Skip to main content
Log in

FTIR spectro-imaging of collagen scaffold formation during glioma tumor development

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8–11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12–15; 9/10 of tumors; 94 % of variance) and β-turns (day 18–21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beauchesne P (2011) Cancers 3:461–477

    Article  Google Scholar 

  2. Gladson CL, Prayson RA, Liu WM (2010) Annu Rev Pathol 5:33–50

    Article  CAS  Google Scholar 

  3. Wehbe K, Pinneau R, Moenner M, Deleris G, Petibois C (2008) Anal Bioanal Chem 392:129–135

    Article  CAS  Google Scholar 

  4. Kavsan VM, Dimitrenko VV, Shostak KO, Bukreieva TV, Vitak NY, Simirenko OE, Malisheva TA, Shamayev MI, Rozumenko VD, Zozulya YA (2007) Cyt Genet 41:30–48

    Article  Google Scholar 

  5. Liang Y, Diehn M, Bollen AW, Israel MA, Gupta N (2008) J Neurooncol 86:133–141

    Article  CAS  Google Scholar 

  6. Nitta H, Yamashima T, Yamashita J, Kubota T (1990) Histol Histopathol 5:267–274

    CAS  Google Scholar 

  7. Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, Isacke CM (2010) PLoS One 5:e9808

    Article  Google Scholar 

  8. Gladson CL (1999) J Neuropathol Exp Neurol 58:1029–1040

    Article  CAS  Google Scholar 

  9. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Int J Biochem Cell Biol 36:1046–1069

    Article  CAS  Google Scholar 

  10. Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM, Nelson SF (2006) Mol Cancer Res 4:607–619

    Article  CAS  Google Scholar 

  11. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, Munro J, Schroder E, Zhou J, Brunton VG, Barker N, Clevers H, Sansom OJ, Anderson KI, Weaver VM, Olson MF (2011) Cancer Cell 19:776–791

    Article  CAS  Google Scholar 

  12. D'Abaco GM, Kaye AH (2007) J Clin Neurosci 14:1041–1048

    Article  Google Scholar 

  13. Gutsmann T, Fantner GE, Kindt JH, Venturoni M, Danielsen S, Hansma PK (2004) Biophys J 86:3186–3193

    Article  CAS  Google Scholar 

  14. Belbachir K, Noreen R, Gouspillou G, Petibois C (2009) Anal Bioanal Chem 395:829–837

    Article  CAS  Google Scholar 

  15. Steiner G, Shaw A, Choo-Smith LP, Abuid MH, Schackert G, Sobottka S, Steller W, Salzer R, Mantsch HH (2003) Biopolymers 72:464–471

    Article  CAS  Google Scholar 

  16. Petibois C, Drogat B, Bikfalvi A, Deleris G, Moenner M (2007) FEBS Lett 581:5469–5474

    Article  CAS  Google Scholar 

  17. Krafft C, Sobottka SB, Geiger KD, Schackert G, Salzer R (2007) Anal Bioanal Chem 387:1669–1677

    Article  CAS  Google Scholar 

  18. Wang TD, Triadafilopoulos G, Crawford JM, Dixon LR, Bhandari T, Sahbaie P, Friedland S, Soetikno R, Contag CH (2007) Proc Natl Acad Sci U S A 104:15864–15869

    Article  CAS  Google Scholar 

  19. Cohenford MA, Rigas B (1998) Proc Natl Acad Sci U S A 95:15327–15332

    Article  CAS  Google Scholar 

  20. Fabian H, Thi NA, Eiden M, Lasch P, Schmitt J, Naumann D (2006) Biochim Biophys Acta 1758:874–882

    Article  CAS  Google Scholar 

  21. Lasch P, Haensch W, Naumann D, Diem M (2004) Biochim Biophys Acta 1688:176–186

    Article  CAS  Google Scholar 

  22. Salman A, Sahu RK, Bernshtain E, Zelig U, Goldstein J, Walfisch S, Argov S, Mordechai S (2004) Vib Spectrosc 34:301–308

    Article  CAS  Google Scholar 

  23. Li MJ, Hsu HS, Liang RC, Lin SY (2002) Ultrastruct Pathol 26:365–370

    Article  Google Scholar 

  24. Yano K, Ohoshima S, Gotou Y, Kumaido K, Moriguchi T, Katayama H (2000) Anal Biochem 287:218–225

    Article  CAS  Google Scholar 

  25. Crupi V, De Domenico D, Interdonato S, Majolino D, Maisano G, Migliardo P, Venuti V (2001) J Mol Struct 563–4:115–118

    Article  Google Scholar 

  26. Zhang G, Moore DJ, Flash CR, Mendelsohn R (2007) Anal Bioanal Chem 387:1591–1599

    Article  CAS  Google Scholar 

  27. Sobottka SB, Geiger KD, Salzer R, Schackert G, Krafft C (2009) Anal Bioanal Chem 393:187–195

    Article  CAS  Google Scholar 

  28. Gaigneaux A, Decaestecker C, Camby I, Mijatovic T, Kiss R, Ruysschaert JM, Goormaghtigh E (2004) Exp Cell Res 297:294–301

    Article  CAS  Google Scholar 

  29. Beljebbar A, Amharref N, Leveques A, Dukic S, Venteo L, Schneider L, Pluot M, Manfait M (2008) Anal Chem 80:8406–8415

    Article  CAS  Google Scholar 

  30. Petibois C, Deleris G, Piccinini M, Cestelli Guidi M, Marcelli A (2009) Nat Photonics 3:179

    Article  CAS  Google Scholar 

  31. Petibois C, Déléris G (2004) Analyst 129:912–916

    Article  CAS  Google Scholar 

  32. Petibois C, Gouspillou G, Wehbe K, Delage JP, Deleris G (2006) Anal Bioanal Chem 386:1961–1966

    Article  CAS  Google Scholar 

  33. Noreen R, Chien CC, Delugin M, Yao S, Pineau R, Hwu Y, Moenner M, Petibois C (2011) Anal Bioanal Chem 401:845–852

    Article  CAS  Google Scholar 

  34. Noreen R, Moenner M, Hwu Y, Petibois C (2012) Biotechnol Adv 30:1432–1446

    Article  CAS  Google Scholar 

  35. Fabian H, Lasch P, Naumann D (2005) J Biomed Opt 10:031103

    Article  Google Scholar 

  36. Goormaghtigh E, Ruysschaert JM, Raussens V (2006) Biophys J 90:2946–2957

    Article  CAS  Google Scholar 

  37. Sun WY, Fang JL, Cheng M, Xia PY, Tang WX (1997) Biopolymers 42:297–303

    Article  CAS  Google Scholar 

  38. Ami D, Neri T, Natalello A, Mereghetti P, Doglia SM, Zanoni M, Zuccotti M, Garagna S, Redi CA (2008) Biochim Biophys Acta 1783:98–106

    Article  CAS  Google Scholar 

  39. Fabian H, Naumann D (2004) Methods 34:28–40

    Article  CAS  Google Scholar 

  40. Petibois C, Déléris G (2006) Trends Biotechnol 24:455–462

    Article  CAS  Google Scholar 

  41. Haris PI, Servecan F (1999) J Mol Catalysis B: Enzymatic 7:207–221

    Article  CAS  Google Scholar 

  42. Muyonga JH, Cole CGB, Duodu KG (2004) Food Chem 86:325–332

    Article  CAS  Google Scholar 

  43. Ngarize S, Herman H, Adams A, Howell N (2004) J Agric Food Chem 52:6470–6477

    Article  CAS  Google Scholar 

  44. Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Biochim Biophys Acta 1422:105–185

    Article  CAS  Google Scholar 

  45. Troullier A, Reinstadler D, Dupont Y, Naumann D, Forge V (2000) Nat Struct Biol 7:78–86

    Article  CAS  Google Scholar 

  46. Doré J-C, Ojasoo T, Okubo Y, Durand T, Dudognon G, Miquel J-F (1996) J Am Soc Inf Sci 47:588–602

    Article  Google Scholar 

  47. Kishino H, Waddell PJ (2000) Genome Inform Ser Workshop Genome Inform 11:83–95

    CAS  Google Scholar 

  48. Teil H (1975) Math Geol 7:3–12

    Article  Google Scholar 

  49. Senner V, Ratzinger S, Mertsch S, Grassel S, Paulus W (2008) FEBS Lett 582:3293–3300

    Article  CAS  Google Scholar 

  50. Aubert M, Badoual M, Christov C, Grammaticos B (2008) J R Soc Interface 5:75–83

    Article  CAS  Google Scholar 

  51. Petibois C, Cazorla G, Gin H, Deleris G (2001) J Lab Clin Med 137:184–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the “Ligue Nationale contre le cancer” and the “Agence Nationale de la Recherche” (ANR contract no bl-inter09_464249-MIAG-X) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Petibois.

Additional information

Published in the topical collection Morpho-Spectral Imaging with guest editors Cyril Petibois and Yeukuang Hwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noreen, R., Chien, CC., Chen, HH. et al. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development. Anal Bioanal Chem 405, 8729–8736 (2013). https://doi.org/10.1007/s00216-013-7337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7337-8

Keywords

Navigation