Skip to main content
Log in

Regenerative Medizin

Chancen für die rekonstruktive Kopf-Hals-Chirurgie

Regenerative Medicine in head and neck reconstructive surgery

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Die Verwendung autologer Transplantate gilt als Goldstandard in der Therapie kongenitaler oder erworbener Defekte. Die Gewinnung autologer Transplantate ist jedoch oft limitiert. Die regenerative Medizin zielt auf die intrinsischen, autologen regenerativen Mechanismen des Individuums und vereint die Kentnisse des Tissue-Engineerings, der Zell- bzw. Systembiologie, der Gentherapie und der Stammzellbiologie. Die meisten Ansätze des Tissue-Engineerings basieren auf der Expansion kleiner autologer Zellverbände des Patienten. Tissue-Engineering mit Hilfe von isolierten und amplifizierten Stammzellen stellt eine weitere vielversprechende Möglichkeit zur Herstellung autologer Transplantate dar und so die limitierte Verfügbarkeit zu überwinden. Die Kombination stammzellbasierten Tissue-Engineerings mit der Gentherapie erlaubt es, regeneratives Gewebe im optimalen Umfeld von Regulatorproteinen zu schaffen. Hieraus ergeben sich große Chancen für die Transplantation von Haut, Knochen oder Knorpel. In diesem Beitrag sollen der aktuelle Stand, der mögliche Nutzen, aber auch die Grenzen der regenerativen Medizin für die rekonstruktive Kopf-Hals-Chirurgie herausgestellt werden.

Abstract

Autologous transplantation is regarded as the gold standard in the treatment of congenital or acquired deformities. However, the availability of autologous tissue for transplantation is often limited. Regenerative medicine aims to activate individuals’ own intrinsic regenerative mechanisms and embraces tissue engineering, cell/system biology, gene therapy and stem-cell biology. Most approaches in tissue engineering are based on the expansion of small autologous cell aggregates. Tissue engineering supplemented by isolated and amplified stem cells is another very promising option for producing autologous transplants and getting over the limited availability. The association of stem cell-based tissue engineering and gene therapy allows the creation of regenerative tissue in the optimal ambience of regulatory proteins. This leads to great opportunities in the transplantation of skin, bones or cartilage. This paper presents the current status and the possible benefits, but also the limitations, of regenerative medicine in reconstructive surgery of the head and neck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Aigner J, Eblenkamp M, Wintermantel E (2005) Techniques for functional tissue and organ replacement using postnatal stem cells. Chirurg 76: 435–444

    Article  PubMed  CAS  Google Scholar 

  2. Allen RE, Temm-Grove CJ, Sheehan SM, Rice G (1997) Skeletal muscle satellite cell cultures. Methods Cell Biol 52: 155–176

    PubMed  CAS  Google Scholar 

  3. Alsberg E, Hill EE, Mooney DJ (2001) Craniofacial tissue engineering. Crit Rev Oral Biol Med 12: 64–75

    PubMed  CAS  Google Scholar 

  4. Arosarena O (2005) Tissue engineering. Curr Opin Otolaryngol Head Neck Surg 13: 233–241

    Article  PubMed  Google Scholar 

  5. Atala A (2004) Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res 7: 15–31

    Article  PubMed  Google Scholar 

  6. Atala A (2006) Recent developments in tissue engineering and regenerative medicine. Curr Opin Pediatr 18: 167–171

    Article  PubMed  Google Scholar 

  7. Augustin HG (2003) Angiogenesis research – quo vadis? Ophthalmologe 100: 104–110

    Article  PubMed  CAS  Google Scholar 

  8. Bach AD, Beier JP, Stern-Staeter J, Horch RE (2004) Skeletal muscle tissue engineering. J Cell Mol Med 8: 413–422

    Article  PubMed  CAS  Google Scholar 

  9. Bader A (2002) Intersections of reconstructive surgery in the area of regenerative medicine. Chirurg 73: 428–434

    Article  PubMed  CAS  Google Scholar 

  10. Bannasch H, Föhn M, Unterberg T et al. (2003) Skin tissue engineering. Chirurg 74: 802–807

    Article  PubMed  CAS  Google Scholar 

  11. Bareille R, Lafage-Proust MH et al. (2000) Various evaluation techniques of newly formed bone in porous hydroxyapatite loaded with human bone marrow cells implanted in an extra-osseous site. Biomaterials 21: 1345–1352

    Article  PubMed  CAS  Google Scholar 

  12. Bartsch G Jr, Frimberger D (2004) Embryonic and adult stem cells for tissue engineering in urology. Urologe A 43: 1229–1236

    Article  PubMed  Google Scholar 

  13. Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2: 305–313

    Article  PubMed  CAS  Google Scholar 

  14. Boo JS, Yamada Y, Okazaki Y et al. (2002) Tissue Engineered bone using mesenchymal stem cells and a biogradable scaffold. J Craniofac Surg 13: 231–239

    Article  PubMed  Google Scholar 

  15. Bostrom M, Lane JM, Tomin E et al. (1996) Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop 327: 272–282

    Article  PubMed  Google Scholar 

  16. Boyan BD, Lohmann CH, Romero J, Schwartz Z (1999) Bone and cartilage tissue engineering. Clin Plast Surg 26: 629–645

    PubMed  CAS  Google Scholar 

  17. Braun-Falco M (2002) Gene therapy concepts for promoting wound healing. Hautarzt 53: 238–243

    Article  PubMed  CAS  Google Scholar 

  18. Bücheler M (2002) Tissue engineering in otorhinolaryngology, head and neck surgery. Laryngorhinootologie (Suppl 1) 81: S61–80

  19. Bücheler M, Haisch A (2003) Tissue engineering in otorhinolaryngology. DNA Cell Biol 22: 549–564

    Article  PubMed  Google Scholar 

  20. Bundesministerium für Bildung und Forschung (BMBF); Regenerative Medizin und Biologie – Die Heilungskräfte unseres Körpers verstehen und nutzen, Bonn, Berlin 2005; http://www.bmbf.de/pub/regenerative_medizin_biologie.pdf

  21. Cole J, Tsou R, Wallace K et al. (2001) Comparison of normal human skin gene expression using cDNA microarrays. Wound Repair Regen 9: 77–85

    Article  PubMed  CAS  Google Scholar 

  22. Crystal RG (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270: 404–410

    Article  PubMed  CAS  Google Scholar 

  23. Daculsi G, Passuti N, Martin S et al. (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24: 379–383

    Article  PubMed  CAS  Google Scholar 

  24. Dazert S, Muller AM (2002) Stem cell biotechnology – revolution in established therapeutic methods? Laryngorhinootologie (Suppl 1) 81: S24–38

  25. De Bari C, Dell Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50: 142–150

    Article  CAS  Google Scholar 

  26. Dennis RG, Kosnik PE 2nd, Gilbert ME, Faulkner JA (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280: C288–295

    PubMed  CAS  Google Scholar 

  27. Deutsche Forschungsgemeinschaft (2007) Entwicklung der Gentherapie/Development of Gene Therapy; Stellungnahme der Senatskommission für Grundsatzfragen der Genforschung, Mitteilung 5/Report 5. Wiley-VCH, Weinheim

  28. Dill-Müller D, Tilgen W (2005) Bewährte und aktuelle Verfahren in der Wundheilung. Hautarzt 56: 411–422

    Article  PubMed  Google Scholar 

  29. Eming SA, Krieg T, Davidson JM (2004) Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 4: 1373–1386

    Article  PubMed  CAS  Google Scholar 

  30. Eming SA, Smola H, Krieg T (2002) Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs 172: 105–117

    Article  PubMed  CAS  Google Scholar 

  31. Eming SA, Whitsitt JS, He L et al. (1999) Particle-mediated gene transfer of PDGF isoforms promotes wound repair. J Invest Dermatol 112: 297–302

    Article  PubMed  CAS  Google Scholar 

  32. Eriksson E, Yao F, Svensjo T et al. (1998) In vivo gene transfer to skin and wound by microseeding. J Surg Res 78: 85–91

    Article  PubMed  CAS  Google Scholar 

  33. Ferrera D, Poggi S, Biassoni C et al. (2002) Three-dimensional cultures of normal human osteoblasts: proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice. Bone 30: 718–725

    Article  PubMed  CAS  Google Scholar 

  34. Gang EJ, Jeong JA, Hong SH et al. (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22: 617–624

    Article  PubMed  Google Scholar 

  35. Gillitzer R (2002) Modernes Wundmanagement. Hautarzt 53: 130–147

    Article  PubMed  CAS  Google Scholar 

  36. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69: 513–521

    PubMed  CAS  Google Scholar 

  37. Giunta RE, Holzbach T, Taskov C et al. (2005) AdVEGF165 gene transfer increases survival in overdimensioned skin flaps. J Gene Med 7: 297–306

    Article  PubMed  CAS  Google Scholar 

  38. Goessler UR, Bugert P, Bieback K et al. (2006) A comparison of the gene expression patterns of human chondrocytes and chondrogen differentiated mesenchymal stem cells for tissue engineering. HNO 54: 258–266

    Article  PubMed  CAS  Google Scholar 

  39. Goessler UR, Bugert P, Bieback K et al. (2004) Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int J Mol Med 14: 1015–1022

    PubMed  CAS  Google Scholar 

  40. Goessler UR, Hörmann K, Riedel F (2004) Tissue engineering with chondrocytes and function of the extracellular matrix. Int J Mol Med 13: 505–513

    PubMed  CAS  Google Scholar 

  41. Goessler UR, Hörmann K, Riedel F (2005) Adult stem cells in plastic reconstructive surgery. Int J Mol Med 15: 899–905

    PubMed  CAS  Google Scholar 

  42. Goessler UR, Riedel K, Hormann K, Riedel F (2006) Perspectives of gene therapy in stem cell tissue engineering. Cells Tissues Organs 183: 169–179

    Article  PubMed  Google Scholar 

  43. Gojo S, Yamamoto S, Patience C et al. (2002) Gene therapy – its potential in surgery. Ann R Coll Surg Engl 84: 297–301

    Article  PubMed  Google Scholar 

  44. Grob D (1986) Probleme an der Entnahmestelle bei autogener Knochentransplantation. Unfallchirurg 89: 339–345

    PubMed  CAS  Google Scholar 

  45. Guntinas-Lichius O (2002) Growth factors in otorhinolaryngology. Laryngorhinootologie (Suppl 1) 81: S39–60

  46. Hadlock TA, Vacanti JP, Cheney ML (1998) Tissue engineering in facial plastic and reconstructive surgery. Facial Plast Surg 14: 197–203

    Article  PubMed  CAS  Google Scholar 

  47. Haisch A, Kläring S, Gröger A et al. (2002) A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol 259: 316–321

    PubMed  Google Scholar 

  48. Haisch A, Schultz O, Perka C et al. (1996) Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers. HNO 44: 624–629

    Article  PubMed  CAS  Google Scholar 

  49. Hallfeldt KJ, Stuetzle H, Puhlmann M et al. (1994) The osteoinductive properties of partially demineralised bone matrix. Theorg Surg 9: 212–213

    Google Scholar 

  50. Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Phys Rev 79: 1283–1316

    CAS  Google Scholar 

  51. Hentz VR, Chang J (2001) Tissue engineering for reconstruction of the thumb. N Engl J Med 344: 1547–1548

    Article  PubMed  CAS  Google Scholar 

  52. Hom DB (2000) A new era of discovery in facial plastic surgery. Arch Facial Plast Surg 2: 166–172

    Article  PubMed  CAS  Google Scholar 

  53. Hom DB, Thatcher G, Tibesar R (2002) Growth factor therapy to improve soft tissue healing. Facial Plast Surg 18: 41–52

    Article  PubMed  Google Scholar 

  54. Hunziker T (2004) Autologous cultured skin substitutes. Hautarzt 55: 1077–1084

    PubMed  CAS  Google Scholar 

  55. Hurvitz KA, Kobayashi M, Evans GR (2006) Current options in head and neck reconstruction. Plast Reconstr Surg 118: 122e–133e

    Article  PubMed  CAS  Google Scholar 

  56. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3: 589–601

    Article  PubMed  CAS  Google Scholar 

  57. Isogai N, Landis W, Kim TH et al. (1999) Formation of phalanges and small joints by tissue engineering. J Bone Joint Surg 81: 306–316

    Article  PubMed  CAS  Google Scholar 

  58. Jiang Y, Jahagirdar BN, Reinhardt RL et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49

    Article  PubMed  CAS  Google Scholar 

  59. Kanemaru S (2006) Regenerative medicine in the fields of otolaryngology; head and neck regions. Nippon Jibiinkoka Gakkai Kaiho 109: 1–7

    PubMed  Google Scholar 

  60. Koch RJ, Gorti GK (2002) Tissue engineering with chondrocytes. Facial Plast Surg 18: 59–68

    Article  PubMed  Google Scholar 

  61. Lalan S, Pomerantseva I, Vacanti JP (2001) Tissue engineering and its potential impact on surgery. World J Surg 25: 1458–1466

    Article  PubMed  CAS  Google Scholar 

  62. Lauer G, Sollberg S, Cole M et al. (2000) Expression and proteolysis of VEGF is increased in chronic wounds. J Invest Dermatol 115: 12–18

    Article  PubMed  CAS  Google Scholar 

  63. Lee YM, Seol YJ, Lim YT et al. (2001) Tissue engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J Biomed Mates Res 54: 216–223

    Article  CAS  Google Scholar 

  64. Levenberg S, Rouwkema J, Macdonald M et al. (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23: 879–884

    Article  PubMed  CAS  Google Scholar 

  65. Li Q, Ping P, Zhang D (2002) Vascular endothelial growth factor (VEGF) accelerates maturation of prefabricated flap. Zhonghua Zheng Xing Wai Ke Za Zhi 18: 69–71

    PubMed  Google Scholar 

  66. Machens HG, Mailander P (2005) Regenerative medicine and plastic surgery. Chirurg 76: 474–480

    Article  PubMed  Google Scholar 

  67. Machens HG, Morgan JR, Sachse C et al. (2000) Gene therapy possibilities in plastic surgery. Chirurg 71: 152–158

    PubMed  CAS  Google Scholar 

  68. Madry H, Kohn D, Cucchiarini M (2006) Gene therapy in orthopaedic surgery. Orthopäde 35: 1193–1204

    Article  PubMed  CAS  Google Scholar 

  69. Messina A, Bortolotto SK, Cassell OC et al. (2005) Generation of a vascularized organoid using skeletal muscle as the inductive source. FASEB J 19: 1570–1572

    PubMed  CAS  Google Scholar 

  70. Messina LM, Podrazik RM, Whitehill TA et al. (1992) Adhesion and incorporation of lacZ-transduced endothelial cells into the intact capillary wall in the rat. Proc Natl Acad Sci USA 89: 12018–12022

    Article  PubMed  CAS  Google Scholar 

  71. Mustoe TA, Han H (1999) The effect of new technologies on plastic surgery. Arch Surg 134: 1178–1183

    Article  PubMed  CAS  Google Scholar 

  72. Naumann A, Dennis J, Staudenmaier R et al. (2002) Mesenchymal stem cells – a new pathway for tissue engineering in reconstructive surgery. Laryngorhinootologie 81: 521–527

    Article  PubMed  CAS  Google Scholar 

  73. Naumann A, Rotter N, Bujia J, Aigner J (1998) Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol 12: 59–63

    Article  PubMed  CAS  Google Scholar 

  74. Nussenbaum B, Krebsbach PH (2006) The role of gene therapy for craniofacial and dental tissue engineering. Adv Drug Deliv Rev 58: 577–591

    Article  PubMed  CAS  Google Scholar 

  75. Nussenbaum B, Teknos TN, Chepeha DB (2004) Tissue engineering: the current status of this futuristic modality in head neck reconstruction. Curr Opin Otolaryngol Head Neck Surg 12: 311–315

    Article  PubMed  Google Scholar 

  76. Oberholzer A, Stahel P, Tschoke SK, Ertel W (2006) Role of gene therapy in trauma and orthopedic surgery. Unfallchirurg 109: 521–527

    Article  PubMed  CAS  Google Scholar 

  77. Peiseler B (2001) Ohrmuscheln und Gelenke aus Zellkultur. Baseler Zeitung 16: 55–57

    Google Scholar 

  78. Philipp K, Riedel F, Sauerbier M et al. (2004) Targeting TGF-beta in human keratinocytes and its potential role in wound healing. International J Mol Med 14: 589–593

    CAS  Google Scholar 

  79. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  PubMed  CAS  Google Scholar 

  80. Polak J, Hench L (2005) Gene therapy progress and prospects: in tissue engineering. Gene Ther 12: 1725–1733

    Article  PubMed  CAS  Google Scholar 

  81. Puelacher WC, Mooney D, Langer R et al. (1994) Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 15: 774–778

    Article  PubMed  CAS  Google Scholar 

  82. Puelacher WC, Wisser J, Vacanti CA et al. (1994) Temporomandibular joint disc replacement made by tissue engineered growth of cartilage. J Oral Maxillofac Surg 52: 1172–1177

    PubMed  CAS  Google Scholar 

  83. Rettinger G (1992) Autogene und allogene Knorpeltransplantate in der Kopf- und Halschirurgie (ohne Mittelohr und Trachea). Eur Arch Otorhinolaryngol (Suppl) 1: 127–162

    Google Scholar 

  84. Riedel F, Hormann K (2001) Anti-angiogenesis – a therapy concept in the treatment of head and neck carcinomas? A review. Laryngorhinootologie 80: 535–541

    Article  PubMed  CAS  Google Scholar 

  85. Riedel F, Hormann K (2005) Plastic surgery of skin defects in the face – principles and perspectives. HNO 53: 1020–1036

    Article  PubMed  CAS  Google Scholar 

  86. Riedel F, Reinhart Goessler U, Grupp S et al. (2006) Management of radiation-induced tracheocutaneous tissue defects by transplantation of an ear cartilage graft and deltopectoral flap. Auris Nasus Larynx 33: 79–84

    Article  PubMed  Google Scholar 

  87. Riedel K, Riedel F, Goessler U et al. (2006) Current status of genetic modulation of growth factors in wound healing. Int J Mol Med 17: 183–193

    PubMed  Google Scholar 

  88. Roth D, Kalish E, Castillo JR et al. (1999) Gene therapy with vascular endothelial growth factor improves survival in the rat tram flap. In: Proceedings of the 44th Annual Meeting of the Plastic Surgery Council, Pittsburgh/PA, May 22–25, 1999

  89. Rotter N, Aigner J, Naumann A et al. (1999) Behavior of tissue-engineered human cartilage after transplantation into nude mice. J Mater Sci Mater Med 10: 689–693

    Article  PubMed  CAS  Google Scholar 

  90. Rotter N, Haisch A, Bucheler M (2005) Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol 262: 539–545

    Article  PubMed  Google Scholar 

  91. Rotter N, Sittinger M, Hammer C et al. (1997) Transplantation of in vitro cultured cartilage materials: characterization of matrix synthesis. Laryngorhinootologie 76: 241–247

    PubMed  CAS  Google Scholar 

  92. Rueger JM (1998) Knochenersatzmittel. Orthopäde 27: 72–79

    PubMed  CAS  Google Scholar 

  93. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4: 743–765

    Article  PubMed  CAS  Google Scholar 

  94. Sato K, Li Y, Foster W et al. (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28: 365–372

    Article  PubMed  CAS  Google Scholar 

  95. Schaefer DJ, Klemt C, Zhang XH, Stark GB (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71: 1001–1008

    Article  PubMed  CAS  Google Scholar 

  96. Schantz JT, Hutmacher DW, Chim H et al. (2002) Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant 11: 125–138

    PubMed  Google Scholar 

  97. Shastri VP (2006) Future of regenerative medicine: challenges and hurdles. Artif Organs 30: 828–834

    Article  PubMed  Google Scholar 

  98. Sikavitsas VI, van den Dolder J, Banccroft GN et al. (2003) Influence of in vitro culture period on the in vivo performance of cell/titanium bone tissue engineered constructs using rat cranial critical size defect model. J Biomed Mater Res 67A: 944–951

    Article  CAS  Google Scholar 

  99. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341: 738–746

    Article  PubMed  CAS  Google Scholar 

  100. Sittinger M (1995) Tissue engineering: artificial tissue replacement containing vital components. Laryngorhinootologie 74: 695–699

    PubMed  CAS  Google Scholar 

  101. Smola H, Eming SA, Hess S et al. (2001) Wundheilung und Wundheilungsstörungen. Dt Ärzteblatt 98: 2400–2406

    Google Scholar 

  102. Staudenmaier R, Miehle N, Kleinsasser N et al. (2004) Tissue-engineered cartilage in a prefabricated microvascularized flap. HNO 52: 510–517

    Article  PubMed  CAS  Google Scholar 

  103. Steed DL (1995) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers: Diabetic Ulcer Study Group. J Vasc Surg 21: 71

    Article  PubMed  CAS  Google Scholar 

  104. Stern-Straeter J, Bach AD, Stangenberg L et al. (2005) Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time RT-PCR study. J Cell Mol Med 9: 883–892

    Article  PubMed  CAS  Google Scholar 

  105. Stern-Straeter J, Riedel F, Bran G et al. (2007) Advances in skeletal muscle tissue engineering. In vivo (in press)

  106. Tanczos E, Horch RE, Bannasch H et al. (1999) Keratinocyte transplantation and tissue engineering. New approaches in treatment of chronic wounds. Zentralbl Chir (Suppl 1) 124: 81–86

    Google Scholar 

  107. Taub PJ, Marmur JD, Zhang WX et al. (1998) Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps. Plast Reconstr Surg 102: 2033

    Article  PubMed  CAS  Google Scholar 

  108. Taub PJ, Silver L, Weinberg H (2000) Plastic surgical perspectives on vascular endothelial growth factor as gene therapy for angiogenesis. Plast Reconstr Surg 105: 1034–1042

    Article  PubMed  CAS  Google Scholar 

  109. Tepper OM, Mehrara BJ (2002) Gene therapy in plastic surgery. Plast Reconstr Surg 109: 716–734

    Article  PubMed  Google Scholar 

  110. Tintut Y, Alfonso Z, Saini T et al. (2003) Multilineage potential of cells from the artery wall. Circulation 108: 2505–2510

    Article  PubMed  Google Scholar 

  111. Toma JG, Akhavan M, Fernandes KJ et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778–784

    Article  PubMed  CAS  Google Scholar 

  112. Tonnesen MG, Feng X, Clark RAF (2000) Angiogenesis in wound healing. J Invest Dermatol 5: 40–46

    Article  CAS  Google Scholar 

  113. Tsou R, Cole JK, Nathens AB et al. (2000) Analysis of hypertrophic scar and normal scar gene expression with cDNA microarrays. J Burn Care Rehabil 21: 541–550

    PubMed  CAS  Google Scholar 

  114. Tsuchida H, Hashimoto J, Crawford E et al. (2003) Engineered allogenic mesenchymal stem cells repair femoral segment defects in rats. J Orthop Res 21: 44–53

    Article  PubMed  Google Scholar 

  115. Vacanti CA, Cima LG, Ratkowski D (1992) Tissue engineering growth of new cartilage in the shape of a human ear using synthetic polymers seeded with chondrocytes. Mat Res Soc Symp Proc 252: 367–374

    CAS  Google Scholar 

  116. Vacanti CA, Paige KT, Kim WS et al. (1994) Experimental tracheal replacement using tissue engineered cartilage. J Pediatr Surg 29: 201–205

    Article  PubMed  CAS  Google Scholar 

  117. Vacanti CA, Vacanti JP (1994) Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 27: 263–276

    PubMed  CAS  Google Scholar 

  118. van den Dolder J, Vehof J, Spauwen PH, Jansen JA (2002) Bone formation by rat bone marrow cells cultured on titanium fiber mesh: effect of in vitro culture time. J Biomed Mater Res 62: 350–358

    Article  CAS  Google Scholar 

  119. von Garrel T, Gotzen L (1998) Allogenic bone transplantation and bone banking. Unfallchirurg 101: 713–727

    Article  Google Scholar 

  120. Waller W, Lee J, Zhang F, Lineaweaver WC (2004) Gene therapy in flap survival. Microsurgery 24: 168–173

    Article  PubMed  Google Scholar 

  121. Yao F, Eriksson E (2000) Gene therapy in wound repair and regeneration. Wound Repair Regen 8: 443–451

    Article  PubMed  CAS  Google Scholar 

  122. Zhang F, Oswald T, Lin S et al. (2003) Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat. Br J Plast Surg 56: 653–659

    Article  PubMed  CAS  Google Scholar 

  123. Zuk PA, Zhu M, Mizuno H et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Riedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, F., Goessler, U., Stern-Straeter, J. et al. Regenerative Medizin. HNO 56, 262–274 (2008). https://doi.org/10.1007/s00106-007-1604-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-007-1604-y

Schlüsselwörter

Keywords

Navigation