Skip to main content
Log in

Regulation of Atg8 membrane deconjugation by cysteine proteases in the malaria parasite Plasmodium berghei

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data are available within this manuscript, and raw data are available from the corresponding author upon reasonable request. Materials generated in this study are available from the corresponding author on request.

Abbreviations

Atg:

Autophagy-related genes

Atg4:

Autophagy-related protein 4

Otu:

Ovarion tumor unit

EEF:

Exoerythrocytic forms

HA:

Hemagglutinin

Hsp70:

Heat Shock Protein70

MSP:

Merozoite Surface Protein 1

ACP:

Acyl Carrier Protein

UIS4:

Upregulated in infectious sporozoites gene 4

GFP:

Green fluorescent protein

TRAP:

Thrombospondin-related anonymous protein

iRBC:

Infected RBC

UTR:

Untranslated region

IV:

Intravenously

IFA:

Immunofluorescence assay

hDHFR:

Human dihydrofolate reductase

References

  1. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  2. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357. https://doi.org/10.1016/j.devcel.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baba M, Takeshige K, Baba N, Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124:903–913. https://doi.org/10.1083/jcb.124.6.903

    Article  CAS  PubMed  Google Scholar 

  6. Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699. https://doi.org/10.1016/j.jmb.2016.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174. https://doi.org/10.1016/0014-5793(93)80398-e

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  9. Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44:101–122. https://doi.org/10.1146/annurev-biophys-060414-034248

    Article  CAS  PubMed  Google Scholar 

  10. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. https://doi.org/10.1093/emboj/19.21.5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298. https://doi.org/10.1091/mbc.e07-12-1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation mediates membrane tethering and hemifusion. Cell. https://doi.org/10.1016/j.cell.2007.05.021

    Article  PubMed  Google Scholar 

  13. Fujita N, Hayashi-Nishino M, Fukumoto H et al (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19:4651–4659. https://doi.org/10.1091/mbc.e08-03-0312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakatogawa H, Ishii J, Asai E, Ohsumi Y (2012) Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8:177–186. https://doi.org/10.4161/auto.8.2.18373

    Article  CAS  PubMed  Google Scholar 

  15. Choy A, Dancourt J, Mugo B et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076. https://doi.org/10.1126/science.1227026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cervantes S, Bunnik EM, Saraf A et al (2014) The multifunctional autophagy pathway in the human malaria parasite Plasmodium falciparum. Autophagy. https://doi.org/10.4161/auto.26743

    Article  PubMed  Google Scholar 

  17. Brennand A, Gualdrón-lópez M, Coppens I et al (2011) Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177:83–99. https://doi.org/10.1016/j.molbiopara.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Duszenko M, Ginger ML, Brennand A et al (2011) Autophagy in protists. Autophagy 7:127–158. https://doi.org/10.4161/auto.7.2.13310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitamura K, Kishi-itakura C, Tsuboi T et al (2012) Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE. https://doi.org/10.1371/journal.pone.0042977

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taylor P, Jayabalasingham B, Voss C et al (2014) Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage possible linkage between the apicoplastic and autophagic systems ? Autophagy. https://doi.org/10.4161/auto.27166

    Article  Google Scholar 

  21. Eickel N, Kaiser G, Prado M et al (2013) Features of autophagic cell death in Plasmodium liver-stage parasites. Autophagy 9:568–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tomlins AM, Ben-rached F, Williams RAM et al (2013) Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation. Autophagy. https://doi.org/10.4161/auto.25832

    Article  PubMed  Google Scholar 

  23. Walczak M, Ganesan SM, Niles JC, Yeh E (2018) ATG8 is essential specifically for an autophagy-independent function in apicoplast biogenesis in blood-stage malaria parasites. mBio 9:1–13

    Article  Google Scholar 

  24. Lévêque MF, Berry L, Cipriano MJ et al (2015) Autophagy-related protein ATG8 has a noncanonical function for apicoplast inheritance in Toxoplasma gondii. mBio. https://doi.org/10.1128/mBio.01446-15.Invited

    Article  PubMed  PubMed Central  Google Scholar 

  25. Walker DM, Mahfooz N, Kemme KA et al (2013) Plasmodium falciparum erythrocytic stage parasites require the putative autophagy protein PfAtg7 for normal growth. PLoS ONE 8:2–9. https://doi.org/10.1371/journal.pone.0067047

    Article  CAS  Google Scholar 

  26. Bansal P, Tripathi A et al (2017) Autophagy-related protein ATG18 regulates apicoplast biogenesis in apicomplexan parasites. mBio 8:5–01468

    Article  Google Scholar 

  27. Kong-hap MA, Mouammine A, Daher W et al (2013) Regulation of ATG8 membrane association by ATG4 in the parasitic protist Toxoplasma gondii. Autophagy. https://doi.org/10.4161/auto.25189

    Article  PubMed  Google Scholar 

  28. Tang Y, Meister TR, Walczak M et al (2019) A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000136

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gupta R, Mishra A, Choudhary HH et al (2020) Secreted protein with altered thrombospondin repeat (SPATR) is essential for asexual blood stages but not required for hepatocyte invasion by the malaria parasite Plasmodium berghei. Mol Microbiol 113:478–491. https://doi.org/10.1111/mmi.14432

    Article  CAS  PubMed  Google Scholar 

  30. Janse CJ, Ramesar J, Waters AP (2006) High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1:346–356. https://doi.org/10.1038/nprot.2006.53

    Article  CAS  PubMed  Google Scholar 

  31. Gomes AR, Bushell E, Schwach F et al (2015) A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe 17:404–413. https://doi.org/10.1016/j.chom.2015.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Godiska R, Mead D, Dhodda V et al (2010) Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli. Nucleic Acids Res 38:e88. https://doi.org/10.1093/nar/gkp1181

    Article  CAS  PubMed  Google Scholar 

  33. Charan M, Choudhary HH, Singh N et al (2017) [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite. FEBS J 284:2629–2648. https://doi.org/10.1111/febs.14159

    Article  CAS  PubMed  Google Scholar 

  34. Al-Nihmi FMA, Kolli SK, Reddy SR et al (2017) A novel and conserved plasmodium sporozoite membrane protein SPELD is required for maturation of exo-erythrocytic forms. Sci Rep 7:40407. https://doi.org/10.1038/srep40407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choudhary HH, Gupta R, Mishra S (2019) PKAc is not required for the preerythrocytic stages of Plasmodium berghei. Life 2:1–11. https://doi.org/10.26508/lsa.201900352

    Article  Google Scholar 

  36. Bruña-Romero O, Hafalla JC, González-Aseguinolaza G et al (2001) Detection of malaria liver-stages in mice infected through the bite of a single Anopheles mosquito using a highly sensitive real-time PCR. Int J Parasitol 31:1499–1502. https://doi.org/10.1016/s0020-7519(01)00265-x

    Article  PubMed  Google Scholar 

  37. Narwal SK, Nayak B, Mehra P, Mishra S (2022) Protein kinase 9 is not required for completion of the Plasmodium berghei life cycle. Microbiol Res 260:127051. https://doi.org/10.1016/j.micres.2022.127051

    Article  CAS  PubMed  Google Scholar 

  38. Tsuji M, Mombaertst P, Lefrancoist LEO et al (1994) Gamma delta T cells contribute to immunity against the liver stages of malaria in c43 T-cell-deficient mice. Proc Natl Acad Sci USA 91:345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mueller A-K, Labaied M, Kappe SHI, Matuschewski K (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433:164–167. https://doi.org/10.1038/nature03188

    Article  CAS  PubMed  Google Scholar 

  40. Holder AA, Freeman RR (1981) Immunization against blood-stage rodent malaria using purified parasite antigens. Nature 294:361–364. https://doi.org/10.1038/294361a0

    Article  CAS  PubMed  Google Scholar 

  41. Gallagher JR, Prigge ST (2010) Plasmodium falciparum acyl carrier protein crystal structures in disulfide-linked and reduced states and their prevalence during blood stage growth. Proteins 78:575–588. https://doi.org/10.1002/prot.22582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vaishya S, Kumar V, Gupta A et al (2016) Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum. Mol Microbiol 100:1080–1095. https://doi.org/10.1111/mmi.13369

    Article  CAS  PubMed  Google Scholar 

  43. Jayabalasingham B, Bano N, Coppens I (2010) Metamorphosis of the malaria parasite in the liver is associated with organelle clearance. Cell Res 20:1043–1059. https://doi.org/10.1038/cr.2010.88

    Article  PubMed  Google Scholar 

  44. Mishra A, Srivastava PN, H SA, Mishra S, (2023) Autophagy protein Atg7 is essential and druggable for maintaining malaria parasite cellular homeostasis and organelle biogenesis. BioRxiv. https://doi.org/10.1101/2023.08.16.553492

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hirata E, Ohya Y, Suzuki K (2017) Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS ONE 12:e0181047. https://doi.org/10.1371/journal.pone.0181047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Datta G, Hossain ME, Asad M et al (2017) Plasmodium falciparum OTU-like cysteine protease (PfOTU) is essential for apicoplast homeostasis and associates with noncanonical role of Atg8. Cell Microbiol 19:1–15. https://doi.org/10.1111/cmi.12748

    Article  CAS  Google Scholar 

  47. Kirisako T, Ichimura Y, Okada H et al (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276. https://doi.org/10.1083/jcb.151.2.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ichimura Y, Kirisako T, Takao T et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492. https://doi.org/10.1038/35044114

    Article  CAS  PubMed  Google Scholar 

  49. Besteiro S, Brooks CF, Striepen B, Dubremetz J-F (2011) Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog 7:e1002416. https://doi.org/10.1371/journal.ppat.1002416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang M, Wang C, Otto TD et al (2018) Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. https://doi.org/10.1126/science.aap7847

    Article  PubMed  PubMed Central  Google Scholar 

  51. Joy S, Thirunavukkarasu L, Agrawal P et al (2018) Basal and starvation-induced autophagy mediates parasite survival during intraerythrocytic stages of Plasmodium falciparum. Cell Death Discov 4:43. https://doi.org/10.1038/s41420-018-0107-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng L, Tian Y, Wang Y et al (2022) Toxoplasma TgAtg8-TgAtg3 interaction primarily contributes to apicoplast inheritance and parasite growth in tachyzoite. Microbiol Spectr 10:e0149521. https://doi.org/10.1128/spectrum.01495-21

    Article  PubMed  Google Scholar 

  53. Tomova C, Humbel BM, Geerts WJC et al (2009) Membrane contact sites between apicoplast and ER in Toxoplasma gondii revealed by electron tomography. Traffic 10:1471–1480. https://doi.org/10.1111/j.1600-0854.2009.00954.x

    Article  CAS  PubMed  Google Scholar 

  54. Tonkin CJ, Struck NS, Mullin KA et al (2006) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61:614–630. https://doi.org/10.1111/j.1365-2958.2006.05244.x

    Article  CAS  PubMed  Google Scholar 

  55. Nijman SMB, Luna-Vargas MPA, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786. https://doi.org/10.1016/j.cell.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  56. Bushell E, Gomes AR, Sanderson T et al (2017) Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170:260-272.e8. https://doi.org/10.1016/j.cell.2017.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stanway RR, Bushell E, Chiappino-Pepe A et al (2019) Genome-scale identification of essential metabolic processes for targeting the Plasmodium liver stage. Cell 179:1112-1128.e26. https://doi.org/10.1016/j.cell.2019.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kota Arun Kumar (University of Hyderabad, India) for the pBC–3XHA–mCherry and pBC–mCherry–TgDHFR vectors and Pb mCherry parasites. We acknowledge Sanger as having made available the Materials and Lucigen as the source of the plasmid vector used to generate the PlasmoGEM resource. We thank Dr. Saman Habib (CSIR-CDRI, India), Dr. Anthony A. Holder (The Francis Crick Institute, UK), Drs. Photini Sinnis and Sean Prigge (Johns Hopkins University, USA) for anti-ICT1, anti-MSP1, anti-UIS4 and anti-ACP antibodies, respectively. We also thank Dr. Puran Singh Sijwali (CCMB, Hyderabad) for the pET32a–PfAtg8 plasmid. We acknowledge the THUNDER (BSC0102) and MOES (GAP0118) Intravital and Confocal microscopy facility of CSIR-CDRI. We thank Rima Ray Sarkar and Anil Kumar for their technical assistance with microscopy. The University Grants Commission and Council of Scientific and Industrial Research, Government of India research fellowships supported AM and AV. This manuscript is CDRI Communication No. 10683.

Funding

The work was supported by the CSIR-CDRI innovative idea grant [CII7045].

Author information

Authors and Affiliations

Authors

Contributions

AM and SM conceived the idea, designed and performed the experiments, analyzed the data and wrote the manuscript. AV performed the experiments. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Satish Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

The current study does not involve human samples. All animal procedures were approved by the Institutional Animal Ethics Committee at CSIR-Central Drug Research Institute, India (IAEC/2018/3).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5770 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Varshney, A. & Mishra, S. Regulation of Atg8 membrane deconjugation by cysteine proteases in the malaria parasite Plasmodium berghei. Cell. Mol. Life Sci. 80, 344 (2023). https://doi.org/10.1007/s00018-023-05004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05004-2

Keywords

Navigation