Skip to main content

Advertisement

Log in

Plastid engineering using episomal DNA

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Novel episomal systems have the potential to accelerate plastid genetic engineering for application in plant synthetic biology.

Abstract

Plastids represent valuable subcellular compartments for genetic engineering of plants with intrinsic advantages to engineering the nucleus. The ability to perform site-specific transgene integration by homologous recombination (HR), coordination of transgene expression in operons, and high production of heterologous proteins, all make plastids an attractive target for synthetic biology. Typically, plastid engineering is performed by homologous recombination; however, episomal-replicating vectors have the potential to accelerate the design/build/test cycles for plastid engineering. By accelerating the timeline from design to validation, it will be possible to generate translational breakthroughs in fields ranging from agriculture to biopharmaceuticals. Episomal-based plastid engineering will allow precise single step metabolic engineering in plants enabling the installation of complex synthetic circuits with the ambitious goal of reaching similar efficiency and flexibility of to the state-of-the-art genetic engineering of prokaryotic systems. The prospect to design novel episomal systems for production of transplastomic marker-free plants will also improve biosafety for eventual release in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated during this review article.

References

  • Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brixey PJ, Guda C, Daniell H (1997) The chloroplast psbA promoter is more efficient in Escherichia coli than the T7 promoter for hyperexpression of a foreign protein. Biotechnol Lett 19:395–400

    Article  CAS  Google Scholar 

  • Brophy JAN, Magallon KJ, Duan L, Zhong V, Ramachandran P, Kniazev K, Dinneny JR (2022) Synthetic genetic circuits as a means of reprogramming plant roots. Science 377:747–751

    Article  CAS  PubMed  Google Scholar 

  • Carde JP (1984) Leucoplasts: a distinct kind of organelles lacking typical 70S ribosomes and free thylakoids. Eur J Cell Biol 34:18–26

    CAS  PubMed  Google Scholar 

  • Chan HT, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H (2016) Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol J 14:2190–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Yi T, Ha SH (2021) Diversity of plastid types and their interconversions. Front Plant Sci 12:692024

    Article  PubMed  PubMed Central  Google Scholar 

  • Crumpton-Taylor M, Grandison S, Png KM, Bushby AJ, Smith AM (2012) Control of starch granule numbers in Arabidopsis chloroplasts. Plant Physiol 158:905–916

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (1993) Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods Enzymol 217:536–556

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879–6880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, McFadden BA (1987) Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc Natl Acad Sci USA 84:6349–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Vivekananda J, Nielsen BL, Ye GN, Tewari KK, Sanford JC (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci USA 87:88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Ribeiro T, Lin S, Saha P, McMichael C, Chowdhary R, Agarwal A (2019) Validation of leaf and microbial pectinases: commercial launching of a new platform technology. Plant Biotechnol J 17:1154–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Pelissier B, Garçon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  CAS  PubMed  Google Scholar 

  • Engler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JD, Patron NJ, Marillonnet S (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3:839–843

    Article  CAS  PubMed  Google Scholar 

  • Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R (2016) A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 5:e13664

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  • Gatenby AA, Rothstein SJ, Bradley D (1988) Using bacteria to analyze sequences involved in chloroplast gene expression. Photosynth Res 19:7–22

    Article  CAS  PubMed  Google Scholar 

  • Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG (2020) Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant J 102:730–746

    Article  CAS  PubMed  Google Scholar 

  • Howe CJ, Barbrook AC, Nisbet RE, Lockhart PJ, Larkum AW (2008a) The origin of plastids. Philos Trans R Soc Lond B Biol Sci 363:2675–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe CJ, Nisbet RE, Barbrook AC (2008b) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Jakubiec A, Sarokina A, Choinard S, Vlad F, Malcuit I, Sorokin AP (2021) Replicating minichromosomes as a new tool for plastid genome engineering. Nat Plants 7:932–941

    Article  CAS  PubMed  Google Scholar 

  • Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    Article  CAS  PubMed  Google Scholar 

  • Jeske H, Lütgemeier M, Preiss W (2001) DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang DH, Ko SC, Heo YB, Lee HJ, Woo HM (2022) RoboMoClo: a robotics-assisted modular cloning framework for multiple gene assembly in biofoundry. ACS Synth Biol 11:1336–1348

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M (2018) Bacterial microcompartments. Nat Rev Microbiol 16:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumandou VL, Howe CJ (2007) The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate Amphidinium operculatum. Protist 158:89–103

    Article  CAS  PubMed  Google Scholar 

  • Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS (2022) Green plant genomes: what we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci USA 119:e2115640118

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon KC, Sherman A, Chang WJ, Kamesh A, Biswas M, Herzog RW, Daniell H (2018) Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnol J 16:1148–1160

    Article  CAS  PubMed  Google Scholar 

  • Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B (1995) In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci USA 92:3879–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JPB, Ly F, Gong P, Pflueger J, Swain T, Pflueger C, Fourie E, Khan MA, Kidd BN, Lister R (2022) Synthetic memory circuits for stable cell reprogramming in plants. Nat Biotechnol 40:1862–1872

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Durán R (2016) Geminiviruses for biotechnology: the art of parasite taming. New Phytol 210:58–64

    Article  PubMed  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci USA 110:e623-632

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Meeker R, Nielsen B, Tewari KK (1988) Localization of replication origins in pea chloroplast DNA. Mol Cell Biol 8:1216–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Min SR, Davarpanah SJ, Jung SH, Park Y-i, Liu JR, Jeong W-J (2015a) An episomal vector system for plastid transformation in higher plants. Plant Biotechnol Rep 9:443–449

    Article  Google Scholar 

  • Min SR, Jung SH, Liu JR, Jeong W-J (2015b) The fate of extrachromosomal DNAs in the progeny of plastid-transformed tobacco plants. Plant Biotechnol Rep 9:431–442

    Article  Google Scholar 

  • Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlbauer SK, Lössl A, Tzekova L, Zou Z, Koop HU (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184

    Article  PubMed  Google Scholar 

  • Murén E, Nilsson A, Ulfstedt M, Johansson M, Ronne H (2009) Rescue and characterization of episomally replicating DNA from the moss Physcomitrella. Proc Natl Acad Sci USA 106:19444–19449

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen BL, Tewari KK (1988) Pea chloroplast topoisomerase I: purification, characterization, and role in replication. Plant Mol Biol 11:3–14

    Article  CAS  PubMed  Google Scholar 

  • Occhialini A, Piatek AA, Pfotenhauer AC, Frazier TP, Stewart CN Jr, Lenaghan SC (2019) MoChlo: a versatile, modular cloning toolbox for chloroplast biotechnology. Plant Physiol 179:943–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Occhialini A, Pfotenhauer AC, Frazier TP, Li L, Harbison SA, Lail AJ, Mebane Z, Piatek AA, Rigoulot SB, Daniell H, Stewart CN Jr, Lenaghan SC (2020) Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci Rep 10:21144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Occhialini A, Pfotenhauer AC, Li L, Harbison SA, Lail AJ, Burris JN, Piasecki C, Piatek AA, Daniell H, Stewart CN Jr, Lenaghan SC (2022) Mini-synplastomes for plastid genetic engineering. Plant Biotechnol J 20:360–373

    Article  CAS  PubMed  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  CAS  PubMed  Google Scholar 

  • Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier JM (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 75:3314–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian ZG, Huang SC, Xia XX (2022) Synthetic protein condensates for cellular and metabolic engineering. Nat Chem Biol 18:1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, Trejo-Muñoz JC, Siqueiros-Cendón T, Sinagawa-García SR, Arévalo-Gallegos S, Espinoza-Sánchez EA (2021) Plastid transformation: advances and challenges for its implementation in agricultural crops. Electron J Biotechnol 51:95–109

    Article  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Schaefer D, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Molec Gen Genet 226:418–424

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JA, Richter LV, Condoluci LA, Ahner BA (2021) Mitigation of deleterious phenotypes in chloroplast-engineered plants accumulating high levels of foreign proteins. Biotechnol Biofuels 14:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staub JM, Maliga P (1994) Extrachromosomal elements in tobacco plastids. Proc Natl Acad Sci USA 91:7468–7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staub JM, Maliga P (1995) Marker rescue from the Nicotiana tabacum plastid genome using a plastid/Escherichia coli shuttle vector. Molec Gen Genet 249:37–42

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Perica MC (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res 12:425–437

    Article  CAS  PubMed  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5’ and 3’ regulatory sequences. Transgenic Res 20:137–151

    Article  CAS  PubMed  Google Scholar 

  • Vellai T, Vida G (1999) The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc Biol Sci 266:1571–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3:739–758

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Karcher D, Bock R (2007) Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J 52:961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  CAS  PubMed  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by United States Department of Agriculture (USDA)/National Institute of Food and Agriculture (NIFA), Award No. 2022-33522-38289.

Author information

Authors and Affiliations

Authors

Contributions

AO and SCL conceived, wrote, and approved the manuscript.

Corresponding authors

Correspondence to Alessandro Occhialini or Scott C. Lenaghan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Günther Hahne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Occhialini, A., Lenaghan, S.C. Plastid engineering using episomal DNA. Plant Cell Rep 42, 1125–1132 (2023). https://doi.org/10.1007/s00299-023-03020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03020-x

Keywords

Navigation