CHEM 109A Organic Chemistry

https://labs.chem.ucsb.edu/zakarian/armen/courses.html

Chapter 9

Substitution Reactions: $S_N 2$ and $S_N 1$

Elimination Reactions: E2 and E1

Final exam is cumulative						
Chapter 1: Chapter 2: Chapter 3:	1.1 – 1.16 2.1 – 2.10, <u>2.12</u> (Lewis acids 3.1 – 3.15)	bonding acids/bases nomenclature, ph. pr.			
Chapter 4: Chapter 5: Chapter 6:	4.1 - 4.15 (4.16 - 4.17) 5.1 - 5.12 (5.13, 5.14) 6.1 - 6.13, 6.16 (6.14, 6.15))	stereochemistry thermodyn./kinetics alkene reactions			
Chapter 7: Chapter 8:	7.1 - 7.12 8.1 - 8.7, 8.9, 8.11, 8.16 - 8	alkyne ro 3.18 (resonar carbocat	eactions, synthesis nce effect, on pKa, ions, intro to aromaticity)			
Chapter 9:	9.1 – <u>9.5</u>	$S_{\rm N}$ 1 and $S_{\rm N}$ 2 reac	tions and mechanisms			
 about ¾ of material from midterms 1-3, about ¼ from 7.6 – 9.5 midterms available to pick (CHEM 2138) until Monday 7 pm 						
Wednesday, March 21, 4:00 – 7 pm, room BUCHN 1910 (last name A – S); Phelps 1508 (last name T – Z)						

Midterm 3 informationAverage:59.5Standard deviation:16.1Max95Min18.5

cicopiin						
Table 9.1	Common Nuc	leophiles/B	ases			
HO⁻	RO ⁻	H ₂ O	ROH	RCOO ⁻		
HS^{-}	RS^{-}	H_2S	RSH			
$^{-}NH_{2}$	RNH^{-}	NH ₃	RNH ₂			
⁻C≡N	$RC \equiv C^{-}$					
Cl ⁻	Br ⁻	I_				

A nucleophile shares its lone pair with an atom other than a proton.

stronger base, better nucleophile		weaker base, poorer nucleophile
HO^{-}	>	H ₂ O
CH_3O^-	>	CH ₃ OH
⁻ NH ₂	>	NH ₃

stronger base, better nucleophile		weaker base, poorer nucleophile
HO^{-}	>	H ₂ O
CH_3O^-	>	CH ₃ OH
$^{-}NH_{2}$	>	NH ₃
$CH_3CH_2NH^-$	>	CH ₃ CH ₂ NH ₂

Comparing S _N 2 and S _N 1 Reactions						
S _N 1						
two-step mechanism with a carbocation intermediate						
unimolecular rate-determining step						
rate decreases with decreasing stability of the carbocation						
products have both the retained and inverted configurations relative to that of the reactant						
leaving group: $I^- > Br^- > Cl^- > F^-$						
alkyl halide reactants: tertiary						
the strength of the nucleophile does not affect the rate of the reaction						

