the Asian seabass hatchery of the Central Institute of Brackishwater Aquaculture, Chennai. Six different embryonic developmental stages: unfertilized eggs (Unf), fertilized eggs at 0 h post-spawning (0 hps), blastula (5 hps), gastrula (7 hps), neurula (9 hps), early embryo (12 hps) and seven different larval developmental stages: hatchlings (0 day post-hatching) and six subsequent larval developmental stages ($1,2,3,5,10$ and 30 day post-hatching) were collected. The developmental stages were collected from three separate larval rearing units and the pooled sample from each rearing unit was treated as a single sample.

2.5. In vitro ligand stimulation

Asian seabass kidney cell line (SISK) was sourced and maintained in L-15 medium supplemented with 10% FBS (Gibco, USA) [47] at $28^{\circ} \mathrm{C}$. After 2-3 passages, the cells were transferred to 6 well plates (1×10^{5} cells/well) for induction study with different ligands. After 24 h of culture in 6 -well plates, the cells were exposed to different ligands such as poly I:C ($50 \mu \mathrm{~g} / \mathrm{mL}$, Sigma P1530), LPS ($25 \mu \mathrm{~g} / \mathrm{mL}$, Sigma L2630) and PGN ($25 \mu \mathrm{~g} / \mathrm{mL}$, Sigma 77140). The cells were harvested at $3,8,24,48$ and 72 h post-induction and the cells from two wells were pooled. Three such pools were used as sample replicates for a given time-point. Hanks' balanced salt solution (HBSS)-treated cells were harvested similarly at each timepoint and used as the control.

2.6. Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from different tissues, developmental stages and cultured cells, and subsequently cDNA was synthesized
as described in Section 2.1. The qPCR was performed in ABI 7500 RT-PCR system (Applied Biosystems, USA) using SYBR ${ }^{\circledR}$ Premix ExTaq ${ }^{\text {TMII }}$ (Tli RNaseH Plus) (Takara Bio Inc., Japan). The primers used for qPCR are listed in Table 1. PCR efficiency for all the primers used was determined by generating standard curves using a serial 10 -fold dilution of spleen cDNA. The efficiency of the primers ranging between 95% and 105% was considered significant for use in expression analysis. The calculation of PCR-efficiency was done using the formula $\mathrm{E}(\%)=\left(10^{-1 / \text { slope }}-1\right) \times 100$ [48]. The reaction was done in duplicates in a total volume of $25 \mu \mathrm{~L}$ reaction mixture containing $12.5 \mu \mathrm{~L}$ of 2 X SYBR Green master mix, $0.5 \mu \mathrm{~L}$ of ROX, $1 \mu \mathrm{~L}$ of each primer $(10 \mu \mathrm{M}), 2 \mu \mathrm{~L}$ of 100 ng cDNA and $8 \mu \mathrm{~L}$ of nucleasefree water. The default thermal profile was used for PCR amplification and it consisted of $95^{\circ} \mathrm{C}$ for 10 min , followed by 40 cycles of $95{ }^{\circ} \mathrm{C}$ for 15 s and $60^{\circ} \mathrm{C}$ for 1 min . Melt curve analysis of the amplification products was performed at the end of each PCR reaction to confirm that only the specific PCR product was amplified and detected. Elongation factor $1-\alpha(E F-1 \alpha)$ was used as the housekeeping gene for data normalization. For ontogeny experiment, a two-housekeeping gene normalization method using $E F-1 \alpha$ and β-actin was employed [49]. Fold-change in expression in the treated group compared to control group was determined using 2^{-} $\Delta \Delta C T$ method [50]. The data obtained from the three individual biological replicates were analysed using one-way analysis of variance (ANOVA) to find out the significance level between the groups. $P<0.05$ was considered statistically significant.

3. Results

3.1. Molecular characterisation and sequence analysis of AsLGP2

The full-length cDNA sequence of AsLGP2 was amplified and cloned from kidney tissue of healthy Asian seabass. The complete AsLGP2 cDNA sequence consisted of 2586 nucleotides encoding a putative 681 amino acid-protein with a molecular mass of 77.6 kDa and isoelectric point of 6.38 (GenBank Accession No. KX268683.1). The open reading frame encoding this protein is of 2046 bp length with $88 \mathrm{bp} 5^{\prime}$ un-translated region (UTR) and $452 \mathrm{bp} 3^{\prime}$ UTR (Fig. 1A). From the deduced amino acid sequence of AsLGP2, four different conserved domains could be predicted by the SMART programme. At the extreme N -terminal end, it has a DExDc (DEAD/ DEAH box helicase domain, 2 to 221 AA) which also overlapped with a bacterial Type III restriction enzyme domain (RES III, 3 to 176 AA). AsLGP2 also harboured a HELICc (Helicase superfamily c-terminal domain, 382 to 477 AA) and RIG-I_C-RD (RIG-I C-terminal regulatory domain, 553 to 674 AA) (Fig. 1B).

3.2. Sequence homology and phylogenetic tree construction

The AsLGP2 amino acid sequence showed the highest identity with L. japonicus (84\%), Oplegnathus fasciatus (82\%), L. crocea (82\%) and P. olivaceous (80%), whereas the lowest identity could be found with Mus musculus (45\%). Among the predicted conserved domains, DExDc domain showed a relatively high amount of conserved sequences across the species, while sequence similarity was found to be less in RIG-I_C-RD domain (Table 2). From the alignment of amino acids pertaining to the RIG-I_C-RD domain, four highly conserved cysteine residues forming two separate RNA-binding loops were identified. The first loop consisting of four amino acids flanked with cysteine moieties was highly conserved, whereas the second loop was found to be varied across the species (Fig. 2).

To find out the phylogenetic relationship of AsLGP2 with LGP2 from other animals, a neighbour-joining phylogenetic tree was created. AsLGP2 was found to be clustered distinctly with other
ctttgacccacactgtgaggtgttagtggacgaggagaagctgaaaataccacacggttccctacagctgcctggagtaaa 37 gtatag ATG CAGATTTTGGACTGTATTCATACCAGGAGGAAGTGGTTGAAAGGGCTCTTAGGGGAGAGAACACAATTAT
 CTGGCTGCCGACCGGAGGTGGAAAGACCCGTGCTGCTGTGTATGTAGCCAAAAGACACCTGGAGACCACACAGAAAGCTAA $\begin{array}{rl}V & V \\ \text { GGTGGTGGTCCTGGTAAACAAGGTTCACCTTGTAGACCAACATTACACCAAAGAGTTTAAACCTCACCTGGGTTATGACTA } & V \\ 4 & N\end{array}$ CAAGCTGGTGCCAGTCAGTGGAGAGAGTGAGGAGAAGGACTTCTTTGGAAAAGTGGTGCAGGACTCAGACCTGGTCATCTG

CACAGCACAGATCTTATATAATGCCCTGATTAACACGGAGGAAACCAAACATGTTGAGCTCTCAGATATCACTCTACTGAT 512
CACAGCACAGATCTTATATAATGCCCTGATTAACACGGAGGAAACCAAACATGTTGAGCTCTCAGATATCACTCTACTGAT 512

AATCGATGAGTGTCACCACACCCACAAGGAGTCAGTCTACAACAAGATAATGAGATGCTACGTGGAGAAAAAGTTGAGACG 539
AATCGATGAGTGTCACCACACCCACAAGGAGTCAGTCTACAACAAGATAATGAGATGCTACGTGGAGAAAAAGTTGAGACG 539
GGAACATCCATTGCCACAGATCCTGGGTCTCACTGCATCACCAGGGACAGGGGGCGCAAAGATCCTGGAAAAGGCTGTGGA
GGAACATCCATTGCCACAGATCCTGGGTCTCACTGCATCACCAGGGACAGGGGGCGCAAAGATCCTGGAAAAGGCTGTGGA

GCATGTCCTGCAGATCTGTGCTAACCTGGACTCAGCCATAGTTTCAACTAAAAACTATGCCCCTGAGCTGAAGAAGAAGGT 593
GCATGTCCTGCAGATCTGTGCTAACCTGGACTCAGCCATAGTTTCAACTAAAAACTATGCCCCTGAGCTGAAGAAGAAGGT 593
P R P I K T F D I V E K R H E D P F G D H L K W M M Q 1864
P R P I K T F D I V E K R H E D P F G D H L K W M M Q 1864
CCCCAGACCCATCAAGACATTTGACATTGTGGAGAAAAGGCATGAGGATCCATTTGGGGATCATCTGAAGTGGATGATGCA 620
CCCCAGACCCATCAAGACATTTGACATTGTGGAGAAAAGGCATGAGGATCCATTTGGGGATCATCTGAAGTGGATGATGCA 620

GCTGATCCATGAGTACATGAACCTACCACCAGACGTCAAACTGAGAGAGTGTGGCACACAAGAGTATGAGGCAGATGTGGT 647
GCTGATCCATGAGTACATGAACCTACCACCAGACGTCAAACTGAGAGAGTGTGGCACACAAGAGTATGAGGCAGATGTGGT 647

GATTTTAGAGCAGCGAGGGGTAATAGTGAACAACAGACTGCTCGCACAGTGTGCACTCCACCTCAGACAGTACAACGACGC 674
GATTTTAGAGCAGCGAGGGGTAATAGTGAACAACAGACTGCTCGCACAGTGTGCACTCCACCTCAGACAGTACAACGACGC 674

ССТGCTCATCAATGACACCCTGAGAATGATGGATGCTTATCGCTCCCTAGAAGAATTCTACATCACAAAGTCAGACACAGC 2188
ССТGCTCATCAATGACACCCTGAGAATGATGGATGCTTATCGCTCCCTAGAAGAATTCTACATCACAAAGTCAGACACAGC 2188

CATCGATGGAACAGACTTCTTCCTGGTGGGACTTTTCCAAGAGAATCAGGTGGAGCTGAGGAAACTTGCAATGGATTCTCA 2350
CATCGATGGAACAGACTTCTTCCTGGTGGGACTTTTCCAAGAGAATCAGGTGGAGCTGAGGAAACTTGCAATGGATTCTCA 2350

CTATGAGAACCCAAAGATGGGTAAACTTGAGAGTGTTCTACTCAATCAATTTGGTCATGGATCAAAGGAATCAAGAGGGAT 2512
CTATGAGAACCCAAAGATGGGTAAACTTGAGAGTGTTCTACTCAATCAATTTGGTCATGGATCAAAGGAATCAAGAGGGAT 2512

L F S K T R K S T H C L K D W V V T T E P Y S K L D P TCTCTTCAGTAAAACTCGTAAAAGCACCCACTGCCTAAAAGACTGGGTCGTTACAACAGAACCCTACAGCAAGCTGGATCC G S I S L G L A T G I T Y M T Q N N E Q A D T I R N N F R AGGCAGCATCTCACTGGGGCTGGCCACCGGCATCACTTACATGACACAGAACGAGCAGGCAGACACAATCCGCAATTTCCG Q G K L N L L I S T S V A E E G L D I P E C N L V V R CCAGGGTAAGCTCAACCTTCTGATCTCCACCAGTGTGGCTGAAGAAGGCCTTGACATCCCTGAGTGTAACCTGGTAGTGCG Y G L L T N E I A Q Q \quad L A S G R A R A R D S TTATGGACTGCTTACAAATGAGATTGCCCAGCAGCAGGCCAGTGGACGTGCCAGAGCGCGAGACAGCCAGTATTCAGTGGT
 CGCTGTAAAAGGTGGAAGGGAAGAGCGCCGAGAACTCACCAATGAATACCTGGAAGAGCTCACTGGAAAAGCCATCGCTCA
 GGTCCAAGATATGAGCCTCCGAGAGTTTTGCAGAAAGATAACTGAACTACAGACAGAAGCAGTTGTTACCAGTAAAGTTGC
 AGAGACCCGCAAAATTGAGAAGAGGAGTCGCTACGCTGCTTCCAGTATCCAGCTCTTGTGTCGAAATTGTTTCAAGCCTGT $\begin{array}{lllllllllllllllllllllllllll}A & S & G & S & D & I & K & L & V & D & N & A & H & Y & V & N & V & N & P & D & F & K & R & H & Y & R & V\end{array}$ GGCCTCTGGCAGTGACATCAAACTTGTTGACAATGCGCACTATGTCAATGTCAATCCTGACTTCAAGAGACACTACAGAGT
 TGGTGGGCCAGTGATTCTAGAGAGGAGTTTTGAGGACTGGGAGCCTGGGTGCACTATCAACTGCAATAATGGCAACTGCAA

CTTGCAATGGGGATTCGAGATCAAGTACAAGAAGATCGCCCTGCTGCCCAATTTAGCCATAAAGAATTTTGCCCTGGAGAC

$\begin{array}{lllllllllllllllllllllllllll}P & D & G & R & T & T & V & K & K & W & K & D & V & L & E & T & V & E & D & F & S & F & E & O & Y & C & Q\end{array}$

CCCTGATGGCAGGACAACTGTGAAGAAGTGGAAGGATGTCCTTTTCACCGTCGAGGACTTTTAGCTTTGAGCAATACTGCCA D T F P D L E D *
AGACACCTTCCCTGACCTCTTCGATTGA Jacaccatcaagagagctctttgcaaggttttttcccaacttcacgtcagctt ttatcagtttttttcattccagtctgtcagtattggtgttttgtcatctgtgctcatttatacaaaccatcattgtactgt ttgaggtgcttacatatgaacatatgctattcaaaaattcactctccacatgtattagcacttacttgggctgcagggcca atgaggcagcagtgtgctaaaacccattatgcatcgatcgtgcttgaaattagcacaacagctttgtttatgcccaaggtc ccagctccctttgcatgtttctgtattttccatgcttcatctcaaagtaagcacttgaaacacagcgcaacactaact.ctg ctgtaacatgaaccttgaccatcatgaacacttgaaatgtcatcatgaaaaaaaaaaaaaaaaaaaaaaaaaaaa

B

 underlined. The RESIII domain ($3-176 \mathrm{AA}$) within the DExDc domain is wavy underlined. (B) Schematic description of the domain topologies of AsLGP2.
marine finfishes such as large yellow croaker, striped beakfish, seaperch and Japanese flounder. Among the piscine homologues of LGP2, seaperch showed the maximum phylogenetic homology, whereas elephant shark appeared to be distantly related to AsLGP2.

Table 2
Structural homology (\%) of AsLGP2 complete amino acid and domains with other animals.

Animals	LGP2 (AA)	DExDc	HELICC	RIG-I_C-RD
Lates calcarifer	100	100	100	100
Lateolabrax japonicus	84	90	77	81
Oplegnathus fasciatus	82	89	72	83
Larimichthys crocea	82	88	74	81
Paralichthys olivaceus	80	87	73	75
Stegastes partitus	79	84	75	74
Xiphophorus maculatus	78	82	77	77
Oryzias latipes	78	85	74	74
Takifugu rubripes	73	79	71	74
Oreochromis niloticus	72	80	77	76
Oncorhynchus mykiss	70	78	73	60
Cyprinus carpio	66	76	70	54
Ctenopharyngodon idella	65	74	67	54
Danio rerio	65	73	68	54
Ictalurus punctatus	64	75	67	50
Xenopus tropicalis	52	60	56	-
Homo sapiens	47	56	63	45
Mus musculus	45	53	62	44

As, the LGP2 gene from selected mammals, reptiles, amphibians and birds were formed a separate distant clad from piscine homologues of LGP2, thus treated as outgroup in the phylogenetic tree (Fig. 3).

3.3. Tissue distribution of AsLGP2 in healthy animals

The expression profile of AsLGP2 was determined in 11 different tissues of healthy L. calcarifer by qPCR using $E F-1 \alpha$ as the internal control. The mRNA transcript of AsLGP2 could be detected in all the tissues tested with the highest expression observed in gill followed by hindgut. Moderate level of AsLGP2 expression could be detected in skin, trunk kidney, liver, head kidney, midgut, brain and spleen, whereas low transcript abundance was observed in stomach (Fig. 4).

3.4. Ontogenetic profile of AsLGP2

To study the ontogeny of AsLGP2, the expression level was estimated in 13 different embryonic and larval developmental stages starting from unfertilized eggs to 30 days post-hatched (30 dph) larvae (Fig. 5) by qPCR using two-gene ($E F-1 \alpha \& \beta$-actin) data normalization method. Initial embryonic developmental stages including fertilized eggs, blastula and gastrula along with unfertilized eggs showed almost the same level of transcript. However,

Fig. 2. Multiple alignments of the deduced amino acid sequence pertaining to RIG-1_C-RD domain of LGP2 from different species. Dashes (-) indicate gaps, black shadow indicates identical residues and grey shadow indicates similar residues in the aligned amino acid sequences. Four conserved cysteine residues and intermittent sequence motifs were boxed within the domain. The deduced amino acid sequence obtained from LGP2 sequence of different animals available in GenBank - Asian seabass, Lates calcarifer (Accession No. AOV82294.1), Grass carp; Ctenopharyngodon idella (Accession No. AFQ93565.1), Goldfish; Carassius auratus (Accession No. AEN04474.1), Zebrafish; Danio rerio (Accession No. AKA09351.1), Channel catfish; Ictalurus punctatus (Accession No. NP_001265738.1), Guppy; Poecilia reticulata (Accession No. XP_008415285.1), Medaka; Oryzias latipes (Accession No. XP_004071339.1), Seaperch; Lateolabrax japonicus (Accession No. ALE66118.1), Japanese flounder; Paralichthys olivaceus (Accession No. ADI75503.1), Yellow croaker; Larimichthys crocea (Accession No. KKF29873.1), Striped beakfish; Oplegnathus fasciatus (Accession No. AHX37213.1), Fugu; Takifugu rubripes (Accession No. XP_003964848.1), Tilapia; Oreochromis niloticus (Accession No. XP_019213271.1), Atlantic salmon; Salmo salar (Accession No. XP_014059582.1), Alligator; Alligator sinensis (Accession No. XP_006032816.1), Green turtle; Chelonia mydas (Accession No. EMP40502.1), Chicken; Gallus gallus (Accession No. NP_001305337.1), Elephant shark; Callorhinchus milii (Accession No. XP_007907694.1), Frog; Xenopus tropicalis (Accession No. XP_002939087.2), Mice; Mus musculus (Accession No. NP_084426.2), Human; Homo sapiens (Accession No. NP_077024.2).
subsequent stages such as neurula and early embryo showed a comparatively higher expression of AsLGP2 followed by a low transcript level during hatching. AsLGP2 mRNA expression level was not very stably expressed in larval stages as the expression level was found to be varied till 30 dph . In 3 dph and 5 dph stages, relatively low AsLGP2 expression was detected and the level of expression was similar to that of the expression detected during hatching (Fig. 5).

3.5. Temporal expression pattern of AsLGP2 in different tissues following poly I:C stimulation in vivo

Time-dependant expression pattern of AsLGP2 in poly I:Cinjected L. calcarifer was determined in six different tissues by qPCR using $E F-1 \alpha$ as internal control and PBS-injected animals served as experimental control. Among the tissues, gill, kidney and liver showed significant up-regulation as early as 3 h post-injection (hpi). At this point, liver showed 55 -fold up-regulation in AsLGP2 expression (Fig. 6). Though the level showed a decline at 8 hpi , the expression showed a significant up-regulation (34-fold) and the elevated expression declined further and attained normal level at 5 days post-injection (dpi) $(p<0.05$). In gill and kidney, significant up-regulation could be observed from 24 hpi with 29 -fold and 64 fold, respectively ($p<0.05$). However, in kidney, the expression increased further and attained the highest level (189 -fold; $p<0.05$) at 72 hpi . Although the expression showed a decline at 5 dpi , the expression was found to remain at a highly elevated level (77 -fold) (Fig. 6). In spleen, a late significant up-regulation (5-fold) at 72 hpi and 6 -fold change ($p<0.05$) at 5 dpi was observed. AsLGP2 mRNA expression in heart and intestine did not show any significant change at early time-points. However, these tissues showed significantly high expression (38 -fold and 29 -fold, respectively) at 5 dpi (Fig. 6).

3.6. Response of AsLGP2 to bacterial challenge in vivo

To investigate, whether AsLGP2 expression can be modulated by bacterial infection, the spatial expression pattern of AsLGP2 was determined following V. alginolyticus and S. aureus challenge in six
different tissues over a period of 5 days. V. alginolyticus challenge resulted in an early up-regulation of AsLGP2 in most of the tissues tested. At 3 hpi , a significant increase in expression level was observed with 12 -fold in gill and heart, 24 -fold in kidney, 36 -fold in liver and 40 -fold in intestine ($p<0.05$) compared to PBS-injected control group (Fig. 7A). Following initial up-regulation, the expression level was found to be maintained either at similar level or increased further at 8 hpi with $17,13,2.5$, and 34 -fold ($p<0.05$) in gill, heart, spleen and liver, respectively (Fig. 7A). However, apart from the significant up-regulation of 6 -fold at 24 hpi in gill and 9 fold at 5 dpi in heart, no significant change in the expression ($p<0.05$) of AsLGP2 was observed at later time-points in any other tissues tested (Fig. 7A).

In S. aureus-challenged animals, spleen and kidney showed significant up-regulation only at 3 hpi with 4.2 -fold and in intestine with 8 -fold at 24 hpi ($p<0.05$) whereas, at other time-points, the expression level was found to be similar to the control in these tissues (Fig. 7B). Similarly, as observed in intestinal tissue, expression level was found to be significantly up-regulated with 3.2 -fold in heart and 2.8 -fold ($p<0.05$) in liver at 24 hpi. In contrast, the expression level showed significant down-regulation at 3,8 and 72 hpi in heart and at 72 hpi in liver ($p<0.05$). In gill, although modulation in AsLGP2 expression was observed at some timepoints compared to PBS-injected control, the change in expression was found to be not significant ($p<0.05$) (Fig. 7B).

3.7. AsLGP2 expression in response to different ligand stimulation in vitro

The expression pattern of AsLGP2 in Asian seabass kidney cell line (SISK) exposed to different ligands such as poly I:C, LPS and PGN was determined over a period of 72 h compared to HBSStreated control cells (Fig. 8). AsLGP2 mRNA expression was found to be significantly increased (3.4-fold) at 24 hpi and reached peak level at 48 hpi with 8.8 -fold increase ($p<0.05$) in poly I:C-treated cells. Subsequently, the elevated expression level attained almost normal level at 72 hpi. In LPS-induced cells, the expression level showed gradual increase at 24 hpi (2.9 -fold) and reached the maximum level of 5.7 -fold increase at $72 \mathrm{hpi}(p<0.05)$. However,

 EHB02819.1 (Mole rat; Heterocephalus glaber); NP_084426.2 (Mice; Mus musculus), NP_077024.2 (Human; Homo sapiens), XP_013005131.1 (Guinea pig; Cavia porcellus).

Fig. 4. Normal expression profile of AsLGP2 in different tissues of healthy Asian seabass. Data are shown as relative expression, Mean \pm SE in 11 different tissues; ST Stomach, H - Heart, SP - Spleen, B - Brain, MG - Midgut, HK - Head kidney, L - Liver, TK - Trunk kidney, SK - Skin, HG - Hindgut, G - Gill.

PGN-induced cells exhibited no significant change in expression except for a transient 5.4 -fold up-regulation at 3 hpi (Fig. 8).

4. Discussion

RLRs, the group of cytoplasmic viral sensors, have become a focused area of research as an important component of innate immunity in higher vertebrates as well as lower vertebrates like fish. Among the three members of the RLR family, the specific role of LGP2 in the RLR signalling is not fully elucidated and it needs a great deal of attention to establish its common role as an immune molecule $[51,52]$. In the present study, we have cloned and sequenced an LGP2 transcript from Asian seabass, L. calcarifer. The predicted structure of AsLGP2 harbours four conserved domains: N terminal DExD/H-box helicase domain and a bacterial type III RES domain, a central HELICc domain and a C-terminal regulatory domain. Each of these domains has a specific role to play in the RLRsignalling cascade. DExD/H helicase domain, which contains putative MG++ binding motif and ATP binding site, has catalytic activity to bind and unwind dsRNA in an ATP hydrolysis-dependent manner [9]. The bacterial type RES III domain has a specific role in the cleavage of unmethylated double-stranded foreign DNA and
protection of self DNA from damage by methylation by virtue of its conserved sub-units [53,54]. The C-terminal RD domain of LGP2 is responsible for the detection and binding of both ssRNA and dsRNA preferably with 5'-triphosphate containing RNA [7,55]. It has also been shown that RD of LGP2 regulates the self-association and signalling of RIG, thus acting as a switch for the regulation of antiviral immunity [7]. With these conserved functions exhibited specifically by these putative domains, the structural organisation of this receptor is very less likely to vary across the animal kingdom. This may be the reason for having these conserved domains with similar structure across different animals. When compared with other animals, AsLGP2-specific domains show high similarity with the LGP2 reported from marine finfishes. Phylogenetic tree also showed that AsLGP2 forms a separate clad with other marine finfishes including seaperch, croaker, beakfish and flounder.

Four highly conserved cysteine moieties could be detected in the C-terminal RD domain of AsLGP2. These cysteine moieties along with other amino acids formed two looped structures in separate positions. The first looped structure is highly conserved across the species with four amino acid residues (CRNC), whereas the second loop connecting two cysteine moieties (CNNGNC) is varied across the species in terms of its residue length. The second loop of the Cterminal of LGP2 identified in L. calcarifer showed similarity in the loop structure reported from other fish species such as guppy, medaka, seaperch, Japanese flounder, croaker, beakfish and fugu, as they all have six amino acid residues. However, only four amino acid residues have been reported from cyprinids, catfish, tilapia, sharks, reptiles and mammals. Interestingly, the species with longer cysteine-bound looped structure mostly do not have RIG-1 in their genome [36]. As mutation in cysteine residue results in the instability of CTD and this domain is believed to function as dsRNA sensor [22]; the longer amino acid loop connecting cysteine may have a different functional role to play in species deprived of RIG-I.

The AsLGP2 mRNA was constitutively expressed in all the 11 tissues tested in healthy L. calcarifer. The transcript abundance was found to be higher in gill, hindgut and skin than in other tissues. Similar tissue distribution pattern of LGP2 was observed in C. carpio with high expression in gill and intestine [34], and in gill, skin along with muscle in L. crocea [36]. However, in L. japonicus, the highest expression was detected in liver followed by heart, intestine and gill [35]. In contrast, P. olivaceous and I. punctatus LGP2 are highly expressed in kidney, spleen and heart tissue [30,33]. Along with

Fig. 5. Expression of AsLGP2 embryonic and larval developmental stages of Asian seabass. Data are shown from unfertilized eggs until 30 dph as relative expression, Mean \pm SE; Uf: Unfertilized eggs, Fe: Fertilized eggs (0 hps), Bl: Blastula (5 hps), Ga: Gastrula (7 hps), Ne: Neurula (9 hps), Ee: Early embryo (12 hps), 0 d : Hatchlings (0 dph), $1 \mathrm{~d}: 1 \mathrm{dph}, 2 \mathrm{~d}: 2 \mathrm{dph}$, $3 \mathrm{~d}: 3 \mathrm{dph}, 5 \mathrm{~d}: 5 \mathrm{dph}, 10 \mathrm{~d}: 10 \mathrm{dph}, 30 \mathrm{~d}: 30 \mathrm{dph}$. Abbreviation, hps: Hours post-spawning; dph: Days post-hatching.

Fig. 6. Expression profile of AsLGP2 in various tissues of Asian seabass at different time-points following poly I:C stimulation in vivo. Different letters indicate significant differences ($p \leq 0.05$) between different time-points within a treatment group compared to control.
kidney and spleen, the mRNA expression was also found to be high in intestine and skin tissue of grass carp [31]. Although spleen and heart showed high transcript abundance of LGP2 in some of the finfishes, AsLGP2 is very lowly expressed in these tissues. However, the expression in skin was found to be high, unlike the low expression pattern reported in I. punctatus and C. carpio. Further, the constitutive expression of LGP2 observed in various tissues of different teleosts indicates that LGP2 expression is not tissuespecific; rather, it is species-specific based on the environment it inhabits.

The role of innate immune genes is of great importance for larval survival, as the products of these genes such as protein and mRNA get transferred maternally to offspring through egg in teleosts [56,57]. Recently, the ontogenetic developmental profiles of different innate immune-related genes including cytokines, transferrin and caspase- 1 have been studied in two marine fish models, i.e., European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) [58]. The transcript levels of these genes are differentially expressed in the embryonic and larval development process in these marine teleosts. The interleukin 1 beta and tumour necrosis factor alpha could not be detected in eggs while other genes such as cyclooxygenase-2, caspase-1, and transferrin were found to be maternally transferred in eggs. Similar expression profile of transferrin gene could be observed in Megalobrama amblycephala [59]. In an earlier study in Atlantic cod, it has been reported that the antibacterial innate immune genes like lysozyme and cathelicidin are maternally transferred while other antimicrobial molecules like hepcidin, pentraxins and LGP2 could not be detected in unfertilized eggs. The transcript levels of these nonmaternally transferred genes could be detected only in the gastrula stage [60]. Contrasting to this, the AsLGP2 transcript had shown a ubiquitous expression in all the embryonic and larval developmental stages including unfertilized eggs, and the highest transcript level was detected in the neurula stage. Similarly, a maternal transfer of sacsin gene was observed in loach, Misgurnus anguillicaudatus, but interestingly, the transcript level could not be detected in the later stages of embryonic development from blastula to neurula and reappears in hatchlings [61]. In zebrafish, the potent antiviral innate immune molecule Interferon- γ (IFN- γ) has
shown a maternal transfer trend as detected in unfertilized eggs and expressed in all the succeeding developmental stages with a potential to respond towards bacterial infection [62]. The difference in the transcript abundance of LGP2 in embryonic developmental stages may be due to the difference in incubation period before hatching as Atlantic cod eggs hatch in ~ 20 days, whereas the eggs of L. calcarifer hatch within $16-18 \mathrm{~h}$ post-fertilization. As L. calcarifer has a very short incubation period, before the maternal transcript gets exhausted, the advanced embryo (neurula and early embryo stages) might be capable of producing its own transcript of LGP2. The findings of the ubiquitous expression of AsLGP2 in this study and the presence of active transcript of IFN- γ in zebrafish embryo provides the indication of the active role played by RLR-mediated signalling in the embryonic and larval developmental stages of teleosts.

LGP2 has the highest RNA binding potential among the genes belonging to RLR family, but lacks a signal communicator, CARD at the N-terminal end. So the signalling pathway followed by the LGP2 to exhibit an antiviral function is not clear. From the available findings on the functional role played by LGP2 in different animals, it can be speculated that this gene can act as a positive or negative regulator of innate immune system [3,21,63]. The initial reports described LGP2 as a negative regulator of RLR-signalling. The overexpression of LGP2 impeded the function of other RLRs in viral detection similar to a mutant exhibiting RIG-I without CARD. Even, some of the viruses interact with LGP2 for a potential inhibition of RIG-I-mediated antiviral signalling. Moreover, mutant mice lacking LGP2 gene showed a more effective immune response against vesicular stomatitis virus [7,64-66]. In contrast, recent studies in different animal models and in-vitro cell line study showed a possible positive role played by LGP2. Many reports showed that LGP2 may have a major role in IFN- β expression and viral recognition [26,67]. The piscine LGP2 homologues are highly modulated following poly I:C or viral challenge in different teleosts such as grass carp, flounder, rainbow trout, channel catfish, seaperch and yellow croaker [30-33,35,36,68]. Similarly, in this study, AsLGP2 expression was highly modulated by poly I:C in the different tissues of L. calcarifer or SISK cell line in vitro. Among the tissues, kidney, liver and gill, showed relatively high level of AsLGP2 with kidney

Fig. 7. Expression profile of AsLGP2 in various tissues of Asian seabass at different time-points following bacterial challenge with (A) V. alginolyticus and (B) S. aureus in vivo. Different letters indicate significant differences $(p \leq 0.05)$ between different time-points within a treatment group compared to control.
showing the highest up-regulation of expression followed by liver. Grass carp challenged with GCRV also showed a similar pattern of expression with the highest modulation of expression observed in kidney and gill [31]. However, in seaperch and yellow croaker, high constitutive expression has been noticed in liver and kidney following NNV infection or poly I:C stimulation [35,36]. Significant up-regulation of LGP2 in different tissues indicates a positive regulatory role played by the gene in finfish with kidney and liver as the most potent sites of viral RNA recognition. Similar to in vivo study, poly I:C induction also resulted in the up-regulated
expression of AsLGP2 in SISK cell line. However, the magnitude of up-regulation is not comparable with the in vivo experiment as the highest fold-change observed was only 8.8 at 48 hpi . In a study in L. japonicus, the cells infected with NNV showed a rapid upregulation with almost 50 -fold increase, whereas poly I:C stimulation could only modulate the LGP2 expression by maximum 2.5 folds. From these different response patterns of in vitro model, it can be assumed that the cells as a biological replica of live animals are not as responsive towards synthetic analogue as its live counterpart.

Fig. 8. Expression pattern of AsLGP2 in SISK cell line following induction with poly I:C, LPS and PGN at different time intervals. Different letters indicate significant differences ($p \leq 0.05$) between different time groups within a treatment group compared to control.

There are evidences that RLRs can also mount a cellular immune response against different bacteria and viruses with DNA as nucleic acid rather than the usual viral RNA sensing $[34,69]$. The mutant LGP2-deficient mice infected with the bacterium Listeria monocytogens showed enhanced bacterial colonization and reduced production of different cytokines [70]. The antibacterial potential of LGP2 in fish was earlier elucidated in I. punctatus challenged with the intracellular bacterium, Edwardsiella ictaluri. A consistently significant up-regulation of LGP2 expression has been recorded throughout the experiment (till 6 d) [33]. In the current study, injection of Gram-negative intracellular bacterium, V. alginolyticus, showed a rapid increase of AsLGP2 transcript at 3 hpi in almost all the tissues tested except spleen. However, the rapid increase was found to be sustained only up to 8 hpi in most of the tissues except for gill (up to 24 hpi) and heart (up to 5 dpi). Gram-positive bacterium, S. aureus, could also transiently modulate AsLGP2 at certain time-points in different tissues. Similarly, AsLGP2 responded towards LPS stimulation; but PGN-treated cells showed a significant up-regulation only at 3 hpi in vitro. However, the magnitude of upregulation of AsLGP2 exhibited by poly I:C-injected animals was found to be relatively higher than those of bacteria-challenged animals. From the previous reports along with the observations made in the present study, it is quite evident that apart from its primary role of sensing viral RNA, LGP2 can also respond to bacterial infection. However, this response, as reported by Pollpeter et al. (2011), might not be a DNA-mediated response [70]. Further, it has been suggested that LGP2 can involve in the RNA polymerase IIImediated signalling pathway by recognising the transcription products to trigger antimicrobial response [70]. Nevertheless, further research on the specific antibacterial activity exhibited by RLRs is required to unravel the possible mechanism or molecules involved in this response.

In conclusion, we have cloned and characterized a full-length cDNA sequence of LGP2 from Asian seabass, L. calcarifer. AsLGP2 was constitutively expressed in the tissues of healthy animals and the expression is highly modulated in poly I:C-treated animals. The ubiquitous expression of AsLGP2 transcript in embryonic developmental stages suggests a possible maternal transfer of this gene. AsLGP2 is also found to be responsive towards different bacterial invaders, but this mechanism needs to be elucidated further. From the observations made in this study, it can be concluded that AsLGP2 may act as a positive regulatory molecule with both antiviral and antibacterial functions, and this molecule could play a significant role in the larval survival against viral infection in Asian seabass.

Acknowledgements

The authors would like to thank Director, ICAR-CIFE, for providing support and facilities to carry out this research. Authors would also like to acknowledge Dr. A. S. Sahul Hameed for providing SISK cell line for in vitro ligand induction study and Dr. A. R. Thirunavukkarasu for sharing Asian seabass embryonic and larval developmental stages.

References

[1] Y.B. Zhang, J.F. Gui, Molecular regulation of interferon antiviral response in fish, Dev. Comp. Immunol. 38 (2012) 193-202.
[2] H. Poeck, M. Bscheider, O. Gross, K. Finger, S. Roth, M. Rebsamen, N. Hannesschlager, M. Schlee, S. Rothenfusser, W. Barchet, H. Kato, S. Akira, S. Inoue, S. Endres, C. Peschel, G. Hartmann, V. Hornung, J. Ruland, Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signalling for interleukin 1 beta production, Nat. Immunol. 11 (2010) 63-69.
[3] K. Takahasi, H. Kumeta, N. Tsuduki, R. Narita, T. Shigemoto, R. Hirai, M. Yoneyama, M. Horiuchi, K. Ogura, T. Fujita, F. Inagaki, Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors, J. Biol. Chem. 284 (2009) 17465-17474.
[4] O. Takeuchi, S. Akira, Innate immunity to virus infection, Immunol. Rev. 227 (2009) 75-86.
[5] Y.K. Chan, M.U. Gack, RIG-I-like receptor regulation in virus infection and immunity, Curr. Opin. Virol. 12 (2015) 7-14.
[6] M. Yoneyama, M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, T. Fujita, The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses, Nat. Immunol. 5 (2004) 730-737.
[7] T. Saito, R. Hirai, Y.M. Loo, D. Owen, C.L. Johnson, S.C. Sinha, S. Akira, T. Fujita, M. Gale Jr., Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 582-587.
[8] S. Cui, K. Eisenacher, A. Kirchhofer, K. Brzozka, A. Lammens, K. Lammens, T. Fujita, K.K. Conzelmann, A. Krug, K.P. Hopfner, The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I, Mol. Cell 29 (2008) 169-179.
[9] M. Yoneyama, M. Kikuchi, K. Matsumoto, T. Imaizumi, M. Miyagishi, K. Taira, E. Foy, Y.M. Loo, M. Gale Jr., S. Akira, S. Yonehara, A. Kato, T. Fujita, Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity, J. Immunol. 175 (2005) 2851-2858.
[10] A.M. Bruns, D. Pollpeter, N. Hadizadeh, S. Myong, J.F. Marko, C.M. Horvath, ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2), J. Biol. Chem. 288 (2013) 938-946.
[11] M. Yoneyama, T. Fujita, RNA recognition and signal transduction by RIG-I-like receptors, Immunol. Rev. 227 (2009) 54-65.
[12] Y.M. Loo, M. Gale Jr., Immune signaling by RIG-I-like receptors, Immunity 34 (2011) 680-692.
[13] D. Uzri, H.B. Greenberg, Characterization of rotavirus RNAs that activate innate immune signaling through the RIG-I-like receptors, PLoS One 8 (2013) e69825.
[14] A.M. Bruns, G.P. Leser, R.A. Lamb, C.M. Horvath, The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly, Mol. Cell 55 (2014) 771-781.
[15] R. Sumpter Jr., Y.M. Loo, E. Foy, K. Li, M. Yoneyama, T. Fujita, S.M. Lemon, M. Gale Jr., Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I, J. Virol. 79 (2005) 2689-2699.
[16] V. Hornung, J. Ellegast, S. Kim, K. Brzozka, A. Jung, H. Kato, H. Poeck, S. Akira, K.K. Conzelmann, M. Schlee, S. Endres, G. Hartmann, 5'-triphosphate RNA is the ligand for RIG-I, Science 314 (2006) 994-997.
[17] H. Kato, O. Takeuchi, E. Mikamo-Satoh, R. Hirai, T. Kawai, K. Matsushita, A. Hiiragi, T.S. Dermody, T. Fujita, S. Akira, Length dependent recognition of double stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation associated gene 5, J. Exp. Med. 205 (2008) 1601-1610.
[18] Y.M. Loo, J. Fornek, N. Crochet, G. Bajwa, O. Perwitasari, L. Martinez-Sobrido, S. Akira, M.A. Gill, A. Garcia-Sastre, M.G. Katze, M. Gale Jr., Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity, J. Virol. 82 (2008) 335-345.
[19] R. Zust, L. Cervantes-Barragan, M. Habjan, R. Maier, B.W. Neuman, J. Ziebuhr, K.J. Szretter, S.C. Baker, W. Barchet, M.S. Diamond, S.G. Siddell, B. Ludewig, V. Thiel, Ribose 2'-O-methylationprovides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor MDA5, Nat. Immunol. 12 (2011) 137-143.
[20] S. Reikine, J.B. Nguyen, Y. Modis, Pattern recognition and signaling mechanisms of RIG-I and MDA5, Front. Immunol. 5 (2014) 342.
[21] D. Bamming, C.M. Horvath, Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2, J. Biol. Chem. 284 (2009) 9700-9712.
[22] D.A. Pippig, J.C. Hellmuth, S. Cui, A. Kirchhofer, K. Lammens, A. Lammens, A. Schmidt, S. Rothenfusser, K.P. Hopfner, The regulatory domain of the RIG-I family ATPase LGP2 senses double stranded RNA, Nucleic Acids Res. 37 (2009) 2014-2025.
[23] M. Yoneyama, K. Onomoto, M. Jogi, T. Akaboshi, T. Fujita, Viral RNA detection by RIG-I-like receptors, Curr. Opin. Immunol. 32 (2015) 48-53.
[24] A. Komuro, C.M. Horvath, RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2, J. Virol. 80 (2006) 12332-12342.
[25] T. Venkataraman, M. Valdes, R. Elsby, S. Kakuta, G. Caceres, S. Saijo, Y. Iwakura, G.N. Barber, Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses, J. Immunol. 178 (2007) 6444-6455.
[26] T. Satoh, H. Kato, Y. Kumagai, M. Yoneyama, S. Sato, K. Matsushita, T. Tsujimura, T. Fujita, S. Akira, O. Takeuchi, LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 1512-1517.
[27] S. Poynter, G. Lisser, A. Monjo, S. DeWitte-Orr, Sensors of infection: viral nucleic acid PRRs in fish, Biology 4 (2015) 460-493.
[28] M.S. Suthar, H.J. Ramos, M.M. Brassil, J. Netland, C.P. Chappell, G. Blahnik, A. McMillan, M.S. Diamond, E.A. Clark, M.J. Bevan, M. Gale Jr., The RIG-I-like receptor LGP2 controls CD8(+) T cell survival and fitness, Immunity 37 (2012) 235-248.
[29] R.C. Widau, A.D. Parekh, M.C. Ranck, D.W. Golden, K.A. Kumar, R.F. Sood, S.P. Pitroda, Z. Liao, X. Huang, T.E. Darga, D. Xu, L. Huang, J. Andrade, B. Roizman, R.R. Weichselbaum, N.N. Khodarev, RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E484-E491.
[30] M. Ohtani, J. Hikima, H. Kondo, I. Hirono, T.S. Jung, T. Aoki, Evolutional conservation of molecular structure and antiviral function of a viral RNA receptor, LGP2, in Japanese flounder, Paralichthys olivaceus, J. Immunol. 185 (2010) 7507-7517.
[31] T. Huang, J.G. Su, J.F. Heng, J. Dong, R.F. Zhang, H.M. Zhu, Identification and expression profiling analysis of grass carp Ctenopharyngodon idella LGP2 cDNA, Fish. Shellfish Immunol. 29 (2010) 349-355.
[32] M.X. Chang, B. Collet, P. Nie, K. Lester, S. Campbell, C.J. Secombes, J. Zou, Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in rainbow trout (Oncorhynchus mykiss), J. Virol. 85 (2011) 8403-8412.
[33] K.V. Rajendran, J. Zhang, S. Liu, E. Peatman, H. Kucuktas, X. Wang, H. Liu, T. Wood, J. Terhune, Z. Liu, Pathogen recognition receptors in channel catfish: II. Identification, phylogeny and expression of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), Dev. Comp. Immunol. 37 (2012) 381-389.
[34] X.L. Cao, J.J. Chen, Y. Cao, G.X. Nie, Q.Y. Wan, L.F. Wang, J.G. Su, Identification and expression of the laboratory of genetics and physiology 2 gene in common carp Cyprinus carpio, J. Fish. Biol. 86 (2015) 74-91.
[35] P. Jia, J. Zhang, Y. Jin, L. Zeng, K. Jia, M. Yi, Characterization and expression analysis of laboratory of genetics and physiology 2 gene in sea perch, Lateolabrax japonicas, Fish. Shellfish Immunol. 47 (2015) 214-220.
[36] B. Shen, Y. Hu, S. Zhang, J. Zheng, L. Zeng, J. Zhang, A. Zhu, C. Wu, Molecular characterization and expression analyses of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Larimichthys crocea, Fish. Shellfish Immunol. 55 (2016) 535-549.
[37] G. Mathew, Taxonomy, identification and biology of seabass (Lates calcarifer), in: J. Imelda, J.V. Edwin, V. Susmitha (Eds.), Course Manual: National Training on Cage Culture of Seabass, CMFRI \& NFDB, Kochi, 2009, pp. 38-43.
[38] M.S. Bryant, R.P. Lee, R.J.G. Lester, R. Whittington, Anti-immunoglobulin antisera used in an ELISA to detect antibodies in barramundi Lates calcarifer to Cryptocaryon irritans, Dis. Aquat. Org. 36 (1999) 21-28.
[39] J.H. Creeper, N.B. Buller, An outbreak of Streptococcus iniae in barramundi (Lates calcarifer) in freshwater cage culture, Aust. Vet. J. 84 (2006) 408-411.
[40] V. Parameswaran, S.R. Kumar, V.P.I. Ahmed, A.S.S. Hameed, A fish nodavirus associated with mass mortality in hatchery-reared Asian sea bass, Lates calcarifer, Aquaculture 275 (2008) 366-369.
[41] S.R. Krupesha-Sharma, G. Rathore, D.K. Verma, N. Sadhu, K.K. Philipose, Vibrio alginolyticus infection in Asian seabass (Lates calcarifer, Bloch) reared in open sea floating cages in India, Aquac. Res. 44 (2012) 86-92.
[42] A.C. Barnes, B. Trewin, N. Snape, E.C.E. Kvennefors, J.C.F. Baiano, Two hepcidinlike antimicrobial peptides in barramundi, Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide, Fish. Shellfish Immunol. 31 (2011) 350-357.
[43] N. Chakravarthy, K. Aravindan, N. Kalaimani, S.V. Alavandi, M. Poornima, T.C. Santiago, Intracellular copper zinc superoxide dismutase (icCuZnSOD) from Asian seabass (Lates calcarifer): molecular cloning, characterization and gene expression with reference to Vibrio anguillarum infection, Dev. Comp. Immunol. 36 (2012) 751-755.
[44] S. Azizan, K.L. Wan, A. Mohd-Adnan, Molecular characterisation and expression analysis of Cathepsin D from the Asian seabass, Lates calcarifer, Sains Malays. 43 (2014) 1139-1148.
[45] E. Zoccola, J. Delamare-Deboutteville, A.C. Barnes, Identification of barramundi (Lates calcarifer) DC-SCRIPT, a specific molecular marker for dendritic cells in fish, PLoS One 10 (2015) e0132687.
[46] A. Paria, A. Deepika, K. Sreedharan, M. Makesh, A. Chaudhari,
C.S. Purushothaman, A.R. Thirunavukkarasu, K.V. Rajendran, Identification of Nod like receptor C3 (NLRC3) in Asian seabass, Lates calcarifer: characterisation, ontogeny and expression analysis after experimental infection and ligand stimulation, Fish. Shellfish Immunol. 55 (2016) 602-612.
[47] A.S.S. Hameed, V. Parameswaran, R. Shukla, I.S.B. Singh, A.R. Thirunavukkarasu, R.R. Bhonde, Establishment and characterization of India's first marine fish cell line (SISK) from the kidney of sea bass (Lates calcarifer), Aquaculture 257 (2006) 92-103.
[48] M. Kubista, J.M. Andrade, M. Bengtsson, A. Forootan, J. Jonak, K. Lind, R. Sindelka, R. Sjoback, B. Sjogreen, L. Strombom, A. Stahlberg, N. Zoric, The real time polymerase chain reaction, Mol. Asp. Med. 27 (2006) 95-125.
[49] A. Paria, J. Dong, P.P. Suresh-Babu, M. Makesh, A. Chaudhari, A.R. Thirunavukkarasu, C.S. Purushothaman, K.V. Rajendran, Evaluation of candidate reference genes for quantitative expression studies in Asian seabass (Lates calcarifer); during ontogenesis and in tissues of healthy and infected fishes, Indian J. Exp. Biol. 54 (2016) 597-605.
[50] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta \Delta C T}$ method, Methods 25 (2001) 402-408.
[51] L.Y. Zhu, L. Nie, G. Zhu, L.X. Xiang, J.Z. Shao, Advances in research of fish immune relevant genes: a comparative overview of innate and adaptive immunity in teleosts, Dev. Comp. Immunol. 39 (2013) 39-62.
[52] Z. Zhu, X. Zhang, G. Wang, H. Zheng, The Laboratory of Genetics and Physiology 2: emerging insights into the controversial functions of this RIG-I-like receptor, 960190, Biomed. Res. Int. (2014) 1-7.
[53] S. Saha, D.N. Rao, Mutations in the Res subunit of the EcoPI restriction enzyme that affect ATP-dependent reactions, J. Mol. Biol. 269 (1997) 342-354.
[54] J. Zou, M. Chang, P. Nie, C.J. Secombes, Origin and evolution of the RIG-I like RNA helicase gene family, BMC Evol. Biol. 9 (2009) 85.
[55] A. Murali, X. Li, C.T. Ranjith-Kumar, K. Bhardwaj, A. Holzenburg, P. Li, C.C. Kao, Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response, J. Biol. Chem. 283 (2008) 15825-15833.
[56] H.B.T. Huttenhuis, C.P.O. Grou, A.J. Taverne-Thiele, N. Taverne, J.H.W.M. Rombout, Carp (Cyprinus carpio L.) innate immune factors are present before hatching, Fish. Shellfish Immunol. 20 (2006) 586-596.
[57] I. Mulero, A. Garcia-Ayala, M. Jose, V. Mulero, Maternal transfer of immunity and ontogeny of autologous immunocompetense of fish: a minireview, Aquaculture 268 (2007) 244-250.
[58] H. Cordero, L.T. Guzman-Villanueva, E. Chaves-Pozo, M. Arizcun, F. AscencioValle, A. Cuesta, M.A. Esteban, Comparative ontogenetic development of two marine teleosts, gilthead seabream and European sea bass: new insights into nutrition and immunity, Dev. Comp. Immunol. 65 (2016) 1-7.
[59] Z. Ding, X. Zhao, L. Su, F. Zhou, N. Chen, J. Wu, X. Fu, F. Wu, W. Wang, H. Liu, The Megalobrama amblycephala transferrin and transferrin receptor genes: molecular cloning, characterization and expression during early development and after Aeromonas hydrophila infection, Dev. Comp. Immunol. 49 (2015) 290-297.
[60] M. Seppola, H. Johnsen, S. Mennen, B. Myrnes, H. Tveiten, Maternal transfer and transcriptional onset of immune genes during ontogenesis in Atlantic cod, Dev. Comp. Immunol. 33 (2009) 1205-1211.
[61] J.W. Lee, J.E. Kim, I.B. Goo, J.A. Hwang, J.H. Im, H.S. Choi, J.H. Lee, Expression of immune-related genes during loach (Misgurnus anguillicaudatus) embryonic and early larval development, Dev. Reprod. 19 (2015) 181-187.
[62] D. Sieger, C. Stein, D. Neifer, A.M. van der Sar, M. Leptin, The role of gamma interferon in innate immunity in the zebrafish embryo, Dis. Model. Mech. 2 (2009) 571-581.
[63] A.M. Bruns, C.M. Horvath, LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signalling, Cytokine 74 (2015) 198-206.
[64] S. Rothenfusser, N. Goutagny, G. DiPerna, M. Gong, B.G. Monks, A. Schoenemeyer, M. Yamamoto, S. Akira, K.A. Fitzgerald, The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acidinducible gene-I, J. Immunol. 175 (2005) 5260-5268.
[65] A. Komuro, D. Bamming, C.M. Horvath, Negative regulation of cytoplasmic RNA mediated antiviral signalling, Cytokine 43 (2008) 350-358.
[66] K. Childs, R. Randall, S. Goodbourn, Paramyxovirus V proteins interact with the RNA helicase LGP2 to inhibit RIG-I-dependent interferon induction, J. Virol. 86 (2012) 3411-3421.
[67] E.M.Y. Moresco, B. Beutler, LGP2: positive about viral sensing, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 1261-1262.
[68] J.I. Hikima, M.K. Yi, M. Ohtani, C.Y. Jung, Y.K. Kim, J.Y. Mun, Y.R. Kim, H. Takeyama, T. Aoki, T.S. Jung, LGP2 expression is enhanced by interferon regulatory factor 3 in olive flounder, Paralichthys olivaceus, PLoS One 7 (2012) e51522.
[69] K.M. Monroe, S.M. McWhirter, R.E. Vance, Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila, PLoS Pathog. 5 (2009) e1000665.
[70] D. Pollpeter, A. Komuro, G.N. Barber, C.M. Horvath, Impaired cellular responses to cytosolic DNA or infection with Listeria monocytogenes and Vaccinia virus in the absence of the murine LGP2 protein, PLoS One 6 (2011) e18842.

[^0]: * Corresponding author.

 E-mail address: rajendrankv@hotmail.com (K.V. Rajendran).
 ${ }^{1}$ Present address: ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834 010, India.

