Skip to main content
Log in

„Environmental enrichment“ und Schwangerschaft

Paradigmen (epi)genetischer Folgen sozialer oder sensueller Stimulation

Environmental enrichment and pregnancy

Paradigms of (epi)genetic effects of social or sensory stimulation

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Mit „enriched environment“ wurde zunächst ein experimentelles Paradigma bezeichnet, um zu entziffern, wie unsere genetische Konstellation mit der Umgebung interagiert und dabei auch zerebrale Spuren, die im Lebenszyklus bestehen bleiben, hinterlässt. Die Regulation der Neurogenese im Hippocampus ist ein wesentliches Moment dabei. Wir zeigen auf, wie Stressfaktoren in der Schwangerschaft auf die kognitive Entwicklung des Feten und dann auch auf den gesamten Lebenszyklus Einfluss nehmen können. Anhand von tierexperimentellen Untersuchungen wird gezeigt, dass „enrichment“ in Phasen hoher Plastizität den Folgen von Stress auch über Generationen hinweg entgegenwirken kann. Zusätzlich werden kurz die anatomischen und funktionellen Voraussetzungen unserer pränatalen Sinnesentwicklung beschrieben, die es ermöglichen, dass Feten die Außenwelt über die Bauchdecken, die Stimme und Gerüche der Mutter noch direkter wahrnehmen und erinnern können. All dies soll zu einem Ensemble von Wissen führen, das neue nichtinvasive Wege für Interventionen in der Schwangerschaft aufzeigt, die sich auf die Gesundheit nachkommender Generationen positiv auswirken können.

Abstract

“Enriched environment” defines a key paradigm to decipher how interactions between genes and environment change the structure and function of the brain of a fetus up to adulthood. The regulation of hippocampal neurogenesis by environmental enrichment is an example of a complex interaction. How maternal stress factors during pregnancy influence cognitive development and resilience of the offspring is discussed here. Animal experiments have demonstrated that an enriched environment can counteract the consequences of stress in the offspring particularly during critical periods of brain plasticity. The developmental trajectory of fetal senses provides another example illustrating how external sources of rich stimulation, such as the maternal voice or smell, may support early brain development and individual preferences. This knowledge may aid in developing new non-invasive interventions during pregnancy and thereafter that impart a positive impact on the health of future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Aristoteles. De generatione animalium 384–22;2,4. 738b25-35.

  2. Prechtl HF (1974) The behavioural states of the newborn infant (a review). Brain Res 76(2):185–212

    CAS  PubMed  Google Scholar 

  3. Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S et al (2017) Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2017.07.003

    Article  PubMed  Google Scholar 

  4. Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78(1):57–65

    CAS  PubMed  Google Scholar 

  5. O’Donnell KJ, Meaney MJ (2017) Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry 174(4):319–328

    PubMed  Google Scholar 

  6. Black MM, Walker SP, Fernald LCH, Andersen CT, DiGirolamo AM, Lu C et al (2017) Early childhood development coming of age: science through the life course. Lancet 389(10064):77–90

    PubMed  Google Scholar 

  7. Boersma G, Tamashiro KL (2015) Individual differences in the effects of prenatal stress exposure in rodents. Neurobiol Stress 1:100–108

    PubMed  Google Scholar 

  8. Dipietro JA (2012) Maternal stress in pregnancy: considerations for fetal development. J Adolesc Health 51(2 Suppl):S3–S8

    PubMed  PubMed Central  Google Scholar 

  9. Huizink AC, Menting B, De Moor MHM, Verhage ML, Kunseler FC, Schuengel C et al (2017) From prenatal anxiety to parenting stress: a longitudinal study. Arch Womens Ment Health 20(5):663–672

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Puterman E, Lin J, Krauss J, Blackburn EH, Epel ES (2015) Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry 20(4):529–535

    CAS  PubMed  Google Scholar 

  11. Lazarides C, Epel ES, Lin J, Blackburn EH, Voelkle MC, Buss C et al (2019) Maternal pro-inflammatory state during pregnancy and newborn leukocyte telomere length: A prospective investigation. Brain Behav Immun 80:419–426

    CAS  PubMed  Google Scholar 

  12. Grant KA, Sandman CA, Wing DA, Dmitrieva J, Davis EP (2015) Prenatal programming of postnatal susceptibility to memory impairments: a developmental double jeopardy. Psychol Sci 26(7):1054–1062

    PubMed  PubMed Central  Google Scholar 

  13. Rakers F, Rupprecht S, Dreiling M, Bergmeier C, Witte OW, Schwab M (2017) Transfer of maternal psychosocial stress to the fetus. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2017.02.019

    Article  PubMed  Google Scholar 

  14. Pluess M, Belsky J (2011) Prenatal programming of postnatal plasticity? Dev Psychopathol 23(1):29–38

    PubMed  Google Scholar 

  15. Boyce WT, Ellis BJ (2005) Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Develop Psychopathol 17(2):271–301

    Google Scholar 

  16. Rikkonen K, Pesonen AK, Heinonen K, Lahti J, Kajantie E, Forsen T et al (2008) Infant growth and hostility in adult life. Psychosom Med 70(3):306–313

    PubMed  Google Scholar 

  17. Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70(2):141–145

    PubMed  Google Scholar 

  18. Bohnert KM, Breslau N (2008) Stability of psychiatric outcomes of low birth weight: a longitudinal investigation. Arch Gen Psychiatry 65(9):1080–1086

    PubMed  Google Scholar 

  19. Tully LA, Arseneault L, Caspi A, Moffitt TE, Morgan J (2004) Does maternal warmth moderate the effects of birth weight on twins’ attention-deficit/hyperactivity disorder (ADHD) symptoms and low IQ? J Consult Clin Psychol 72(2):218–226

    PubMed  Google Scholar 

  20. Buss C, Entringer S, Wadhwa PD (2012) Fetal programming of brain development: intrauterine stress and susceptibility to psychopathology. Sci Signal 5(245):pt7

    PubMed  Google Scholar 

  21. Kelly RH, Russo J, Holt VL, Danielsen BH, Zatzick DF, Walker E et al (2002) Psychiatric and substance use disorders as risk factors for low birth weight and preterm delivery. Obstet Gynecol 100(2):297–304

    PubMed  Google Scholar 

  22. Straub N, Grunert P, Northstone K, Emmett P (2019) Economic impact of breast-feeding-associated improvements of childhood cognitive development, based on data from the ALSPAC. Br J Nutr 122(s1):S16–S21

    CAS  PubMed  Google Scholar 

  23. Blair C (2002) Early intervention for low birth weight, preterm infants: the role of negative emotionality in the specification of effects. Dev Psychopathol 14(2):311–332

    PubMed  Google Scholar 

  24. Nordentoft M, Lou HC, Hansen D, Nim J, Pryds O, Rubin P et al (1996) Intrauterine growth retardation and premature delivery: the influence of maternal smoking and psychosocial factors. Am J Public Health 86(3):347–354

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Smits L, Krabbendam L, de Bie R, Essed G, van Os J (2006) Lower birth weight of Dutch neonates who were in utero at the time of the 9/11 attacks. J Psychosom Res 61(5):715–717

    PubMed  Google Scholar 

  26. Khashan AS, McNamee R, Abel KM, Pedersen MG, Webb RT, Kenny LC et al (2008) Reduced infant birthweight consequent upon maternal exposure to severe life events. Psychosom Med 70(6):688–694

    PubMed  Google Scholar 

  27. Hartwig IR, Pincus MK, Diemert A, Hecher K, Arck PC (2013) Sex-specific effect of first-trimester maternal progesterone on birthweight. Hum Reprod 28(1):77–86

    CAS  PubMed  Google Scholar 

  28. Hebb D‑O (1947) The effects of early experience on problem solving at maturity. Am Psychol 2

  29. Fares RP, Belmeguenai A, Sanchez PE, Kouchi HY, Bodennec J, Morales A et al (2013) Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats. Plos One 8(1):e53888

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L (2010) Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 17(7):1092–1103

    CAS  PubMed  Google Scholar 

  31. Jung CK, Herms J (2014) Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. Cereb Cortex 24(2):377–384

    PubMed  Google Scholar 

  32. Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N (1992) Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 138(1):153–156

    CAS  PubMed  Google Scholar 

  33. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495

    CAS  PubMed  Google Scholar 

  34. Branchi I, Karpova NN, D’Andrea I, Castren E, Alleva E (2011) Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression. Neurosci Lett 495(3):168–172

    CAS  PubMed  Google Scholar 

  35. Bennett EL, Diamond MC, Krech D, Rosenzweig MR (1964) Chemical and anatomical plasticity brain. Science 146(3644):610–619

    CAS  PubMed  Google Scholar 

  36. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1(3):191–198

    PubMed  Google Scholar 

  37. Sale A, Berardi N, Maffei L (2009) Enrich the environment to empower the brain. Trends Neurosci 32(4):233–239

    CAS  PubMed  Google Scholar 

  38. Cummins RA, Livesey PJ, Evans JG (1977) A developmental theory of environmental enrichment. Science 197(4304):692–694

    CAS  PubMed  Google Scholar 

  39. Sale A, Cenni MC, Ciucci F, Putignano E, Chierzi S, Maffei L (2007) Maternal enrichment during pregnancy accelerates retinal development of the fetus. Plos One 2(11):e1160

    PubMed  PubMed Central  Google Scholar 

  40. Maruoka T, Kodomari I, Yamauchi R, Wada E, Wada K (2009) Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice. Neurosci Lett 454(1):28–32

    CAS  PubMed  Google Scholar 

  41. Cancedda L, Putignano E, Sale A, Viegi A, Berardi N, Maffei L (2004) Acceleration of visual system development by environmental enrichment. J Neurosci 24(20):4840–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cardenas L, Garcia-Garcia F, Santiago-Roque I, Martinez AJ, Coria-Avila GA, Corona-Morales AA (2015) Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup. Int J Dev Neurosci 41:68–73

    PubMed  Google Scholar 

  43. Mychasiuk R, Harker A, Ilnytskyy S, Gibb R (2013) Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 241:100–105

    CAS  PubMed  Google Scholar 

  44. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zucchi FC, Yao Y, Metz GA (2012) The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 3:96

    PubMed  PubMed Central  Google Scholar 

  46. Babenko O, Kovalchuk I, Metz GA (2015) Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 48:70–91

    PubMed  Google Scholar 

  47. Faraji J, Singh S, Soltanpour N, Sutherland RJ, Metz GAS (2020) Environmental determinants of behavioural responses to short-term stress in rats: Evidence for inhibitory effect of ambient landmarks. Behav Brain Res 379:112332

    CAS  PubMed  Google Scholar 

  48. McCreary JK, Erickson ZT, Hao Y, Ilnytskyy Y, Kovalchuk I, Metz GA (2016) Environmental intervention as a therapy for adverse programming by ancestral stress. Sci Rep 6:37814

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McCreary JK, Erickson ZT, Metz GA (2016) Environmental enrichment mitigates the impact of ancestral stress on motor skill and corticospinal tract plasticity. Neurosci Lett 632:181–186

    CAS  PubMed  Google Scholar 

  50. Karatsoreos IN, McEwen BS (2011) Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn Sci 15(12):576–584

    PubMed  Google Scholar 

  51. Ambeskovic M, Ilnytskyy Y, Kiss D, Currie C, Montina T, Kovalchuk I et al (2020) Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging 12(4):3828–3847

    PubMed  PubMed Central  Google Scholar 

  52. McCreary JK, Metz GAS (2016) Environmental enrichment as an intervention for adverse health outcomes of prenatal stress. Environ Epigenet 2(3):dvw13

    PubMed  PubMed Central  Google Scholar 

  53. Faraji J, Karimi M, Soltanpour N, Moharrerie A, Rouhzadeh Z, Lotfi H et al (2018) Oxytocin-mediated social enrichment promotes longer telomeres and novelty seeking. Elife. https://doi.org/10.7554/elife.40262

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arabin B, Jahn M (2017) The development of senses. In: Chervenak F et al (Hrsg) Current progress in obstetrics & gynaecology 4. Kothari Medical Subscription Services Pvt, Mumbai

    Google Scholar 

  55. Davenport H (1952) The prenatal origin of behavior. University of Kansas Press, Kansas

    Google Scholar 

  56. Anand KJ, Hickey PR (1987) Pain and its effects in the human neonate and fetus. N Engl J Med 317(21):1321–1329

    CAS  PubMed  Google Scholar 

  57. Teixeira J, Fogliani R, Giannakoulopoulos X, Glover V, Fisk NM (1996) Fetal haemodynamic stress response to invasive procedures. Lancet 347(9001):624

    CAS  PubMed  Google Scholar 

  58. Giannakoulopoulos X, Teixeira J, Fisk N, Glover V (1999) Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res 45(4 Pt 1):494–499

    CAS  PubMed  Google Scholar 

  59. Arabin B, Bos R, Rijlaarsdam R, Mohnhaupt A, van Eyck J (1996) The onset of inter-human contacts: longitudinal ultrasound observations in early twin pregnancies. Ultrasound Obstet Gynecol 8(3):166–173

    CAS  PubMed  Google Scholar 

  60. Knickmeyer R, Baron-Cohen S, Raggatt P, Taylor K, Hackett G (2006) Fetal testosterone and empathy. Horm Behav 49(3):282–292

    CAS  PubMed  Google Scholar 

  61. Klimach VJ, Cooke RW (1988) Maturation of the neonatal somatosensory evoked response in preterm infants. Dev Med Child Neurol 30(2):208–214

    CAS  PubMed  Google Scholar 

  62. Edelman GM (2004) Biochemistry and the sciences of recognition. J Biol Chem 279(9):7361–7369

    CAS  PubMed  Google Scholar 

  63. Charpak N, Ruiz-Pelaez JG, de Figueroa CZ, Charpak Y (2001) A randomized, controlled trial of kangaroo mother care: results of follow-up at 1 year of corrected age. Pediatrics 108(5):1072–1079

    CAS  PubMed  Google Scholar 

  64. Hepper PG, Shahidullah BS (1994) Development of fetal hearing. Arch Dis Child 71(2):F81–F87

    CAS  Google Scholar 

  65. Blum T, Saling E, Bauer R (1985) First magnetoencephalographic recordings of the brain activity of a human fetus. Br J Obstet Gynaecol 92(12):1224–1229

    CAS  PubMed  Google Scholar 

  66. Arabin B, Riedewald S, Zacharias C, Saling E (1988) Quantitative analysis of fetal behavioural patterns with real-time sonography and the actocardiograph. Gynecol Obstet Invest 26(3):211–218

    CAS  PubMed  Google Scholar 

  67. Devoe LD, Murray C, Faircloth D, Ramos E (1990) Vibroacoustic stimulation and fetal behavioral state in normal term human pregnancy. Am J Obstet Gynecol 163(4 Pt 1):1156–1161

    CAS  PubMed  Google Scholar 

  68. van Heteren CF, Boekkooi PF, Jongsma HW, Nijhuis JG (2000) Fetal learning and memory. Lancet 356(9236):1169–1170

    PubMed  Google Scholar 

  69. Querleu D, Renard X, Boutteville C, Crepin G (1989) Hearing by the human fetus? Semin Perinatol 13(5):409–420

    CAS  PubMed  Google Scholar 

  70. DeCasper AJ, Lecanuet J‑P, Busnel M‑C, Granier-Deferre C, Maugeais R (1994) Fetal reactions to recurrent maternal speech. Infant Behav Dev 17(2):159–164

    Google Scholar 

  71. DeCasper AJ, Fifer WP (1980) Of human bonding: newborns prefer their mothers’ voices. Science 208(4448):1174–1176

    CAS  PubMed  Google Scholar 

  72. Woodward SC, Guidozzi F (1992) Intrauterine rhythm and blues? Br J Obstet Gynaecol 99(10):787–789

    CAS  PubMed  Google Scholar 

  73. DeCasper AJ, Sigafoos AD (1983) The intrauterine heartbeat: a potent reinforcer for newborns. Infant Behav Dev 6(1):19–25

    Google Scholar 

  74. Zimmer EZ, Divon MY, Vilensky AF, Sarna ZF, Peretz BA, Paldi E (1982) Maternal exposure to music and fetal activity. Eur J Obstet Gynecol Reprod Biol 13(4):209–213

    CAS  PubMed  Google Scholar 

  75. Cheng D, Huang Y, Qi G (1994) Influence of prenatal music-and touch enrichement on the IQ, motor development and behavior of infants. Chin J Psychol 8:148–151

    Google Scholar 

  76. Lamont A, Dibben N (2001) Motivic structure and the perception of similarity. Music Percept 18(3):245–274

    Google Scholar 

  77. Cheour M, Ceponiene R, Leppanen P, Alho K, Kujala T, Renlund M et al (2002) The auditory sensory memory trace decays rapidly in newborns. Scand J Psychol 43(1):33–39

    PubMed  Google Scholar 

  78. Roederer JG (1984) The search for a survival value of music. Music Percept 1:350–356

    Google Scholar 

  79. Fifer WP, Moon CM (1994) The role of mother’s voice in the organization of brain function in the newborn. Acta Paediatr Suppl 397:86–93

    CAS  PubMed  Google Scholar 

  80. Condon WS, Sander LW (1974) Neonate movement is synchronized with adult speech: interactional participation and language acquisition. Science 183(4120):99–101

    CAS  PubMed  Google Scholar 

  81. Truby HM (1975) Prenatal and neonatal speech, pre-speech and an infantile speech lexicon. J Child Lang 27:1–3

    Google Scholar 

  82. Jahn M, Muller-Mazzotta J, Arabin B (2016) Music devices for the fetus? An evaluation of pregnancy music belts. J Perinat Med 44(6):637–643

    PubMed  Google Scholar 

  83. Lubetzky R, Mimouni FB, Dollberg S, Reifen R, Ashbel G, Mandel D (2010) Effect of music by Mozart on energy expenditure in growing preterm infants. Pediatrics 125(1):e24–e28

    PubMed  Google Scholar 

  84. Aldridge D, Gustorff D, Neugebauer L (1995) A pilot study of music therapy in the treatment of children with developmental delay. Complement Ther Med 3:197–205

    Google Scholar 

  85. Koelsch S (2011) Toward a neural basis of music perception—a review and updated model. Front Psychol 2:110

    PubMed  PubMed Central  Google Scholar 

  86. Metzler MJ, Saucier DM, Metz GA (2013) Enriched childhood experiences moderate age-related motor and cognitive decline. Front Behav Neurosci 7:1

    PubMed  PubMed Central  Google Scholar 

  87. Winberg J, Porter RH (1998) Olfaction and human neonatal behaviour: clinical implications. Acta Paediatr 87(1):6–10

    CAS  PubMed  Google Scholar 

  88. Beauchamp GMJ (1998) Sensitive periods in the development of human flavor perception and preference. Ann Nestle 56:19–31

    Google Scholar 

  89. Lecanuet JP, Schaal B (1996) Fetal sensory competencies. Eur J Obstet Gynecol Reprod Biol 68(1–2):1–23

    CAS  PubMed  Google Scholar 

  90. Schaal B, Hummel T, Soussignan R (2004) Olfaction in the fetal and premature infant: functional status and clinical implications. Clin Perinatol 31(2):261–285

    PubMed  Google Scholar 

  91. Smotherman WP, Robinson SR (1990) Rat fetuses respond to chemical stimuli in gas phase. Physiol Behav 47(5):863–868

    CAS  PubMed  Google Scholar 

  92. Schaal B, Marlier L, Soussignan R (1998) Olfactory function in the human fetus: evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behav Neurosci 112(6):1438–1449

    CAS  PubMed  Google Scholar 

  93. Faas AE, Sponton ED, Moya PR, Molina JC (2000) Differential responsiveness to alcohol odor in human neonates: effects of maternal consumption during gestation. Alcohol 22(1):7–17

    CAS  PubMed  Google Scholar 

  94. Garcia AP, White-Traut R (1993) Preterm infants’ responses to taste/smell and tactile stimulation during an apneic episode. J Pediatr Nurs 8(4):245–252

    CAS  PubMed  Google Scholar 

  95. Durand K, Baudouin JY, Lewkowicz DJ, Goubet N, Schaal B (2013) Eye-catching odors: olfaction elicits sustained gazing to faces and eyes in 4‑month-old infants. Plos One 8(8):e70677

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Verner G, Epel E, Lahti-Pulkkinen M, Kajantie E, Buss C, Lin J, Blackburn E, Raikkönen K, Wadhwa P, Entringer S (2020) Maternal psychological resilience during pregnancy and newborn telomere length: a prospective study. Am J Psychiatry (im Druck)

  97. Arabin B (2002) Music during pregnancy. Ultrasound Obstet Gynecol 20(5):425–430

    CAS  PubMed  Google Scholar 

  98. Arabin B, Jahn M (2012) Need for interventional studies on the impact of music in the perinatal period: results of a pilot study on women’s preferences and review of the literature. J Matern Fetal Neonatal Med 26:357. https://doi.org/10.3109/14767058.2012.733763

    Article  PubMed  Google Scholar 

  99. Olson DM, Bremault-Phillips S, King S, Metz GAS, Montesanti S, Olson JK et al (2019) Recent Canadian efforts to develop population-level pregnancy intervention studies to mitigate effects of natural disasters and other tragedies. J Dev Orig Health Dis 10(1):108–114

    CAS  PubMed  Google Scholar 

  100. Pennebaker JW (2018) Expressive writing in psychological science. Perspect Psychol Sci 13(2):226–229

    PubMed  Google Scholar 

  101. Pennebaker JW, Kiecolt-Glaser JK, Glaser R (1988) Confronting traumatic experience and immunocompetence: a reply to Neale, Cox, Valdimarsdottir, and Stone. J Consult Clin Psychol 56(4):638–639

    CAS  PubMed  Google Scholar 

Download references

Danksagung

Wir danken Prof. Olson für zahlreiche Anregungen, den Künstlern unseres EE-Teams: Bärbel Dieckmann, Jutta Michaud, Frau Christine Straumer, Angela Wiegerath, Yair Kira und den Wissenschaftlern unseres EE Teams: PD Dr. Thorsten Braun, Prof. Sonja Entringer, Olaf Hars, PD Dr. Lars Hellmeyer, Dr. Josefine Königsbauer, Johanna Maul, Dr. Elisabeth Schalinski für ihre Offenheit und Bereitschaft, zukünftige Projekte mit zu gestalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Arabin.

Ethics declarations

Interessenkonflikt

B. Arabin und G.A.S. Metz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

K. Vetter, Berlin

R. Zimmermann, Zürich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabin, B., Metz, G.A.S. „Environmental enrichment“ und Schwangerschaft. Gynäkologe 53, 433–443 (2020). https://doi.org/10.1007/s00129-020-04622-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-020-04622-2

Schlüsselwörter

Keywords

Navigation