Skip to main content
Log in

Pathophysiologie des Adenokarzinoms am ösophagogastralen Übergang (AEG)

Pathophysiology of adenocarcinoma of the esophagogastric junction (AEGJ)

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Der Barrett-Ösophagus wird als entscheidende Ursprungsläsion für das Adenokarzinom am ösophagogastralen Übergang (AEG) angesehen.

Weitgehend unklar ist allerdings nach wie vor, welche Faktoren, Einwirkungen und Abläufe für die Karzinogenese verantwortlich sind.

Fragestellung

In dieser Übersichtsarbeit sollen v. a. die Bedeutung epidemiologischer, genetischer und immunologischer Faktoren sowie der Einfluss eines hierdurch teilweise veränderten Mikromilieus als initiierende Faktoren erörtert werden.

Ergebnisse

Veränderungen in Mikrobiom und Genstruktur (z. B. durch Verlust von TP53 und p16) können eine Nische von Stammzellen am ösophagogastralen Übergang (die z. B. in Mäusen LGR5, CCK2R und CAR4 exprimieren) bilden, in der vermehrte Zellteilung sowie eine maligne Entartung begünstigt wird. Dabei könnten spezifische Stammzellen, die wahrscheinlich aus Drüsen im Bereich der Kardia im Magen entstehen − als Ursprung für die maligne Transformation sowie in Abhängigkeit von ihrem Differenzierungspotenzial für die Tumorentstehung ausschlaggebend sein. Aktuelle Studien deuten darauf hin, dass das metaplastische Epithel nicht im Ösophagus, sondern in der Kardia entsteht, von wo Stammzellen (im weiteren Verlauf) in den Ösophagus expandieren.

Schlussfolgerungen

Ein besseres Verständnis dieser Mechanismen kann zu einer besseren Früherkennung, Prävention und schlussendlich auch Therapie der AEG führen.

Abstract

Background

Barrett esophagus is defined as the decisive precursor lesion for the development of adenocarcinoma of the esophagogastric junction (AEGJ); however, little is known about the risk factors and mechanisms which are responsible for the carcinogenesis.

Objective

In this review the importance of epidemiological, genetic and immunological factors as well as the impact of the microenvironment as initiating factors in the development of AEGJ are discussed.

Results

Alterations in genomic structure (e.g. due to the loss of TP53 or p16) and the microbiome could lead to the development of a niche of stem cells in the gastroesophageal junction (e.g. labeled by LGR5, CCK2R and CAR4 in mice) that encourage a faster cell division and malignant transformation. Specific stem cells, probably originating from cardiac glands of the stomach, could be responsible for the malignant transformation and, depending on the differentiation pattern, could be crucial for the carcinogenesis. The results of current studies indicate that the metaplastic epithelium arises not in the esophagus but in the cardia and in the further course the stem cells expand from there into the esophagus.

Conclusion

A better understanding of the mechanisms by which normal squamous epithelium progresses to early stage invasive cancer will help formulate rational surveillance guidelines and allow resources to be diverted away from patients at low risk of malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

Verwendete Literatur

  1. Corley DA et al (2009) Race, ethnicity, sex and temporal differences in Barrett’s oesophagus diagnosis: a large community-based study, 1994–2006. Gut 58(2):182–188

    CAS  PubMed  Google Scholar 

  2. Brown LM, Devesa SS, Chow WH (2008) Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst 100(16):1184–1187

    PubMed  PubMed Central  Google Scholar 

  3. Jemal A et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    PubMed  Google Scholar 

  4. Barrett NR (1950) Chronic peptic ulcer of the oesophagus and “oesophagitis”. Br J Surg 38(150):175–182

    CAS  PubMed  Google Scholar 

  5. Fan X, Snyder N (2009) Prevalence of Barrett’s esophagus in patients with or without GERD symptoms: role of race, age, and gender. Dig Dis Sci 54(3):572–577

    PubMed  Google Scholar 

  6. Meves V, Behrens A, Pohl J (2015) Diagnostics and early diagnosis of esophageal cancer. Viszeralmedizin 31(5):315–318

    PubMed  PubMed Central  Google Scholar 

  7. Sundelof M, Lagergren J, Ye W (2008) Patient demographics and lifestyle factors influencing long-term survival of oesophageal cancer and gastric cardia cancer in a nationwide study in Sweden. Eur J Cancer 44(11):1566–1571

    PubMed  Google Scholar 

  8. Inadomi JM et al (2003) Screening and surveillance for Barrett esophagus in high-risk groups: a cost-utility analysis. Ann Intern Med 138(3):176–186

    PubMed  Google Scholar 

  9. Hur C et al (2013) Trends in esophageal adenocarcinoma incidence and mortality. Cancer 119(6):1149–1158

    PubMed  Google Scholar 

  10. Mariette C et al (2003) Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer 97(7):1616–1623

    PubMed  Google Scholar 

  11. Pennathur A et al (2009) Esophagectomy for T1 esophageal cancer: outcomes in 100 patients and implications for endoscopic therapy. Ann Thorac Surg 87(4):1048–1054 (discussion 1054–1055)

    PubMed  PubMed Central  Google Scholar 

  12. Fitzgerald RC et al (2013) British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 63(1):7–42. https://doi.org/10.1136/gutjnl-2013-305372

    Article  PubMed  Google Scholar 

  13. Shaheen N, Ransohoff DF (2002) Gastroesophageal reflux, barrett esophagus, and esophageal cancer: scientific review. JAMA 287(15):1972–1981

    PubMed  Google Scholar 

  14. Falk GW (2002) Barrett’s esophagus. Gastroenterology 122(6):1569–1591

    PubMed  Google Scholar 

  15. American Gastroenterological Association (2011) American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology 140(3):1084–1091

    Google Scholar 

  16. Verbeek RE et al (2014) Surveillance of Barrett’s esophagus and mortality from esophageal adenocarcinoma: a population-based cohort study. Am J Gastroenterology 109(8):1215–1222

    Google Scholar 

  17. Shaheen NJ, Richter JE (2009) Barrett’s oesophagus. Lancet 373(9666):850–861

    CAS  PubMed  Google Scholar 

  18. Anaparthy R et al (2013) Association between length of Barrett’s esophagus and risk of high-grade dysplasia or adenocarcinoma in patients without dysplasia. Clin Gastroenterol Hepatol 11(11):1430–1436

    PubMed  Google Scholar 

  19. Whitson MJ, Falk GW (2015) Predictors of progression to high-grade dysplasia or adenocarcinoma in Barrett’s esophagus. Gastroenterol Clin North Am 44(2):299–315

    PubMed  PubMed Central  Google Scholar 

  20. Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12(2):79–89

    CAS  PubMed  Google Scholar 

  21. Wang X et al (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145(7):1023–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Leedham SJ et al (2008) Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 57(8):1041–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van Nieuwenhove Y, Destordeur H, Willems G (2001) Spatial distribution and cell kinetics of the glands in the human esophageal mucosa. Eur J Morphol 39(3):163–168

    PubMed  Google Scholar 

  24. Jiang M et al (2017) Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550(7677):529–533

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Quante M et al (2012) Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21(1):36–51. https://doi.org/10.1016/j.ccr.2011.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakanishi Y et al (2007) Distribution and significance of the oesophageal and gastric cardiac mucosae: a study of 131 operation specimens. Histopathology 51(4):515–519

    CAS  PubMed  Google Scholar 

  27. Barbera M, Fitzgerald RC (2010) Cellular origin of Barrett’s metaplasia and oesophageal stem cells. Biochem Soc Trans 38(2):370–373

    CAS  PubMed  Google Scholar 

  28. Dulak AM et al (2012) Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res 72(17):4383–4393

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamamoto Y et al (2016) Mutational spectrum of Barrett’s stem cells suggests paths to initiation of a precancerous lesion. Nat Commun 7:10380

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194

    CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Research Network (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541(7636):169–175

    Google Scholar 

  32. Galipeau PC et al (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4(2):e67

    PubMed  PubMed Central  Google Scholar 

  33. Rubenstein JH, Thrift AP (2015) Risk factors and populations at risk: selection of patients for screening for Barrett’s oesophagus. Best Pract Res Clin Gastroenterol 29(1):41–50

    PubMed  Google Scholar 

  34. Robertson EV et al (2013) Central obesity in asymptomatic volunteers is associated with increased intrasphincteric acid reflux and lengthening of the cardiac mucosa. Gastroenterology 145(4):730–739

    PubMed  Google Scholar 

  35. Anderson LA et al (2008) Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case-control study. Gut 57(6):734–739

    CAS  PubMed  Google Scholar 

  36. Anderson LA et al (2007) Risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma: results from the FINBAR study. World J Gastroenterol 13(10):1585–1594

    PubMed  PubMed Central  Google Scholar 

  37. Yates M et al (2014) Body mass index, smoking, and alcohol and risks of Barrett’s esophagus and esophageal adenocarcinoma: a UK prospective cohort study. Dig Dis Sci 59(7):1552–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  38. El-Serag H (2008) The association between obesity and GERD: a review of the epidemiological evidence. Dig Dis Sci 53(9):2307–2312

    PubMed  PubMed Central  Google Scholar 

  39. Kabat GC, Ng SK, Wynder EL (1993) Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardia. Cancer Causes Control 4(2):123–132

    CAS  PubMed  Google Scholar 

  40. Gall A et al (2015) Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett’s Esophagus Cohort. PLoS ONE 10(6):e129055

    PubMed  PubMed Central  Google Scholar 

  41. Kaakoush NO et al (2015) Is Campylobacter to esophageal adenocarcinoma as Helicobacter is to gastric adenocarcinoma? Trends Microbiol 23(8):455–462

    CAS  PubMed  Google Scholar 

  42. Amir I et al (2014) Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ Microbiol 16(9):2905–2914

    CAS  PubMed  Google Scholar 

  43. Goodman AL, Gordon JI (2010) Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab 12(2):111–116

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pei Z et al (2004) Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A 101(12):4250–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Elliott DRF et al (2017) A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet Gastroenterol Hepatol 2(1):32–42

    PubMed  Google Scholar 

  46. Munch N et al (2019) High-fat diet accelerates carcinogenesis in a mouse model of Barrett’s esophagus via IL8 and alterations to the gut microbiome. Gastroenterology 157(2):492–506.e2. https://doi.org/10.1053/j.gastro.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  47. Ajayi TA et al (2018) Barrett’s esophagus and esophageal cancer: links to microbes and the microbiome. PLoS Pathog 14(12):e1007384

    PubMed  PubMed Central  Google Scholar 

  48. Yamamura K et al (2016) Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22(22):5574–5581

    CAS  PubMed  Google Scholar 

  49. Winter JW et al (2007) N‑nitrosamine generation from ingested nitrate via nitric oxide in subjects with and without gastroesophageal reflux. Gastroenterology 133(1):164–174

    CAS  PubMed  Google Scholar 

  50. Bockler R, Meyer H, Schlag P (1983) An experimental study on bacterial colonization, nitrite and nitrosamine production in the operated stomach. J Cancer Res Clin Oncol 105(1):62–66

    CAS  PubMed  Google Scholar 

  51. Brusselaers N, Engstrand L, Lagergren J (2018) Maintenance proton pump inhibition therapy and risk of oesophageal cancer. Cancer Epidemiol 53:172–177

    PubMed  Google Scholar 

  52. Chow WH et al (1998) An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res 58(4):588–590

    CAS  PubMed  Google Scholar 

  53. Thrift AP et al (2012) Helicobacter pylori infection and the risks of Barrett’s oesophagus: a population-based case-control study. Int J Cancer 130(10):2407–2416

    CAS  PubMed  Google Scholar 

  54. Kinnebrew MA, Pamer EG (2012) Innate immune signaling in defense against intestinal microbes. Immunol Rev 245(1):113–131

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grivennikov SI et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fitzgerald RC et al (2002) Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50(4):451–459

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Masclee GM et al (2015) NSAIDs, statins, low-dose aspirin and PPIs, and the risk of oesophageal adenocarcinoma among patients with Barrett’s oesophagus: a population-based case-control study. BMJ Open 5(1):e6640

    PubMed  PubMed Central  Google Scholar 

  58. Chiba N et al (1997) Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology 112(6):1798–1810

    CAS  PubMed  Google Scholar 

  59. Hvid-Jensen F et al (2014) Proton pump inhibitor use may not prevent high-grade dysplasia and oesophageal adenocarcinoma in Barrett’s oesophagus: a nationwide study of 9883 patients. Aliment Pharmacol Ther 39(9):984–991

    CAS  PubMed  Google Scholar 

  60. Koop H, Klein M, Arnold R (1990) Serum gastrin levels during long-term omeprazole treatment. Aliment Pharmacol Ther 4(2):131–138

    CAS  PubMed  Google Scholar 

  61. Prasad GA et al (2008) Utility of biomarkers in prediction of response to ablative therapy in Barrett’s esophagus. Gastroenterology 135(2):370–379

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Buas MF et al (2014) Integrative post-genome-wide association analysis of CDKN2A and TP53 SNPs and risk of esophageal adenocarcinoma. Carcinogenesis 35(12):2740–2747. https://doi.org/10.1093/carcin/bgu207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kastelein F et al (2013) Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut 62(12):1676–1683

    CAS  PubMed  Google Scholar 

  64. Klump B et al (1998) Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 115(6):1381–1386

    CAS  PubMed  Google Scholar 

  65. Wild CP, Hardie LJ (2003) Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 3(9):676–684

    CAS  PubMed  Google Scholar 

  66. Maag JLV et al (2017) Novel aberrations uncovered in Barrett’s esophagus and esophageal adenocarcinoma using whole transcriptome sequencing. Mol Cancer Res 15(11):1558–1569

    CAS  PubMed  Google Scholar 

  67. Zhao J et al (2007) Comparative proteomics analysis of Barrett metaplasia and esophageal adenocarcinoma using two-dimensional liquid mass mapping. Mol Cell Proteomics 6(6):987–999

    CAS  PubMed  Google Scholar 

  68. Wiethaler M et al (2019) BarrettNET—a prospective registry for risk estimation of patients with Barrett’s esophagus to progress to adenocarcinoma. Dis Esophagus 32(8):doz24. https://doi.org/10.1093/dote/doz024

    Article  PubMed  Google Scholar 

  69. Quante M, Graham TA, Jansen M (2018) Insights into the pathophysiology of esophageal adenocarcinoma. Gastroenterology 154(2):406–420. https://doi.org/10.1053/j.gastro.2017.09.046

    Article  CAS  PubMed  Google Scholar 

Weiterführende Literatur

  1. Souza RF, Krishnan K, Spechler SJ (2008) Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 295(2):G211–G218

    CAS  PubMed  Google Scholar 

  2. Xian W et al (2019) The cellular origin of Barrett’s esophagus and its stem cells. Adv Exp Med Biol 1123:55–69

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Liotta or M. Quante.

Ethics declarations

Interessenkonflikt

L. Liotta und M. Quante geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liotta, L., Quante, M. Pathophysiologie des Adenokarzinoms am ösophagogastralen Übergang (AEG). Onkologe 25, 1055–1064 (2019). https://doi.org/10.1007/s00761-019-00666-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-019-00666-9

Schlüsselwörter

Keywords

Navigation