Thermodynamik Formelsammlung

Helmut Hartmann

27. Juni 2012

HOCHSCHULE AMBERG WEIDEN Fakultät Maschinenbau / Umwelttechnik Studiengang Umwelttechnik aus der Vorlesung "THERMODYNAMIK" von Prof. Dr.-Ing. Univ. Marco Taschek

 $\label{eq:Gesetzt} \mbox{Gesetzt in \mathbb{L}^T_EX}$ CC BY-NC-SA 3.0 Helmut Hartmann

Inhaltsverzeichnis

1 Allgemeines

Grundlegende Formeln

$$\begin{split} c_{\rm p} &= c_{\rm v} + R_{\rm i} \\ c_{\rm v} &= \frac{1}{\kappa - 1} R_{\rm i} \\ \kappa &= \frac{c_{\rm p}}{c_{\rm v}} \\ \Delta u &= c_{\rm v} \Delta T \\ \Delta h &= c_{\rm p} \Delta T \\ h &= u + pv \\ \dot{V} &= Ac \\ \dot{m} &= \dot{V}\rho = \dot{V} \frac{p}{R_{\rm i}T} \\ \rho &= \frac{p}{R_{\rm i}T} = \frac{1}{v} \\ c_{\rm m}|_{{\rm T}_1}^{{\rm T}_2} &= \frac{c_{\rm m}|_{{\rm T}_0}^{{\rm T}_2(T_2 - T_0) - c_{\rm m}}|_{{\rm T}_0}^{{\rm T}_1(T_1 - T_0)} \\ \end{split}$$

$$U_{\rm Kreis} = \pi 2r$$
$$A_{\rm Kreis} = \pi r^2 = \frac{\pi d^2}{4}$$
$$V_{\rm Zyl.} = h A_{\rm Kreis}$$
$$\Delta V = V \gamma \Delta T$$
$$\Delta L = L_3^{\gamma} \Delta T$$

$$\Delta L = L \frac{1}{3} \Delta$$
$$\gamma = \frac{1}{v} \left(\frac{\delta v}{\delta T}\right)$$

 $\begin{aligned} & \underline{\operatorname{Avogadro}}\\ & pv = R_{\mathrm{i}}T \\ & pV = mR_{\mathrm{i}}T \quad \text{mit} \quad m = nM \\ & pV = nMR_{\mathrm{i}}T \\ & pV = nMR_{\mathrm{i}}T \\ & R_{\mathrm{i}} = \frac{R_{\mathrm{m}}}{M} \\ & R_{\mathrm{i}} = \frac{R_{\mathrm{m}}}{M} \\ & pv_{\mathrm{m}} = R_{\mathrm{m}}T \\ & pV = mR_{\mathrm{i}}T = nR_{\mathrm{m}}T \end{aligned}$

 $\frac{\text{Real Gas}}{pV = mR_{i}T\lambda}$ $\lambda \rightarrow \text{Tabellenwert}$

$$\begin{split} & \underline{\text{Wichtige Werte bei Normbedingungen}} \\ & \underline{\text{Wichtige Werte bei Normbedingungen}} \\ & c_{\text{v,Luft}} = 0.717 \frac{\text{kJ}}{\text{kgK}} \\ & c_{\text{p,Luft}} = 1.004 \frac{\text{kJ}}{\text{kgK}} \\ & M_{\text{Luft}} = 28.8 \frac{\text{g}}{\text{mol}} \\ & n_{\text{Luft}} = 34.7 \frac{\text{mol}}{\text{kg}} \\ & n_{\text{Luft}} = 0.287 \frac{\text{kJ}}{\text{kgK}} \\ & c_{\text{Eis}} = 2.05 \frac{\text{kJ}}{\text{kgK}} \\ & c_{\text{Wasser}} = 4.20 \frac{\text{kJ}}{\text{kgK}} \\ & \Delta h_{\text{Schmelz}} = 334 \frac{\text{kJ}}{\text{kg}} \\ & \Delta h_{\text{Kondens.}} = 2257 \frac{\text{kJ}}{\text{kg}} \end{split}$$

 $\frac{\text{Konstanten}}{v_{\rm m} = 22,414 \frac{\text{dm}^3}{\text{mol}}}$ $n = 6,022 * 10^{23} \text{Teilchen}$ $R_{\rm m} = 8,3143 \frac{\text{J}}{\text{molK}}$

Normbedingungen sind 273,15 K und 1013,25 mbar

$$\begin{split} & \frac{\text{Wärme}(\text{energie})\text{strom }\dot{Q} \text{ in } W = \frac{\text{J}}{\text{s}} \\ & \overline{\text{A} = \text{Berührfläche in } \text{m}^2} \\ & \text{k} = \text{Wärmedurchgangskoeffizient in } \frac{\text{W}}{\text{m}^2\text{K}} \\ & \underline{\text{ubertragene Wärme}(\text{energie}) \text{ in } \text{J} = \text{Ws}} \\ & \underline{\text{Leistung P (Arbeitsstrom)} \text{ in } \frac{\text{J}}{\text{s}} = W} \end{split}$$

<u>Arbeit W_{12} in J = Ws = Nm</u>

M = Drehmoment (M = Fl) in Nm

Elektrische Leistung in W = VA

<u>Hubarbeit</u>

Wellenleistung $P_{\rm W}$

 $n = Drehzahl in \frac{1}{s}$

Elektrische Arbeit

Ohm'sches Gesetz

Nutzarbeit $W_{N,12}$

 $\dot{Q} = kA(T_{\rm A} - T_{\rm B})$

$$Q_{12} = \int_{t_1}^{t_2} \dot{Q} dt$$

$$P = \frac{dW}{dt} (= \dot{W})$$

$$\dot{W}_{t,12} = \frac{\dot{m}}{\rho} (p_2 - p_1)$$

$$P = W_{t,12}n$$

$$W_{12} = \int_{t_1}^{t_2} P(t) dt = \int_{1}^{2} \vec{F} d\vec{x} = \vec{F} d\vec{x}$$

$$W_{\rm H} = F_G \Delta h = mg \Delta h$$

$$P_{\rm W} = M2\pi n = M\omega = \vec{F} \vec{v} = \vec{F} \times \vec{v}$$

$$P_{\rm W} = \dot{m} |w_{t12}| = \dot{m} |h_2 - h_1|$$

$$P = UI$$

$$W_{el,12} = \int_{t_1}^{t_2} P_{el} dt$$

$$U = RI$$

$$W_{N,12} = -\int_{1}^{2} (p - p_N) dV \Rightarrow W_{N,12} = -\int_{1}^{2} p dV$$

 $\begin{array}{l} & \frac{\text{Grundgleichung der Kalorik}}{\Delta Q = mc\Delta T} \\ \Rightarrow Q_{12} = mc(T_2 - T_1) \\ \text{für flüssige und feste Stoffe, bei Gasen mit } c_{\text{v}} \text{ oder } c_{\text{p}} \end{array}$

 $\Delta U = \Delta Q = mc_{\rm v} \Delta T$ $\Rightarrow \mathbf{NUR} \text{ bei isochorer Zustandsänderung im geschlossenen System}$

 $\Delta H = \Delta Q = mc_{\rm p}\Delta T$ \Rightarrow **NUR** bei isobarer Zustandsänderung im offenen System

 $\frac{\text{Spezifischer Energiegehalt}}{e = \frac{E}{m}}$

 $\frac{\text{Energiestrom-Bilanzgleichung}}{\frac{dE_{\text{Sys}}}{dt} = Q + W + (me)_{\text{ein}} - (me)_{\text{aus}}}$

2 System

Abb. 1: Systemübersicht

1. HS Geschlossenes System $q_{12} + w_{v12} = u_2 - u_1$ $u_2 - u_1 = c_v(T_2 - T_1)$ $w_{v12} = -\int p dv$

2. HS Geschlossenes System $\int T ds - \int p dv = u_2 - u_1$ 1. HS Offenes System $q_{12} + w_{t12} = h_2 - h_1$ $h_2 - h_1 = c_p(T_2 - T_1)$ $w_{t12} = \int v dp$ $P = \dot{m} |\Delta h| = \dot{m} |w_{t12}|$

 $\frac{2. \text{ HS Offenes System}}{\int T \mathrm{d}s + \int v \mathrm{d}p = h_2 - h_1}$

System:

Menge an Materie oder betrachteter Raumausschnitt. Er besteht aus Systeminhalt, Systemgrenze und Umgebung.

Nach Systeminhalt unterscheidet man zwischen

- <u>homogenes System:</u> mit gleichförmiger, chemischer Zusammensetzung (Komponente) und physikalischen Eigenschaften (Phase).
- <u>heterogenes System:</u> 2 oder mehr Phasen, eine oder mehrere Komponenten.
- <u>abgeschlossenes (isoliertes) System:</u> (dm = 0, dE = 0) (adiabat) keine Wechselwirkung mit der Umgebung (undurchlässig für Energie und Masse).
- geschlossenes System: $(dm = 0, dE \neq 0)$ (diabat) durchlässig für Energie, nicht für Masse (Systemgrenze verschiebbar).
- offenes System:

 $(\mathrm{d}m \neq 0, \mathrm{d}E \neq 0)$

durchlässig für Energie und Masse (Systemgrenze verschiebbar, Systemgrenze fest = Kontrollvolumen).

- <u>adiabates System (wärmedicht):</u> durchlässig für Masse und alle Energieformen außer Wärme (Systemgrenze verschiebbar)
- <u>diabates System (wärmedurchlässig):</u> quasi real.

3 Zustand

Der Zustand eines Systems wird bestimmt durch die physikalischen Eigenschaften, die Zustandsgrößen

3.1 Zustandsgrößen

- <u>thermische Zustandsgrößen:</u> Druck, Temperatur, Volumen
- <u>mechanische Zustandsgrößen:</u> z.B. Geschwindigkeit, Lage
- <u>äußere Zustandsgrößen:</u> Lagebeschreibung des Systems
- <u>innere Zustandsgrößen:</u> Systembeschreibung
- <u>intensive Zustandsgrößen:</u> unabhängig von der Systemgröße (z.B. Druck, Temperatur)(nicht additiv)
- <u>extensive Zustandsgrößen:</u> abhängig von der Systemgröße (z.B. Volumen)(additiv)
- <u>spezifische Zustandsgrößen:</u> bezogen auf die Masse (m) und damit unabhängig von der Systemgröße

3.2 Prozess

Summe der äußeren Einwirkungen die zu einer Zustandsänderung führen

3.3 Prozessgröße

Tritt bei Zustandsänderung auf und ist wegabhängig (z.B. Wärme Q, Arbeit W)

4 Zustandsänderungen

4.1 Übersicht der Zustandsänderungen

4.1.1 Isochore

Abb. 2: Arbeitsdiagramm

Abb. 3: Wärmediagramm

4.1.2 Isobare

- Abb. 4: Arbeitsdiagramm
- Abb. 5: Wärmediagramm

4.1.3 Isotherme

Abb. 6: Arbeitsdiagramm

Abb. 7: Wärmediagramm

4.1.4 Isentrope

Abb. 8: Arbeitsdiagramm

Abb. 9: Wärmediagramm

4.1.5 Isenthalpe

Abb. 10: Wärmediagramm

 $(1) \longrightarrow (2)$ Isenthalpe Drosselung $(2) \longrightarrow (3)$ Isentrope Expansion $(3) \longrightarrow (1)$ Dissipation der kinetischen Energie bei p = const.

$$n = const.$$

 $q_{12} + \psi_{12} = \frac{n-\kappa}{n-1}c_{p}(T_{2} - T_{1})$

Abb. 11: Isobare Zustandsänderung

Geschlossenes System (reversible ZÄ)
$w_{v12} = -\int p \mathrm{d}v = -p(v_2 - v_1)$
$q_{12} + w_{v12} = u_2 - u_1$
$q_{12} = u_2 - u_1 - w_{v12}$
$q_{12} = u_2 - u_1 - \left[-p(v_2 - v_1)\right]$
$q_{12} = (u_2 + p_2 v_2) - (u_1 + p_1 v_1)$
$q_{12} = h_2 - h_1$
$q_{12} = c_{\rm p}(T_2 - T_1)$

Offenes System
$w_{\mathrm{t}12} = \int v \mathrm{d}p = 0$
$q_{12} + \mu_{f} = h_2 - h_1$
$q_{12} = h_2 - h_1$
$q_{12} = c_{\rm p}(T_2 - T_1)$

Abb. 12: Isochore Zustandsänderung

 $\begin{array}{ll} \underline{\text{Geschlossenes System (reversible ZÄ)}} \\ w_{v12} = -\int v dp = 0 \\ q_{12} + \psi//f_{2} = u_{2} - u_{1} \\ q_{12} = c_{v}(T_{2} - T_{1}) \end{array} \qquad \begin{array}{l} \underline{\text{Offenes System}} \\ w_{t12} = \int v dp \\ q_{12} + w_{t12} = h_{2} - h_{1} \\ q_{12} = h_{2} - h_{1} - w_{t12} \\ q_{12} = (u_{2} + p_{2}v_{2}) - (u_{1} + p_{1}v_{1}) - v(p_{2} - p_{1}) \\ q_{12} = u_{2} - u_{1} \\ \hline q_{12} = c_{v}(T_{2} - T_{1}) \end{array}$

Abb. 13: Isotherme Zustandsänderung

4.5 Isentrope Zustandsänderung

$$p_1 v_1^{\kappa} = p_2 v_2^{\kappa} = const.$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\kappa-1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$

 \rightarrow Adiabat reversibel

Abb. 14: Arbeitsdiagramm

Abb. 15: Adiabate Verdicht.

 $q_{12} = 0$

Geschlossenes System (reversible ZÄ)

$$\frac{q}{f_{2}^{k}} + w_{v12} = u_{2} - u_{1}$$

$$w_{v12} = c_{v}(T_{2} - T_{1})$$

$$du = -pdv$$

$$\frac{T_{2}}{T_{1}} = (\frac{v_{1}}{v_{2}})^{\kappa-1} \text{ bzw. } T_{1}v_{1}^{\kappa-1} = T_{2}v_{2}^{\kappa-1}$$

$$\frac{p_{1}v_{1}^{\kappa} = p_{2}v_{2}^{\kappa}}{T_{1}} = (\frac{p_{2}}{p_{1}})^{\frac{\kappa-1}{\kappa}} = (\frac{v_{1}}{v_{2}})^{\kappa-1}$$

$$w_{v12} = \underbrace{c_{v}}_{R_{1}}(T_{2} - T_{1}) = \frac{R_{i}}{\kappa-1}(T_{2} - T_{1})$$

$$w_{v12} = \frac{R_{i}T_{1}}{\kappa-1}(\frac{T_{2}}{T_{1}} - 1)$$

$$w_{v12} = \frac{R_{i}T_{1}}{\kappa-1}((\frac{p_{2}}{p_{1}})^{\frac{\kappa-1}{\kappa}} - 1)$$

$$w_{v12} = \frac{R_{i}T_{1}}{n-1}(\frac{T_{2}}{T_{1}} - 1)$$

$$w_{v12} = \frac{nR_{i}T_{1}}{n-1}(\frac{T_{2}}{T_{1}} - 1)$$

$$w_{v12} = \frac{nR_{i}T_{1}}{n-1}(\frac{T_{2}}{T_{1}} - 1)$$

 $\left(\frac{p_2}{p_1}\right) = \left(\frac{v_1}{v_2}\right)^{\kappa}$

 $w_{t12} = \kappa w_{v12}$

Offenes System

$$w_{t12} = \underbrace{c_p}_{\frac{\kappa R_i}{\kappa - 1}} (T_2 - T_1) = \frac{\kappa R_i}{\kappa - 1} (T_2 - T_1)$$

$$w_{t12} = \frac{\kappa R_i T_1}{\kappa - 1} (\frac{T_2}{T_1} - 1)$$

$$w_{t12} = \frac{\kappa R_i T_1}{\kappa - 1} ((\frac{p_2}{p_1})^{\frac{\kappa - 1}{\kappa}} - 1)$$

$$w_{t12} = \frac{\kappa R_i T_1}{\kappa - 1} ((\frac{v_1}{v_2})^{\kappa - 1} - 1)$$

$$w_{v12} Polytrop = \frac{R_i}{n - 1} (T_2 - T_1)$$

$$w_{v12} = \frac{R_i T_1}{1} (\frac{T_2}{T_2} - 1)$$

$$w_{v12} = \frac{R_i T_1}{n-1} \left(\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right)$$

 $\frac{\text{Dissipations energie:}}{q_{12} + \psi_{12} = \frac{n-\kappa}{n-1}c_{\text{v}}(T_2 - T_1)}$

 $w_{t12} = n w_{v12}$

4.6 Polytrope, reversible ZÄ

$$p_1 v_1^n = p_2 v_2^n = const. \qquad \frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{n-1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$$

$$u_{2} - u_{1} = q_{12} + w_{v12}$$

$$q_{12} = u_{2} - u_{1} - w_{v12}$$

$$q_{12} = c_{v}(T_{2} - T_{1}) - (\frac{R_{i}}{n-1})(T_{2} - T_{1})$$

$$\boxed{q_{12} = (c_{v} - \frac{R_{i}}{n-1})(T_{2} - T_{1})}$$

$$\boxed{q_{12} = \frac{n-\kappa}{n-1}c_{v}(T_{2} - T_{1})}$$

$$\boxed{q_{12} = \frac{R_{i}}{n-1}(T_{2} - T_{1})}$$

Nachweis Zusammenhang $c_{\rm p}$ zu $c_{\rm v}$

$$\underbrace{ \text{Offenes System}}_{h_2 - h_1 = q_{12} + w_{t12}} \\
 q_{12} = h_2 - h_1 - w_{t12} \\
 q_{12} = c_p(T_2 - T_1) - \frac{nR_i}{n-1}(T_2 - T_1) \\
 \hline
 \begin{bmatrix} q_{12} = (c_p - \frac{nR_i}{n-1})(T_2 - T_1) \\
 \end{bmatrix} \\
 \hline
 \begin{bmatrix} w_{t12} = \frac{nR_i}{n-1}(T_2 - T_1) \\
 \end{bmatrix}$$

Berechnung des Polytropenexponents n

$$c_{p} = c_{v} + R_{i}$$

$$c_{p} - \frac{nR_{i}}{n-1} = c_{v} + R_{i} - \frac{nR_{i}}{n-1}$$

$$c_{p} - \frac{nR_{i}}{n-1} = c_{v} + \frac{R_{i}(n-1)}{(n-1)} - \frac{nR_{i}}{n-1}$$

$$c_{p} - \frac{nR_{i}}{n-1} = c_{v} + \frac{nR_{i} - R_{i} - nR_{i}}{n-1}$$

$$\boxed{c_{p} - \frac{nR_{i}}{n-1} = c_{v} - \frac{R_{i}}{n-1}}$$

Polytropen exponent n

 $c_{\rm p}$

Abb. 17: Polytrope Zustandsänderung

 \rightarrow adiabat, isentrop, perfekt isoliert $n\sim \kappa$

- \rightarrow Arbeit und Wärme wird zugeführt $n > \kappa$
- \rightarrow isotherm n = 1
- \rightarrow isochor $n \to \infty$
- $n \rightarrow 0$ \rightarrow isobar

5 Entropie

$s_2 - s_1 = c_p \ln(\frac{T_2}{T_1}) - R_i \ln(\frac{p_2}{p_1})$
$s_2 - s_1 = c_{\rm v} \ln(\frac{T_2}{T_1}) + R_{\rm i} \ln(\frac{v_2}{v_1})$
$s_2 - s_1 = c_v \ln(\frac{p_2}{p_1}) + c_p \ln(\frac{v_2}{v_1})$

Entropieerzeugung

Entropie entsteht durch Dissipation ψ

$$s_{i12} = \int_{1}^{2} \frac{d\psi_{12}}{T} \quad mit \quad T = const.$$

$$s_{i12} = \frac{\psi_{12}}{T} \quad oder \text{ pro Zeit}$$

$$\dot{s}_{i12} = \frac{\psi_{12}}{T}$$

Entropiestrom

$\dot{S}_2 - \dot{S}_1 = \dot{m}(s_2 - s_1)$	
$\dot{S}_2 - \dot{S}_1 = \dot{m}[c_p \ln(\frac{T_2}{T_1}) - R_i]$	$\ln(\frac{p_2}{p_1})]$
$\overrightarrow{\dot{S}_2 - \dot{S}_1 = \dot{m}c_{\mathrm{v}}\frac{\kappa - n}{n - 1}\ln(\frac{T_1}{T_2})}$	

Entropietransport

$$s_{q12} = \int_{1}^{2} \frac{dq_{12}}{T} \quad mit \ T = const.$$

$$s_{q12} = \frac{q_{12}}{T} \quad mit \ T = mittlere \ Temperatur, \ bei \ der \ Q \ "ubertragen \ wird$$

5.1 Wasserwirbelbremse

$$\begin{split} \dot{\psi} &= \frac{Dissipationsenergie}{Zeit} \\ \Delta S &= 0 \quad (\text{im inneren System}) \\ & T &= \text{const.} \\ & p &= \text{const.} \\ & V &= \text{const.} \\ \end{split} \\ \\ \hline \frac{1. \text{ HS geschlossenes System}}{2} \\ \end{split} \\ \begin{aligned} & Q_{12} + \psi/\psi/\psi &= \psi_{12} \\ \psi/\psi &= \psi_{12} \\ \psi_{12} &= \psi_{12} \\ \psi_{12}$$

Entropieerzeugung

 $S_{12} = \int \frac{\mathrm{d}\psi_{12}}{T} \text{ mit } T = const.$ $s_{12} = \frac{\psi_{12}}{T} \text{ oder pro Zeit } \dot{S}_{12} = \frac{\dot{\psi}_{12}}{T}$

Entropietransport

Kühlwassermassentrom

Änderung der spez. Entropie des Kühlwassers

$$\dot{S}_{Q12} = \dot{S}_2 - \dot{S}_1$$

 $\dot{s}_2 - \dot{s}_1 = \frac{\dot{S}_{Q12}}{\dot{m}}$

 $S_{Q12} = -\frac{\dot{\psi}_{12}}{T}$

 $\dot{m} = \frac{\dot{Q}}{c_W \Delta T_W}$

5.2 Wärmepumpe

5.2.1 wie Tauchsieder

5.2.2 generell

Energiebilanz 1.HS

$$|\dot{Q}_2| = |\dot{Q}_1| + |\dot{A}|$$

$$\begin{split} |\dot{Q}_2| &= \dot{m}_{\max} c_{\rm p} (T_{\rm E} - T_{\rm A}) \\ \dot{Q}_1 \text{ unbekannt} \to 1. \text{HS reicht nicht} \\ &\hookrightarrow 2. \text{HS} \end{split}$$

$$\begin{split} &\Delta S_{\rm WP} = 0 \\ &|\dot{S}_1| = |\dot{S}_2| \text{ weil reversibel} \\ &\mathrm{d}\dot{S} = \frac{\mathrm{d}Q}{T} \to \int \mathrm{d}\dot{S} = \int \frac{\mathrm{d}\dot{Q}}{T} \\ &\mathrm{mit} \ T_1 = const. \ \mathrm{und} \ \mathrm{d}\dot{Q} = const. \end{split}$$

$$\rightarrow \dot{S}_1 = \frac{\dot{Q}_1}{T_1}$$
 bzw. $\dot{Q}_1 = \dot{S}_1 T_1$

Abb. 18: Wärmepumpe

$$\begin{split} \mathrm{d}\dot{Q}_2 &= \dot{m}_{\max}c_{\mathrm{p}}\mathrm{d}T\\ \dot{S}_2 &= \int \frac{\dot{m}_{\max}c_{\mathrm{p}}\mathrm{d}T}{T} = \dot{m}_{\max}c_{\mathrm{p}}\int \frac{\mathrm{d}T}{T} = \dot{m}_{\max}c_{\mathrm{p}}\ln(\frac{T_{\mathrm{E}}}{T_{\mathrm{A}}})\\ \dot{Q}_1 &= \dot{S}_2T_1 = \underbrace{\dot{m}_{\max}c_{\mathrm{p}}\ln(\frac{T_{\mathrm{E}}}{T_{\mathrm{A}}})}_{\dot{S}_1 = \dot{S}_2}T_1\\ \underbrace{\overbrace{}}_{\dot{S}_1 = \dot{S}_2} \\ &\text{in } |\dot{Q}_2| = |\dot{Q}_1| + |\dot{A}|:\\ \dot{m}_{\max}c_{\mathrm{p}}(T_{\mathrm{E}} - T_{\mathrm{A}}) = \dot{A} + T_1\dot{m}_{\max}c_{\mathrm{p}}\ln(\frac{T_{\mathrm{E}}}{T_{\mathrm{A}}}) \end{split}$$

$$\dot{m}_{\rm max} = \frac{\dot{A}}{c_{\rm p}(T_{\rm E} - T_{\rm A}) - T_{\rm 1}c_{\rm p}\ln(\frac{T_{\rm E}}{T_{\rm A}})}$$

6 Phasenübergang Wasserdampf

6.1 Zustandsgrößen von Wasser \rightarrow Heißdampf

Realgasgleichung:	$pv = R_{\rm i}T\lambda$
Dampfgehalt:	$x = \frac{m_{\text{Dampf}}}{m_{\text{Dampf}} + m_{\text{Wasser}}}$
Größen auf der Siedelinie:	$v^\prime,t^\prime,u^\prime,h^\prime,s^\prime$
Werte auf der Taulinie:	$v^{\prime\prime},t^{\prime\prime},u^{\prime\prime},h^{\prime\prime},s^{\prime\prime}$

6.2 Dampfgebiet

Im Nassdampfgebiet sind die <u>Isobaren</u> = <u>Isothermen</u> Hier reicht die Angabe von <u>p und T</u> nicht! \rightarrow zusätzlich ist x erforderlich!

Dampfgehalt:	$x = \frac{Dampfmasse}{Gesamtmasse}$	
Volumen:	v = v' + x(v'' - v')	
Enthalpie:	h = h' + x(h'' - h') mit $h'' - h' = r$	
innere Energie:	$\boxed{u = u' + x(u'' - u')}$	
Entropie:	s = s' + x(s'' - s')	
Interpolation:	$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}(x - x_0)$	$h'_{25\text{bar}} = h'_{20\text{bar}} + \frac{h'_{30\text{bar}} - h'_{20\text{bar}}}{p_{30\text{bar}} - p_{20\text{bar}}} (p_{25\text{bar}} - p_{20\text{bar}})$

Abb. 19: Nassdampfgebiet Wasser

$$\begin{array}{l} q_{12} + \psi_{12} = c_{\rm p} (T_2 - T_1) = h_2 - h_1 \\ \dot{Q} = q_{12} \dot{m} \\ \dot{V} = \frac{\dot{m}}{\rho} = v \dot{m} \end{array}$$

$$\begin{array}{|c|c|} \hline \text{für } p \ll p_k \text{ gilt: } \ln p = -\frac{r}{R_i} \frac{1}{T} + c \\ \hline \rightarrow \quad p = K c^{\left(-\frac{r}{R_i} \frac{1}{T}\right)} \end{array}$$

Beispielaufgabe

In Einem geschlossenen Behälter von 3 m^3 Inhalt befindet sich Dampf von 10 bar, x = 1,0(trocken, gesättigt). Nach längerer Zeit hat der Gefäßinhalt 110°C erreicht. Wie hoch sind a) Druck und b) Dampfgehalt x jetzt im Behälter?

a) Druck 1. Interpolation mit $f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$ $p_0(109.32^{\circ}C) = 1,4bar$ aus DT $p_1(111.37^{\circ}C) = 1,5bar$ aus DT $p_2 = p(110^{\circ}\mathrm{C}) = 1,4\mathrm{bar} + \frac{1,5\mathrm{bar} - 1,4\mathrm{bar}}{111,37^{\circ}\mathrm{C} - 109,32^{\circ}\mathrm{C}}(110^{\circ}\mathrm{C} - 109,32^{\circ}\mathrm{C})$ $\underline{p_2 = 1, 43 \text{bar}}$

b) Dampfgehalt

$$\begin{aligned} v_{\text{Nassdampf110}\circ\text{C}} &= v''_{10\text{bar}} = 0,1944 \frac{\text{m}^3}{\text{kg}} \text{ aus DT} \\ v''_{10\text{bar}} &= v'_{110\circ\text{C}} + x(v''_{110\circ\text{C}} - v'_{110\circ\text{C}}) \\ x &= \frac{v''_{10\text{bar}} - v'_{110\circ\text{C}}}{v''_{110\circ\text{C}} - v'_{110\circ\text{C}}} \text{ da } v'_{110\circ\text{C}} \ll v''_{110\circ\text{C}} \Rightarrow v'_{110\circ\text{C}} = 0 \\ x \frac{v''_{10\text{bar}}}{v''_{110\circ\text{C}}} \text{ mit } v''_{110\circ\text{C}} = v''_{1,43\text{bar}} \\ \to x &= \frac{v''_{10\text{bar}}}{v''_{1,43\text{bar}}} \end{aligned}$$

Abb. 20: Nassdampfgebiet Wasser

$$q_{12} = 0$$

$$w_{t12} = h_2 - h_1$$

$$(w_{t12})_{rev.ad.} = h_{2^s} - h_1$$

$$\equiv (w_{t12^s})_{rev.ad.}$$

$$w_{t12} = \frac{(w_{t12^s})_{rev.ad.}}{\eta_{sV}} = \frac{(h_{2^s} - h_1)}{\eta_{sV}}$$

6.3 Isentroper Verdichterwirkungsgrad

Abb. 21: Adiabate Verdicht.

Abb. 22: Verdichter

m

Arbeitsmehraufwand:
$$\Delta w_{t12} = w_{t12} - (w_{t12^s})_{rev.ad.}$$
Isentroper Verdichtungswirkungsgrad: $\eta_{sV} \equiv \frac{(w_{t12^s})_{rev.ad.}}{w_{t12}} = \frac{h_{2s} - h_1}{h_2 - h_1} \le 1$

6.4 Isentroper Turbinenwirkungsgrad

 $w_{t12} = \eta_{sT}(W_{t12^s})_{rev.ad.}$ $w_{t12} = \eta_{sT}(h_{2^s} - h_1)$

Abb. 24: Turbine

<u>Arbeitsverlust:</u> Isentroper Turbinenwirkungsgrad:

Abb. 23: Adiabate Expansion

 $\Delta w_{t12} = |(w_{t12^{s}})_{\text{rev.ad.}}| - |w_{t12}|$ $\eta_{sT} \equiv \frac{w_{t12}}{(w_{t12^{s}})_{\text{rev.ad.}}} = \frac{h_2 - h_1}{h_{2^{s}} - h_1} \le 1$

7 Kreisprozesse

7.1 Allgemeines

7.1.1 Wirkungsgrad der Energieumwandlung

$$\eta = \frac{Nutzen}{Aufwand} = \frac{|w_{\rm N}|}{|\sum q_{\rm zu}|} = \frac{w_{\rm N}}{q_{\rm zu}}$$
$$\eta = 1 - |\frac{\sum Q_{\rm ab}}{\sum q_{\rm zu}}|$$

7.1.2 Verdichtungsverhältnis

$$\eta = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V_1}{V_2} = \frac{V_4}{V_3} = \frac{V_{\text{Hub}} - V_{\text{Komp}}}{V_{\text{Komp}}}$$

7.1.3 Für reversible Kreisprozesse mit reversiblen Zustandsänderungen

 $\sum w_{\rm t} = \sum w_{\rm N} = \sum w_{\rm zu}$ $\sum Q + \sum W = 0$

7.1.4 Leistungskennzahlen

Abb. 25: Kältemaschine

7.2 Carnot-Kreisprozess

7.2.1 Rechtsläufiger Carnot-Kreisprozess

Abb. 26: rechtsläufiger Carnot-Kreisprozess

$\textcircled{1} \rightarrow \textcircled{2}$ Isotherme Kompression	$T_{1} = T_{2}$ $w_{12} = R_{i}T_{1}\ln(\frac{v_{1}}{v_{2}})$ $q_{12} = -R_{i}T_{1}\ln(\frac{v_{1}}{v_{2}})$
$(2) \rightarrow (3)$ Isentrope Kompression $Q_{23} = 0$ (adiabat)	$T_2 = T_1 \text{ auf } T_3$ $w_{23} = c_v (T_3 - T_1)$
$(3) \rightarrow (4)$ Isotherme Expansion	$T_4 = T_3$ $w_{34} = -R_i T_3 \frac{v_4}{v_3}$ $q_{34} = R_i T_3 \frac{v_4}{v_3}$
(4) \rightarrow (1) Isentrope Expansion $Q_{41} = 0$ (adiabat)	$T_4 = T_3 \text{ auf } T_1 = T_2$ $W_{41} = c_v(T_3 - T_1)$
$\boxed{\begin{array}{l} \eta_{\mathrm{th}} = \frac{ w_{\mathrm{Nutz}} }{q_{\mathrm{zu}}} = \frac{T_3 - T_1}{T_3} = 1 - \frac{T_1}{T_3} = 1 - \frac{T_{\mathrm{ab}}}{T_{\mathrm{zu}}} \\ \\ \eta_{\mathrm{Carnot}} > \eta_{\mathrm{Otto}} \end{array}}$	

7.2.2 Linksläufiger Carnot-Kreisprozess

Abb. 27: linksläufiger Carnot-Kreisprozess

$(1) \rightarrow (2)$ Isentrope Kompression	$T_1 = T_4$ auf T_2
$Q_{12} = 0 \text{ (adiabat)}$	$w_{12} = c_{\rm v}(T_2 - T_1)$
(2) \rightarrow (3) Isotherme Kompression	$T_{2} = T_{3}$ $w_{23} = R_{i}T_{2}\ln(\frac{v_{2}}{v_{3}})$ $q_{23} = -R_{i}T_{2}\ln(\frac{v_{2}}{v_{3}})$
$(3) \rightarrow (4)$ Isentrope Expansion $Q_{34} = 0$ (adiabat)	$T_3 = T_2$ auf $T_4 = T_1$ $W_{34} = c_v(T_4 - T_3)$
(4) \rightarrow (1) Isotherme Expansion	$T_4 = T_1$ $w_{41} = -R_i T_4 \frac{v_1}{v_4}$ $q_{41} = R_i T_4 \frac{v_1}{v_4}$

7.3 Stirling-Kreisprozess

Abb. 28: Stirling-Kreisprozess

 $(1) \rightarrow (2)$ Isotherme Verdicht., Wärme
abfuhr $q_{12} = R_{\rm i} T_1 \ln(\frac{v_2}{v_1})$ $q_{23} = c_{\rm v}(T_3 - T_2)$ $(2) \rightarrow (3)$ Isochore Wärmezufuhr $q_{34} = R_{\rm i}T_3\ln(\frac{v_4}{v_3})$ $(3) \rightarrow (4)$ Isotherme Expansion, Wärmezufuhr $(4) \rightarrow (1)$ Isochore Wärme
abfuhr $q_{41} = c_{\rm v}(T_1 - T_4) = -q_{23}$
$$\begin{split} w_{\rm N} &= R_{\rm i} T_3 \ln(\frac{v_2}{v_1}) (1 - \frac{T_1}{T_3}) \\ |w_{\rm N}| &= R_{\rm i} (T_3 - T_1) \ln(\frac{V_1}{V_2}) \\ \hline q_{\rm zu} &= q_{34} \end{split}$$
Nutzarbeit:
$$\begin{split} \eta_{\text{Stirling}} &= 1 - \frac{T_1}{T_3} = 1 - \frac{T_{\min}}{T_{\max}} = 1 - \frac{T_{\text{ab}}}{T_{\text{zu}}} \\ \eta_{\text{Stirling}} &= \frac{Nutzen}{Aufwand} = \frac{R_i(T_3 - T_1)\ln(\varepsilon)}{R_iT_3\ln(\frac{v_4}{v_3})} \end{split}$$
Wirkungsgrad: $\eta_{\text{Stirling}} = \eta_{\text{Carnot}}$ Verdichtungsverhältnis:

Leistungszahl: $(\neq \eta)$

$$P = \frac{n}{60} |w_{\rm N}| \qquad \rightarrow \qquad w_{\rm N} = -\sum Q$$

$$\varepsilon = \frac{v_1}{v_2}$$

$$\varepsilon_u = \frac{q_{34}}{w} = \frac{T_3}{T_1 - T_3}$$

7.4 Clausius-Rankine-Kreisprozess

Abb. 29: Clausius-Rankine-Prozess

- $(1) \rightarrow (2)$ Isentrope Expansion des Heissdampfes ins Nassdampfgebiet
- $\textcircled{2} \rightarrow \textcircled{3}$ Isobare Wärme
abfuhr bzw. Kondensation des Nassdampfes zu 100% Flüssigkeit
- $(\mathfrak{Z}) \to (\mathfrak{Z})$ Isentrope Druckerhöhung des Speisewassers durch die Speisewasserpumpe
- $(4) \rightarrow (5)$ Isobare Wärmezufuhr im DE, aufheizen des Speisewassers auf Siedetemperatur
- $(5) \rightarrow (6)$ Isobare Wärmezufuhr im DE, Verdampfen des Wassers zu Sattdampf
- $\textcircled{6} \rightarrow \textcircled{1}$ Isobare Wärmezufuhr im DE, Überhitzen des Sattdampfes zu Heissdampf

Maßnahmen zur Erhöhung des Thermischen Wirkungsgrades:

- Erhöhung des Frischdampfzustandes
- Absenken des Kondensatordrucks
- Zwischenüberhitzung
- Regenerative Speisewasservorwärmung

Wirkungsgrad:

$$\begin{split} \eta_{\text{Clausius}} &= 1 - \frac{h_2 - h_3}{h_1 - h_4} \\ \text{Vereinfacht, da gilt: } W_{\text{SP}} \ll W_{\text{Turbine}} \\ \eta_{\text{Clausius}} &= 1 - \frac{h_1 - h_3}{h_1 - h_4} \\ T_{\text{M}} &= \frac{q_{41}}{s_1 - s_4} \end{split}$$

Mittlere Temperatur der Wärmezufuhr:

$$w_{t34} = v_3(p_4 - p_3)$$

7.5 Otto-Kreisprozess

 \rightarrow idealer Gleichraum-Prozess

Abb. 30: Ottoprozess

$(1) \rightarrow (2)$ Isentrope Verdichtung	$q_{12} = 0, w_{t12}$
(2)→ (3) Isochore Wärmezufuhr	$q_{ m zu,23}$
$(3) \rightarrow (4)$ Isentrope Expansion	$q_{34} = 0, w_{t34}$
$(4) \rightarrow (1)$ Isochore Wärmeabfuhr	$q_{ m ab,41}$

Verdichtungsverhältnis: Wirkungsgrad: Nutzarbeit:

<u>Leistung:</u> Zylinderfüllung in kg: <u>Hubvolumen:</u> Drehzahl [n] in $\frac{1}{s}$:
$$\begin{split} \varepsilon &= \frac{v_1}{v_2} \\ \eta_{\text{Otto}} &= 1 - \frac{T_1}{T_2} = 1 - \frac{1}{\varepsilon^{\kappa - 1}} \\ w_{\text{N}} &= \underbrace{w_{\text{V12}}}_{>0} + \underbrace{w_{v34}}_{<0} \qquad < 0 \rightarrow \text{Kraftmaschine} \\ w_{\text{N}} &= -(\underbrace{q_{23}}_{>0} + \underbrace{q_{41}}_{<0}) \qquad < 0 \Rightarrow w_{\text{N}} = -\sum q \\ |W_{\text{KP}}| &= mc_{Vm}((T_1 - T_2) + (T_3 - T_4)) \\ w_{\text{N}}m_{\text{Z}} &= w_{\text{N}} \\ P &= |w_{\text{N}}|m_{\text{Z}}\frac{n}{2} \\ m_{\text{Z}} &= V_{\text{h}}\rho_1 = \frac{V_{\text{h}}}{v_1} = V_{\text{h}}\frac{p_1}{R_1T_1} \\ V_{\text{h}} &= V_2 - V_1 \\ 4 \text{ Takt} \rightarrow \frac{n}{2} \qquad 2 \text{ Takt} \rightarrow \frac{n}{1} \end{split}$$

für alle Kreisprozesse gilt: $P=|w_{\rm N}|\dot{m}$

7.6 Diesel-Kreisprozess

 \rightarrow idealer Gleichdruck-Prozess

Abb. 31: Dieselprozess

$(1) \rightarrow (2)$ Isentrope Verdichtung	$q_{12} = 0, w_{t12}$	$\varepsilon^{\kappa} = \frac{p_2}{p_1}$	$\varepsilon = \frac{v_1}{v_2}$
$\textcircled{2}{\rightarrow}\textcircled{3}$ Isobare Wärmezufuhr	$q_{ m zu,23}$	$\frac{v_3}{v_2} = \frac{T_3}{T_2}$	
$(3) \rightarrow (4)$ Isentrope Expansion	$q_{34} = 0, w_{t34}$	$\frac{p_4}{p_3} = \left(\frac{v_3}{v_4}\right)^{\kappa}$	
$(4) \rightarrow (1)$ Isochore Wärmeabfuhr	$q_{ m ab,41}$	$\frac{p_4}{p_3} = \left(\frac{v_3}{v_4}\right)^{\kappa}$	$\frac{T_4}{T_3} = \left(\frac{v_3}{v_4}\right)^{\kappa - 1}$

Nutzarbeit:

Wirkungsgrad:

$$\begin{split} w_{\rm N} &- \sum q \\ w_{\rm N} &= -\frac{R_{\rm i}}{\kappa - 1} (\kappa (T_3 - T_2) + (T_1 - T_4)) \\ |W_{\rm KP}| &= m c_{\rm Vm} ((T_1 - \kappa T_2) + (\kappa T_3 - T_4)) \\ \eta_{\rm th} &= \frac{|w_{\rm N}|}{q_{\rm zu}} = 1 - \frac{1}{\varepsilon^{\kappa - 1}} \frac{1}{\kappa} \frac{(\frac{T_4}{T_1} - 1)}{(\frac{T_3}{T_2} - 1)} \\ \eta_{\rm th} &= 1 - \frac{1}{\varepsilon^{\kappa - 1}} \frac{\varphi^{\kappa} - 1}{\kappa(\varphi - 1)} \end{split}$$

$$P = |w_{\rm N}|\dot{m} = |w_{\rm N}|V_{\rm h}\frac{p_1}{R:T_1}\frac{n}{2} = |w_{\rm N}|V_{\rm h}\frac{1}{v_1}\frac{n}{2}$$

 \leftarrow bei 4-Takt Kreisprozessen

7.7 Seiliger-Kreisprozess

 \rightarrow idealer Gleichraum-Gleichdruck-Prozess

Abb. 32: Seiliger Prozess

$) \rightarrow @$ Isentrope Verdichtung	$q_{12} = 0, w_{t12}$
②→③ Isochore Wärmezufuhr	$q_{ m zu,23}$
$(3) \rightarrow (4)$ Isobare Wärmezufuhr	$q_{ m zu,34}$
$(4) \rightarrow (5)$ Isentrope Expansion	$q_{45} = 0, w_{t34}$
(₅)→(1) Isochore Wärmeabfuhr	$q_{ m ab,51}$

zugeführte Wärmeenergie: Nutzarbeit:

Leistung: Massenstrom:

Wirkungsgrad:

 $\varepsilon = \frac{v_1}{v_2}$ $\varphi = \frac{v_4}{v_3}$ $\pi = \frac{p_3}{p_2}$

Theoretischer Wirkungsgrad:

$$\begin{split} q_{\rm zu} &= c_{\rm v}(T_3 - T_2) + c_{\rm p}(T_4 - T_3) \\ w_{\rm N} &= -\sum q \\ w_{\rm t} &= \eta q_{\rm zu} \\ w_{\rm t} &= \Delta e_{\rm a} \rightarrow {\rm Exergiedifferenz} \\ p &= \dot{m} w_{\rm t} \\ \dot{m} &= \rho V_{\rm h} \frac{n}{4} \text{ mit } \rho = \frac{1}{v} \text{ beim 4-Takter} \\ \dot{m} &= \rho V_{\rm h} \frac{n}{2} \text{ beim 2-Takter} \\ \eta_{\rm th} &= \frac{|w_{\rm N}|}{q_{\rm zu}} \\ \eta_{\rm th} &= \frac{q_{23} + q_{34} + q_{51}}{q_{23} + q_{34}} = 1 + \frac{q_{51}}{q_{23} + q_{34}} \\ \eta_{\rm th} &= 1 - \frac{T_5 - T_1}{(T_3 - T_2) + \kappa (T_4 - T_3)} \\ \eta_{\rm th} &= 1 - \frac{1}{\varepsilon^{\kappa - 1}} \frac{(\frac{T_4}{T_3})^{\kappa} \frac{T_3}{T_2} - 1}{T_2 - 1 + \kappa \frac{T_3}{T_2} (\frac{T_4}{T_3} - 1)} \\ \eta_{\rm th} &= 1 - \frac{1}{\varepsilon^{\kappa - 1}} \frac{\pi \varphi^{\kappa} - 1}{\pi - 1 + \kappa \pi (\pi - 1)} \\ \eta_{\rm Carnot} &= \frac{T_{\rm H} - T_{\rm T}}{T_{\rm H}} \end{split}$$

7.8 Joule-Kreisprozess

 \rightarrow Idealer Gasturbinen-Prozess

Abb. 33: Idealer Gasturbinen-Prozess

$\textcircled{1}{\rightarrow}\textcircled{2}:$ Is entrope Verdichtung	$q_{12} = 0, w_{t12}$	$\varepsilon^{\kappa} = \frac{p_2}{p_1}$	$\varepsilon = \frac{v_1}{v_2}$
$\textcircled{2}{\rightarrow}\textcircled{3}:$ Isobare Wärmezufuhr	$q_{ m zu,23}$	$\frac{v_3}{v_2} = \frac{T_3}{T_2}$	
$(3) \rightarrow (4)$: Isentrope Expansion	$q_{34} = 0, w_{t34}$	$\frac{p_4}{p_3} = \left(\frac{v_3}{v_4}\right)^{\kappa}$	
$\textcircled{4}{\rightarrow}\textcircled{1}:$ Isobare Wärmeabfuhr	$q_{ m ab,41}$	$\frac{p_4}{p_3} = \left(\frac{v_3}{v_4}\right)^{\kappa}$	$\frac{T_4}{T_3} = \left(\frac{v_3}{v_4}\right)^{\kappa - 1}$

Druckverhältnis: Nutzarbeit: Wirkungsgrad: $\begin{aligned} \pi &= \frac{p_2}{p_1} = \frac{p_3}{p_4} \\ w_{\rm N} &= -\sum q \\ \eta_{\rm Gasturbine} &= 1 - \frac{T_1}{T_2} \\ \eta_{\rm Gasturbine} &= 1 - \left(\frac{p_1}{p_2}\right)^{\frac{\kappa-1}{\kappa}} = 1 - \frac{1}{\pi^{\frac{\kappa-1}{\kappa}}} \end{aligned}$

<u>Allgemein gilt:</u> $\eta = \frac{w_{\rm N}}{q_{\rm zu}}$

 $\frac{w_{\rm N}}{q_{\rm zu}}$

 $w_{\rm N} = -\sum q$

7.9 Pumpenarbeit

$$w_{\mathrm{t}} = \frac{\Delta p}{\rho} = \Delta p v$$

7.10 Triebwerk

 $\begin{array}{c} \underline{1. \text{ HS offenes System}} & Q \\ \dot{Q} \\ \end{array}$

 $\underline{Schubkraft}$

$$\begin{split} Q_{12} + w_{t12} + \psi_{12} &= H_2 - H_1 + \Delta E_{\text{kin}} + \Delta E_{\text{pot}} \\ \dot{Q}_{\text{zu}} &= h_{\text{u}} \dot{m}_{\text{Kerosin}} \\ F_{\text{S}} &= m(w_{\text{ab}} - w_{\text{zu}}) = \dot{m}(v_{\text{ab}} - v_{\text{zu}}) \end{split}$$

8 Dampftafel

p/bar	$t_s/^{\circ}\mathrm{C}$	v' / $\frac{l}{kg}$	v" / $\frac{m^3}{kg}$	h' / $\frac{kJ}{kg}$	h" / $\frac{kJ}{kg}$	$r / \frac{kJ}{kg}$	s' / $\frac{kJ}{kgK}$	s" / $\frac{kJ}{kgK}$
0,01	6,98	1,0001	129,2	29,35	2513,4	2484,0	0,1061	8,9734
0,02	$17,\!51$	$1,\!0012$	$67,\!02$	73,45	2532,7	2459,3	0,2607	8,7214
0,03	$24,\!10$	1,0026	$45,\!68$	100,97	2544,7	$2443,\!8$	0,3543	$8,\!5754$
0,04	$28,\!98$	1,0040	$34,\!81$	$121,\!36$	$2553,\!6$	2432,3	$0,\!4223$	$8,\!4725$
0,05	32,90	1,0052	28,20	137,71	2560,7	2423,0	0,4761	8,3930
0,06	$36,\!19$	$1,\!0064$	$23,\!75$	$151,\!42$	2566,7	2415,2	0,5206	8,3283
0,07	39,03	$1,\!0074$	$20,\!54$	$163,\!28$	$2571,\!8$	2408,5	0,5588	$8,\!2737$
0,08	$41,\!54$	$1,\!0084$	$18,\!11$	173,76	2576,3	2402,5	$0,\!5922$	$8,\!2266$
0,09	43,79	$1,\!0094$	$16,\!21$	183,16	2580,3	2397,1	$0,\!6220$	$8,\!1851$
0,1	45,84	1,0102	14,68	191,71	2583,9	2392,2	$0,\!6489$	8,1480
0,2	60,09	1,0173	$7,\!652$	$251,\!28$	2608,9	$2357,\!6$	0,8316	7,9060
0,4	$75,\!89$	1,0266	$3,\!994$	317,46	2635,7	2318,3	1,0255	$7,\!6667$
0,6	$85,\!95$	$1,\!0334$	2,732	359,73	2652,2	2292,5	1,1449	7,5280
0,8	$93,\!51$	1,0389	$2,\!087$	$391,\!53$	2664,3	2272,7	1,2324	$7,\!4300$
1,0	$99,\!63$	1,0436	$1,\!694$	417,33	$2673,\!8$	2256,5	1,3022	$7,\!3544$
1,1	102,32	$1,\!0457$	$1,\!549$	428,66	2678,0	2249,3	1,3324	7,3222
1,2	$104,\!81$	$1,\!0477$	$1,\!428$	439,18	$2681,\!8$	$2242,\!6$	1,3603	$7,\!2928$
1,3	$107,\!13$	1,0496	$1,\!325$	449,01	2685,3	2236,3	$1,\!3862$	$7,\!2558$
1,4	109,32	$1,\!0514$	$1,\!235$	458,24	$2688,\!6$	2230,3	$1,\!4104$	$7,\!2409$
1,5	$111,\!37$	$1,\!0532$	$1,\!159$	466,95	$2691,\!6$	2224,7	$1,\!4331$	7,2177
2,0	$120,\!23$	1,0610	$0,\!8852$	$504,\!52$	$2704,\!6$	2200,1	1,5295	$7,\!1212$
3,0	$133,\!54$	$1,\!0737$	$0,\!6054$	561,2	2723,2	2161,9	$1,\!6711$	$6,\!9859$
4,0	$143,\!63$	$1,\!0841$	$0,\!4621$	604,4	2736,5	2132,1	1,7757	$6,\!8902$
6,0	$158,\!84$	$1,\!1011$	$0,\!3155$	670,1	2755,2	2085,1	1,9300	6,7555
8,0	$170,\!41$	$1,\!1152$	$0,\!2403$	720,6	2768,0	2048,5	2,0447	$6,\!6594$
10	$179,\!88$	$1,\!1276$	$0,\!1944$	762,2	2777,5	2015,3	$2,\!1370$	$6,\!5843$
15	$198,\!28$	$1,\!1541$	$0,\!1318$	844,1	2792,5	1948,4	2,3131	$6,\!4448$
20	$212,\!37$	$1,\!1769$	0,0996	908,0	2800, 6	$1892,\! 6$	$2,\!4453$	$6,\!3422$
30	$233,\!84$	$1,\!2166$	0,0667	1007,7	2805,5	$1797,\!9$	$2,\!6438$	$6,\!1890$
40	250,33	$1,\!2523$	$0,\!0497$	1086,7	2802,4	1715,7	2,7949	$6,\!0714$
50	$263,\!92$	$1,\!2859$	0,0394	1153,8	$2794,\!6$	$16\overline{40,8}$	2,9190	$5,\!9735$
60	$275,\!56$	$1,\!3186$	0,0324	1213,1	2783,9	$1570,\!8$	$3,\!0257$	$5,\!8880$
70	$285,\!80$	$1,\!3510$	0,0273	1266,7	2771,1	1504,3	$3,\!1203$	$5,\!8113$
80	294,98	$1,\!3837$	0,0235	1316,4	2756,9	1440,4	$3,\!2059$	5,7412
90	303, 31	$1,\!417$	0,0205	$1362,\!9$	$2741,\! 6$	1378,5	$3,\!2847$	$5,\!6762$

8 Dampftafel

p/bar	$t_s/^{\circ}\mathrm{C}$	v' / $\frac{l}{kg}$	v" / $\frac{m^3}{kg}$	h' / $\frac{kJ}{kg}$	h" / $\frac{kJ}{kg}$	$r / \frac{kJ}{kg}$	s' / $\frac{kJ}{kgK}$	s" / $\frac{kJ}{kgK}$
100	310,96	$1,\!451$	0,0180	1407,0	$2725,\!6$	1318,2	$3,\!3582$	$5,\!6155$
110	318,04	$1,\!487$	0,0160	$1449,\!3$	2708,7	$1258,\!9$	$3,\!4277$	$5,\!5584$
120	$324,\!64$	$1,\!525$	0,0143	1490,2	2687,2	1196,3	$3,\!4941$	$5,\!4971$
130	$330,\!81$	$1,\!566$	0,0128	1530,2	2663,5	$1132,\!3$	$3,\!5580$	$5,\!4353$
140	$336,\!63$	$1,\!610$	0,0115	$1569,\! 6$	2637,7	1066,7	$3,\!6203$	5,3726
150	324,12	$1,\!658$	0,0103	1608, 9	2610,5	999,7	$3,\!6818$	$5,\!3104$
160	$347,\!32$	$1,\!173$	0,0093	1648,5	2581,2	$929,\!9$	3,7433	$5,\!2471$
180	$356,\!96$	$1,\!850$	0,0075	$1732,\!9$	2511,4	778,5	$3,\!8707$	$5,\!1062$
200	365,71	$2,\!06$	0,0059	1826,7	2416,0	589,3	4,0151	4,9375
210	369,79	$2,\!22$	0,0050	$1889,\!9$	2344,9	$454,\!9$	$4,\!1073$	4,8148
220	373,70	2,73	0,00367	2016	2168	152	4,303	4,5910

Der Kritische Punkt:

- $p_{\rm K}=221,\!20{\rm bar}$
- $T_{\rm K} = 374,25^{\circ}{\rm C}$
- $v_{\rm K} = 0,00317 \frac{{\rm m}^3}{{
 m kg}}$
- $h_{\mathrm{K}} = 2095 \frac{\mathrm{kJ}}{\mathrm{kg}}$
- $s_{\mathrm{K}} = 4,4430 \frac{\mathrm{kJ}}{\mathrm{kgK}}$