Skip to main content
Log in

Bewegungsstörungen bei chronischen Erkrankungen

Movement disorders in chronic diseases

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Das muskuloskeletale System unterliegt in Kindheit und Jugend bis zum Erreichen der Endgröße einem ausgeprägten Längenwachstum. Zusätzlich muss sich das muskuloskeletale System kontinuierlich an die aktuellen auf Muskel und Knochen einwirkenden Beanspruchungen adaptieren. Über die funktionelle Muskel-Knochen-Einheit wird im Sinne eines Regelkreises der Knochenaufbau und -abbau angepasst. Im Rahmen chronischer Erkrankungen (neurologische Erkrankungen, Knochenstoffwechselstörungen, rheumatisch-entzündliche Erkrankungen) aber auch im Rahmen einer kurzfristigen Immobilität kommt es häufig direkt oder indirekt zu Veränderungen der funktionellen Muskel-Knochen-Einheit, der Gelenke oder der Bewegungsmuster, was letztlich in einer „Bewegungsstörung“ bzw. in veränderten Bewegungsmustern mündet. Unabhängig von der zugrunde liegenden Ursache scheinen die reduzierte Beweglichkeit, das veränderte Bewegungsmuster und die teilweise resultierende Immobilität die Teilhabe der Betroffenen am Leben deutlich zu reduzieren, weswegen diesem Symptom eine hohe Wichtigkeit aus Sicht der Patienten zugeschrieben wird. Eine gezielte Diagnostik mit funktioneller Analyse der vorliegenden Bewegungsstörung erscheint unabdingbar, um ein interdisziplinär individuelles Betreuungskonzept, basierend auf der zugrunde liegenden Erkrankung, anbieten und dessen Wirksamkeit beurteilen zu können sowie die Lebensqualität und Teilhabe der Betroffenen zu erhalten.

Abstract

The pediatric musculoskeletal system undergoes a high growth velocity in childhood and adolescence until the final height is reached. Additionally, the musculoskeletal system must continuously adapt to the current physical strains acting on the muscles and bones. The bone modelling and remodelling processes are adapted in the sense of a feedback regulatory system via the functional muscle-bone unit. In chronic diseases (e.g. neurological diseases, bone metabolism disorders, inflammatory rheumatic diseases) and also in temporary periods of immobilization, alterations of the functional integrity of the muscle-bone unit, the joints or the movement pattern occur directly or indirectly, ultimately leading to a movement disorder or altered movement patterns. Independent of the underlying cause, the reduced mobility, the altered movement pattern and the partially resulting immobility seem to clearly reduce the participation of affected persons. Therefore, this symptom is of great importance from the perspective of the patient. Targeted diagnostics with a functional analysis of the movement disorder present appear to be indispensable to be able to provide an interdisciplinary individual treatment concept based on the underlying disease and to assess the effectiveness as well as the quality of life and social participation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

Verwendete Literatur

  1. Arbogast M, Haas JP (2018) Treatment options in juvenile idiopathic arthritis. Part 2: orthopedics und surgery. Orthopade 47(11):917–925

    Google Scholar 

  2. Beck-Nielsen SS et al (2019) FGF23 and its role in X‑linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 14(1):58

    PubMed  PubMed Central  Google Scholar 

  3. Beck C et al (2010) Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment. Arthritis Res Ther 12(2):R74

    PubMed  PubMed Central  Google Scholar 

  4. Bianchi ML et al (2020) Hypophosphatasia in adolescents and adults: overview of diagnosis and treatment. Osteoporos Int. https://doi.org/10.1007/s00198-020-05345-9

    Article  PubMed  Google Scholar 

  5. Bulut E et al (2019) Deficiency of adenosine deaminase 2; special focus on central nervous system imaging. J Neuroradiol 46(3):193–198

    PubMed  Google Scholar 

  6. Butbul Aviel Y et al (2013) Juvenile psoriatic arthritis (JPsA): juvenile arthritis with psoriasis? Pediatr Rheumatol Online J 11(1):11

    PubMed  PubMed Central  Google Scholar 

  7. Cakar N et al (2008) Takayasu arteritis in children. J Rheumatol 35(5):913–919

    PubMed  Google Scholar 

  8. Chia J et al (2016) Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. J Am Acad Dermatol 74(1):186–189

    PubMed  Google Scholar 

  9. Ekelund M et al (2017) Psoriasis and associated variables in classification and outcome of juvenile idiopathic arthritis—an eight-year follow-up study. Pediatr Rheumatol Online J 15(1):13

    PubMed  PubMed Central  Google Scholar 

  10. Eleftheriou D et al (2016) Eosinophilic granulomatosis with polyangiitis in childhood: retrospective experience from a tertiary referral centre in the UK. Rheumatology (Oxford) 55(7):1263–1272

    Google Scholar 

  11. Flato B et al (2006) Long-term outcome and prognostic factors in enthesitis-related arthritis: a case-control study. Arthritis Rheum 54(11):3573–3582

    PubMed  Google Scholar 

  12. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Graf A et al (2009) Gait characteristics and functional assessment of children with type I osteogenesis imperfecta. J Orthop Res 27(9):1182–1190

    PubMed  Google Scholar 

  14. Haas JP, Arbogast M (2018) Therapeutic options in juvenile idiopathic arthritis. Part 1: nonsurgical treatment. Orthopade 47(11):910–916

    Google Scholar 

  15. Hamilton B (2010) Vitamin D and human skeletal muscle. Scand J Med Sci Sports 20(2):182–190

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartmann M et al (2010) Effects of juvenile idiopathic arthritis on kinematics and kinetics of the lower extremities call for consequences in physical activities recommendations. Int J Pediatr. https://doi.org/10.1155/2010/835984

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hartmann M et al (2018) Back to school physical education despite rheumatism: development and testing of a sport scientific-based physical education certification. Z Rheumatol 77(8):651–666

    CAS  PubMed  Google Scholar 

  18. Hetlevik SO et al (2017) Long-term outcome in juvenile-onset mixed connective tissue disease: a nationwide Norwegian study. Ann Rheum Dis 76(1):159–165

    PubMed  Google Scholar 

  19. Hofmann CE et al (2019) Efficacy and safety of asfotase alfa in infants and young children with hypophosphatasia: a phase 2 open-label study. J Clin Endocrinol Metab 104(7):2735–2747

    PubMed  PubMed Central  Google Scholar 

  20. Hofmann SR et al (2016) Chronic nonbacterial osteomyelitis: pathophysiological concepts and current treatment strategies. J Rheumatol 43(11):1956–1964

    CAS  PubMed  Google Scholar 

  21. Jauhola O et al (2010) Clinical course of extrarenal symptoms in Henoch-Schonlein purpura: a 6-month prospective study. Arch Dis Child 95(11):871–876

    PubMed  Google Scholar 

  22. Livingston JH, Crow YJ (2016) Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi-Goutieres syndrome and beyond. Neuropediatrics 47(6):355–360

    CAS  PubMed  Google Scholar 

  23. Ma J et al (2018) Clinical characteristics and thrombosis outcomes of paediatric antiphospholipid syndrome: analysis of 58 patients. Clin Rheumatol 37(5):1295–1303

    PubMed  Google Scholar 

  24. Makmur EL et al (2019) Comparing the clinical profile of adults and children with Behçet’s syndrome in the UK. Clin Exp Rheumatol 37 Suppl 121(6):48–51

    PubMed  Google Scholar 

  25. Morishita KA et al (2017) Early outcomes in children with antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol 69(7):1470–1479

    CAS  PubMed  Google Scholar 

  26. Mornet E et al (2014) Clinical utility gene card for: hypophosphatasia—update 2013. Eur J Hum Genet. https://doi.org/10.1038/ejhg.2013.177

    Article  PubMed  PubMed Central  Google Scholar 

  27. Na SJ et al (2009) Clinical characteristics and outcomes of juvenile and adult dermatomyositis. J Korean Med Sci 24(4):715–721

    PubMed  PubMed Central  Google Scholar 

  28. Nelitz M et al (2009) Perthes disease: current principles of diagnosis and treatment. Dtsch Arztebl Int 106(31–32):517–523

    PubMed  PubMed Central  Google Scholar 

  29. Nentwich J et al (2020) Correction to: Physical activity and health-related quality of life in chronic non-bacterial osteomyelitis. Pediatr Rheumatol Online J 18(1):11

    PubMed  PubMed Central  Google Scholar 

  30. Prasad C, Cummings E (2018) Rickets presenting as gross motor delay in twin girls. CMAJ 190(18):E565–E568

    PubMed  PubMed Central  Google Scholar 

  31. Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500(2):157–161

    CAS  PubMed  Google Scholar 

  32. Sengler C et al (2015) The majority of newly diagnosed patients with juvenile idiopathic arthritis reach an inactive disease state within the first year of specialised care: data from a German inception cohort. RMD Open 1(1):e74

    PubMed  PubMed Central  Google Scholar 

  33. Seuser A (2019) Rehabilitation am Bewegungsapparat. In: Ruchholt S (Hrsg) Orthopädie und Unfallchirurgie essentials. Thieme, Stutgart

    Google Scholar 

  34. Spamer M et al (2012) Physiotherapy for juvenile idiopathic arthritis. Z Rheumatol 71(5):387–395

    CAS  PubMed  Google Scholar 

  35. Van Hul W et al (2019) Camurati-Engelmann disease. Calcif Tissue Int 104(5):554–560

    PubMed  Google Scholar 

  36. Veilleux LN et al (2013) The muscle-bone relationship in X‑linked hypophosphatemic rickets. J Clin Endocrinol Metab 98(5):E990–E995

    PubMed  Google Scholar 

  37. Veilleux LN, Rauch F (2017) Muscle-bone interactions in pediatric bone diseases. Curr Osteoporos Rep 15(5):425–432

    PubMed  Google Scholar 

  38. Waning DL et al (2015) Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med 21(11):1262–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Whyte MP (2016) Hypophosphatasia—aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12(4):233–246

    CAS  PubMed  Google Scholar 

  40. Whyte MP et al (2019) Natural history of perinatal and infantile hypophosphatasia: a retrospective study. J Pediatr 209:116–124.e4

    PubMed  Google Scholar 

Weiterführende Literatur

  1. Ravelli A, Martini A (2003) Early predictors of outcome in juvenile idiopathic arthritis. Clin Exp Rheumatol 21(5 Suppl 31):S89–S93

    CAS  PubMed  Google Scholar 

  2. Shenoi S, Wallace CA (2010) Remission in juvenile idiopathic arthritis: current facts. Curr Rheumatol Rep 12(2):80–86

    PubMed  Google Scholar 

  3. Stevens BE et al (2018) Clinical characteristics and factors associated with disability and impaired quality of life in children with juvenile systemic sclerosis: results from the childhood arthritis and rheumatology research alliance legacy registry. Arthritis Care Res (Hoboken) 70(12):1806–1813

    Google Scholar 

  4. Wang H, Sun L, Tan W (2015) Clinical features of children with pulmonary microscopic polyangiitis: report of 9 cases. PLoS One 10(4):e124352

    PubMed  PubMed Central  Google Scholar 

  5. Watkin LB et al (2015) COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 47(6):654–660

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Weiss PF, Colbert RA (2018) Juvenile spondyloarthritis: a distinct form of juvenile arthritis. Pediatr Clin North Am 65(4):675–690

    PubMed  Google Scholar 

  7. Wintrich S, Horneff G (2015) Characteristics and outcomes of chronic non-bacterial osteitis in children. Eur J Rheumatol 2(4):139–142

    PubMed  PubMed Central  Google Scholar 

  8. Wu EY et al (2019) Baseline description of the juvenile localized scleroderma subgroup from the childhood arthritis and rheumatology research alliance legacy registry. ACR Open Rheumatol 1(2):119–124

    PubMed  PubMed Central  Google Scholar 

  9. Zaki FM et al (2012) NOMID: the radiographic and MRI features and review of literature. J Radiol Case Rep 6(3):1–8

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hoyer-Kuhn.

Ethics declarations

Interessenkonflikt

H. Hoyer-Kuhn, K. Brockmann, M. Hartmann, C. Hofmann, A. Holl-Wieden und J.‑P. Haas geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Girschick, Berlin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyer-Kuhn, H., Brockmann, K., Hartmann, M. et al. Bewegungsstörungen bei chronischen Erkrankungen. Monatsschr Kinderheilkd 168, 693–702 (2020). https://doi.org/10.1007/s00112-020-00931-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-020-00931-x

Schlüsselwörter

Keywords

Navigation