Skip to main content
Log in

Comparative spectroscopy study of TeO2–B2O3 glass system for photonic application: barium and bismuth as modifier

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the spectroscopic characteristics of two series of TeO2–B2O3 glass systems which were successfully synthesized using the conventional melt quenching method were investigated. The compositions of these two glass series are: [(TeO2)70 (B2O3)30]100-x (Bi2O3)x, and [(TeO2)70 (B2O3)30]100-x (BaO)x,. The effects of adding Bi2O3 and BaO on the structural and optical properties of the glass system were studied. The results demonstrate that the boron–boron separation decreases as the Bi2O3 and BaO content increases, as the glass modifier has a higher molecular weight than the glass network TeO2–B2O3. The shifts in the absorption peak shown in the FTIR spectra are dependent on the glass composition. The analysis shows that the structural units, TeO3, TeO4, TeO6, BO3 and BO4, are found in the glass sample. The optical band gap energy, Eg, calculated from Tauc’s plots, decreases as more Bi2O3 and BaO are added. In contrast, the Urbach energy value rises, implying that more defects exist in the glass structure. Both the absorption edge shift into higher wavelength and the decrease in the Eg values were attributed to the restructuring of the glass network and modifier. The shift was also enhanced by the progressive increase in the concentration of non-bridging oxygen atoms. Due to the high polarization and density of the host material and glass modifiers, the refractive indices were also observed to increase with higher content of Bi2O3 and BaO. Despite the fact that the results of the two glasses showed relatively similar trends, the study concluded that Bi2O3 glass is preferable for photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Forsgren, S. Frykstrand, K. Grandfield, A. Mihranyan, M. Strømme, A Template-free, ultra-adsorbing, high surface area carbonate nanostructure. PLoS ONE 8(7), 1–8 (2013)

    Article  Google Scholar 

  2. H.M. Ooi, H.M. Kamari, W.M.D.W. Yusoff, Optical properties of bismuth tellurite based glass. Int. J. Mol. Sci. 13, 4623–4631 (2012)

    Article  Google Scholar 

  3. T. Xu, F. Chen, S. Dai, X. Shen, X. Wang, N. Qiuhua, L. Chao, K. Xu, J. Heo, Glass formation and third-order optical nonlinear properties within TeO2–Bi2O3–BaO Pseudo-Ternary system. J. Non-Cryst. Solids 357, 2219–2222 (2011)

    Article  ADS  Google Scholar 

  4. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical optical, structural and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids 72(4), 245–251 (2011)

    Article  ADS  Google Scholar 

  5. Y. Himei, A. Osaka, T. Nanba, Y. Miura, Coordination change of te atoms in binary tellurite glasses. J. Non Cryst. Solids 177, 164–169 (1994)

    Article  ADS  Google Scholar 

  6. H. Sidek, S. Rosmawati, Z. Talib, M. Halimah, W. Daud, Synthesis and optical properties of ZnO-TeO2 glass system. Am. J. Appl. Sci. 6(8), 1489–1494 (2009)

    Article  Google Scholar 

  7. S. P. Singh and B. Karmakar, Bismuth Oxide and Bismuth Oxide Doped Glasses For Optical and Photonic Applications. In: Bismuth: Characteristics, Production and Applications. Materials Science and Technologies. Nova, Hauppauge, New York, Chapter-9. ISBN 978-1-61470-640-3 (2012)

  8. O. Sanz, E. Haro-Poniatowski, J. Gonzalo, J.F. Navarro, Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J. Non-Cryst. Solids 352(8), 761–768 (2006)

    Article  ADS  Google Scholar 

  9. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiat. Phys. Chem. 81(7), 785–790 (2012)

    Article  ADS  Google Scholar 

  10. R.X. Xing, Y.B. Sheng, Z.J. Liu, H.Q. Li, Z.W. Jiang, J.G. Peng, N.L. Dai, Investigation on radiation resistance of Er/Ce co-doped silicate glasses under 5 kGy gamma-ray irradiation. Opt. Mater. Exp. 2(10), 1329–1335 (2012)

    Article  ADS  Google Scholar 

  11. Y. Zhang, Y. Yang, J. Zheng, W. Hua, G. Chen, Effects of oxidizing additives on optical properties of Bi2O3–B2O3–SiO2 glasses. J. Am. Ceram. Soc. 91(10), 3410–3412 (2008)

    Article  Google Scholar 

  12. K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, H.S. Sahota, Gamma-ray attenuation coefficients in bismuth borate glasses. Nucl. Instrum. Methods Phys. Res., Sect. B 194(1), 1–6 (2002)

    Article  ADS  Google Scholar 

  13. Won-In, K., Sirikulrat, N., & Dararutana, P. (2011). Radiation shielding lead-free glass based on barium-bearing glass using Thailand quartz sands. In Advanced materials research Vol. 214, Trans Tech Publications Ltd, pp 207–211

  14. Saudi, H. A., & El Kameesy, S. U. (2019). Effect of barium addition and plasma nitriding treatment on chemical and physical properties of Al, Pb borate glass system as a developed radiation shield. In: Journal of physics: conference series Vol. 1253, IOP Publishing, p 012033

  15. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126(1), 1–9 (2020)

    Article  Google Scholar 

  16. T. Owen, Principles and applications of UV-visible spectroscopy. In Fundamentals of UV-visible spectroscopy, Hewlett Packard, p 18 (1996)

  17. J. Dharma, A. Pisal, Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer. In Application Note Shelton, CT: PerkinElmer, PerkinElmer, p 1-4 (2009)

  18. Christian, G. (1996). Principles of spectroscopy. In Analytical chemistry 6th ed., Wiley, p 104

  19. D.B. Tanner, Optical Effects in Solids (Cambridge University Press, 2019)

    Book  Google Scholar 

  20. S.A. Umar, G.G. Ibrahim, I.E. Ibrahim, M.U. Najib, M.S. Liman, Simulation of heating in space plasma. Adv. Appl. Sci. Res. 6(6), 103–113 (2015)

    Google Scholar 

  21. C. Eevon, M.K. Halimah, Z. Azmi, C. Azurahanim, Elastic properties of TeO2-B2O3—ZnO-Gd2O3 glasses using non-destructive ultrasonic technique. Chalcogenide Lett. 13(6), 281–289 (2016)

    Google Scholar 

  22. B. Bhatia, S.L. Meena, V. Parihar, M. Poonia, Optical basicity and polarizability of Nd 3+-doped bismuth borate glasses. New J. Glass Ceram. 5(03), 44 (2015)

    Article  Google Scholar 

  23. N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. J. Mol. Struct. 1127, 636–644 (2017)

    Article  ADS  Google Scholar 

  24. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall 45(3), 219–250 (2010)

    Google Scholar 

  25. S.L. Meena, B. Bhatia, Polarizability and optical basicity of Er3+ ions doped zinc lithium bismuth borate glasses. J. Pure Appl. Ind. Phys. 6(10), 175–183 (2016)

    Google Scholar 

  26. A. Azuraida, M.K. Halimah, A.A. Sidek, C.A.C. Azurahanim, S.M. Iskandar, M. Ishak, A. Nurazlin, Comparative studies of bismuth and barium boro-tellurite glass system: structural and optical properties. Chalcogenide Lett. 12(10), 497–503 (2015)

    Google Scholar 

  27. G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Gamma ray effect on the covalent behaviour of the CeO2–BaO–B2O3 glasses. Physica B 450, 106–110 (2014)

    Article  ADS  Google Scholar 

  28. R.S. Gedam, D.D. Ramteke, Influence of CeO2 addition on the electrical and optical properties of lithium borate glasses. J. Phys. Chem. Solids 74(10), 1399–1402 (2013)

    Article  ADS  Google Scholar 

  29. T. Hasegawa, Optical properties of Bi2O3–TeO2–B2O3 glasses. J. Non-Cryst. Solids 357(15), 2857–2862 (2011)

    Article  ADS  Google Scholar 

  30. R.S. Kundu, S. Dhankhar, R. Punia, K. Nanda, N. Kishore, Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. J. Alloy. Compd. 587, 66–73 (2014)

    Article  Google Scholar 

  31. K. Selvaraju, K. Marimuthu, Structural and spectroscopic studies on concentration dependent Er3+ doped boro-tellurite glasses. J. Lumin. 132(5), 1171–1178 (2012)

    Article  Google Scholar 

  32. R. El-Mallawany, M.D. Abdalla, I.A. Ahmed, New tellurite glass: optical properties. Mater. Chem. Phys. 109(2–3), 291–296 (2008)

    Article  Google Scholar 

  33. H. Ticha, L. Tichy, On the optical band gap in certain ternary phosphate and TeO2 based glasses. Optoelectron. Adv. Mater.-Rapid Commun. 5, 1277–1281 (2011)

    Google Scholar 

  34. X. Shiqing, W.A.N.G. Wei, D.E.N.G. Degang, Z.H.A.O. Shilong, W.A.N.G. Huanping, J.U. Haidong, Three-color upconversion luminescence of rare earth codoped oxyhalide tellurite glasses. J. Rare Earths 26(6), 895–898 (2008)

    Article  Google Scholar 

  35. I. Kabalci, J. Zheng, L. Wang, L. Tan, Y. Xue, Z. Zhang, M. Peng, Novel compositions of Bi2O3-ZnO-TeO2 glasses: Structure and hardness analysis. J. Non-Cryst. Solids 464, 23–29 (2017)

    Article  ADS  Google Scholar 

  36. S. Insitipong, J. Kaewkhao, T. Ratana, P. Limsuwan, Optical and structural investigation of bismuth borate glasses doped with Dy3+. Procedia Eng. 8, 195–199 (2011)

    Article  Google Scholar 

  37. A. Bahadur, Y. Dwivedi, S.B. Rai, Spectroscopic study of Er: Sm doped barium fluorotellurite glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 77(1), 101–106 (2010)

    Article  ADS  Google Scholar 

  38. Y.B. Saddeek, G.Y. Mohamed, H.S. Hassan, A.M.A. Mostafa, Effect of gamma irradiation on the FTIR of cement kiln dust–bismuth borate glasses. J. Non-Cryst. Solids 419, 110–117 (2015)

    Article  ADS  Google Scholar 

  39. S.R. Rejisha, P.S. Anjana, N. Gopakumar, N. Santha, Synthesis and characterization of strontium and barium bismuth borate glass-ceramics. J. Non-Cryst. Solids 388, 68–74 (2014)

    Article  ADS  Google Scholar 

  40. R. Parmar, R.S. Kundu, R. Punia, P. Aghamkar, N. Kishore, Iron modified structural and optical spectral properties of bismuth silicate glasses. Physica B 450, 39–44 (2014)

    Article  ADS  Google Scholar 

  41. Y.B. Saddeek, K.A. Aly, S.A. Bashier, Optical study of lead borosilicate glasses. Physica B 405(10), 2407–2412 (2010)

    Article  ADS  Google Scholar 

  42. A. Aboalatta, J. Asad, M. Humaid, H. Musleh, S. Shaat, K. Ramadan, N. Aldahoudi, Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications. Nucl. Eng. Technol. 53, 3058–3067 (2021)

    Article  Google Scholar 

  43. I. Grelowska, M. Reben, B. Burtan, M. Sitarz, J. Cisowski, A. Knapik, M. Dudek, Structural and optical study of tellurite–barium glasses. J. Mol. Struct. 1126, 219–225 (2016)

    Article  ADS  Google Scholar 

  44. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736–1740 (1996)

    Article  ADS  Google Scholar 

  45. L. Hasnimulyati, M.K. Halimah, A. Zakaria, S.A. Halim, M. Ishak, C. Eevon, Structural and optical properties of Tm2O3-doped zinc borotellurite glass system. J. Ovonic Res. 12(6), 291–299 (2016)

    Google Scholar 

  46. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, A.A. Latif, A.S. Asyikin, Impact of erbium-doped zinc tellurite glasses on raman spectroscopy, elastic and optical properties. Chalcogenide Letter. 18, 11–22 (2021)

    Google Scholar 

  47. I.I. Kindrat, B.V. Padlyak, S. Mahlik, B. Kukliński, Y.O. Kulyk, Spectroscopic properties of the Ce-doped borate glasses. Opt. Mater. 59, 20–27 (2016)

    Article  ADS  Google Scholar 

  48. G.J. Gowda, C. Devaraja, B. Eraiah, A. Dahshan, S.N. Nazrin, Structural, thermal and spectroscopic studies of Europium trioxide doped lead boro-tellurite glasses. J. Alloys Comp. 871, 159585 (2021)

    Article  Google Scholar 

  49. E.S. Nurbaisyatul, K. Azman, H. Azhan, W.A.W. Razali, A. Noranizah, S. Hashim, Y.S.M. Alajerami, The optical properties of trivalent rare earth ions (Er 3+) doped borotellurite glass. Opt. Spectrosc. 116(3), 413–417 (2014)

    Article  ADS  Google Scholar 

  50. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355(6), 348–354 (2009)

    Article  ADS  Google Scholar 

  51. A. Kaur, A. Khanna, H. Bhatt, M. Gónzález-Barriuso, F. González, B. Chen, M.N. Deo, BO and TeO speciation in bismuth tellurite and bismuth borotellurite glasses by FTIR, 11B MAS-NMR and Raman spectroscopy. J. Non-Cryst. Solids 470, 19–26 (2017)

    Article  ADS  Google Scholar 

  52. R. Kaur, S. Singh, O.P. Pandey, Absorption spectroscopic studies on gamma irradiated bismuth borosilicate glasses. J. Mol. Struct. 1049, 386–391 (2013)

    Article  ADS  Google Scholar 

  53. E.I. Kamitsos, G.D. Chryssikos, Borate glass structure by Raman and infrared spectroscopies. J. Mol. Struct. 247, 1–16 (1991)

    Article  ADS  Google Scholar 

  54. M.A. Khaled, H. Elzahed, S.A. Fayek, M.M. El-Ocker, Optical absorption, infrared and differential thermal analysis studies of borotellurite glass containing nickel. Mater. Chem. Phys. 37(4), 329–332 (1994)

    Article  Google Scholar 

  55. E.C. Paz, J.D.M. Dias, G.H.A. Melo, T.A. Lodi, J.O. Carvalho, P.F. Façanha Filho, A. Steimacher, Physical, thermal and structural properties of Calcium Borotellurite glass system. Mater. Chem. Phys. 178, 133–138 (2016)

    Article  Google Scholar 

  56. V.O. Sokolov, V.G. Plotnichenko, V.V. Koltashev, Structure of barium chloride-oxide tellurite glasses. J. Non-Cryst. Solids 355(31–33), 1574–1584 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support for the work from the Ministry of Higher Education of Malaysia under FRGS grant no. FRGS/1/2013/SG06/UPNM/03/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azuraida Amat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amat, A., Kamari, H.M., Mansor, I. et al. Comparative spectroscopy study of TeO2–B2O3 glass system for photonic application: barium and bismuth as modifier. Appl. Phys. A 127, 792 (2021). https://doi.org/10.1007/s00339-021-04930-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04930-x

Keywords

Navigation