Skip to main content
Log in

Species limits and biogeography of Rhynchospiza sparrows

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The genus Rhynchospiza comprises two species, the monotypic Tumbes Sparrow (R. stolzmanni) and the Stripe-crowned Sparrow (R. strigiceps) with subspecies strigiceps and dabbenei. In the study reported here we evaluated the taxonomic status of these taxa and discussed key features involved in speciation. All three taxa exhibited multiple differences in plumage, morphology, and vocalizations, supporting the recognition of three species in Rhynchospiza. The very large-billed R. stolzmanni has a song composed of a succession of faster complex trilled phrases, shows a small black loral line and dark-chestnut head stripes with large dark central-stripe to individual feathers, and is resident in the Tumbes region. The large and heavy dabbenei has a song consisting of a series of simple chirping notes, shows a large black loral crescent and chestnut head stripes with a reduced to absent dark center to feathers, and inhabits the Austral Yungas as a year-round resident. The small and pale strigiceps has a song consisting of a succession of complex trilled phrases, shows a small black loral line and rufous-brown head stripes with large dark central-stripe to feathers, and inhabits Dry and Sierran Chaco where it is a partial migrant. Locality data and ecological niche modeling show that dabbenei and strigiceps are allo-parapatric and use different altitudinally segregated habitats at their zone of parapatry. Molecular phylogenetic analyses (NADH dehydrogenase 2 [ND2] gene) revealed R. stolzmanni to be sister (11.5% divergent) to a recently diverged dabbenei and strigiceps clade (1.6% divergent). We conclude that the genus Rhynchospiza comprises three species-level entities, each restricted to a major biogeographic region, and that vocalizations and facial patterns provide key evidence on species limits in these otherwise similarly plumaged taxa. The evolutionary–cultural differences in songs, with complex phrases in those of R. strigiceps and R. stolzmanni, and single notes in the songs of R. dabbenei, suggest changes in the innate vocal learning template during speciation in the latter.

Zusammenfassung

Artabgrenzung und Biogeographie der Neuweltammer-Gattung Rhynchospiza

Die Gattung Rhynchospiza umfasst zwei Arten, die monotypische Tumbesammer (R. stolzmanni) und die Streifenscheitelammer (R. strigiceps) mit den Unterarten strigiceps und dabbenei. Wir beurteilen hier den taxonomischen Status und diskutieren die Schlüsselmerkmale der Artbildung. Alle drei Taxa zeigten zahlreiche Unterschiede im Gefieder, in der Morphologie und der Lautäußerung, was die Unterscheidung der drei Arten in der Gattung Rhynchospiza unterstützt. Die Art R. stolzmanni besitzt einen kräftigen Schnabel, hat einen Gesang zusammengesetzt aus einer Abfolge von schnellen, komplexen Triller-Phrasen, weist einen schmalen schwarzen Zügelstreifen und einen kastanienbraun gefärbten Scheitelseitenstreifen mit einzelnen Federn auf, die breite dunkle Federzentren besitzen, und sie ist in der Tumbes-Region (Peru) heimisch. Die große und schwere Unterart dabbenei besitzt einen Gesang aus einer Serie von einfachen Tschilp-Elemente, einen großen schwarzen, halbmondförmigen Zügelstreifen, rotbraun gefärbte Scheitelseitenstreifen, deren Federn nur schwache bis fehlende dunkle Federzentren aufweisen, und sie bewohnt den südlichen Yungas (Region in Bolivien) als Jahresvogel. Die kleine und blass gefärbte Unterart strigiceps besitzt einen Gesang zusammengesetzt aus einer Abfolge an komplexen Triller-Phrasen, hat einen kleinen schwarzen Zügelstreifen, rötlichbraune Scheitelseitenstreifen mit Federn mit großen dunklen Federzentren und lebt in „Dry Chaco“und „Sierra Chaco“als Teilzieher. Verbreitungsdaten und ökologische Nischenmodellierungen zeigen, dass die Unterarten dabbenei und strigiceps allo-parapatrisch sind und aufgrund unterschiedlicher Höhenlagen getrennte Habitate ihres parapatrischen Verbreitungsgebiets nutzen. Molekularphylogenetische Analysen (ND2 Gene) haben gezeigt, dass R. stolzmanni eine Schwesterart (11.5% Divergenz) der jüngst aufgespaltenen Klade dabbenei und strigiceps (1.6% Divergenz) ist. Wir folgern daraus, dass die Gattung Rhynchospiza drei Einheiten auf Artniveau umfasst, jede davon beschränkt auf eine große biogeographische Region. Die Lautäußerungen und Kopfzeichnungen bieten Schlüsselmerkmale zur Artenabgrenzung in diesem, ansonsten ähnlich gefiederten Taxa. Die evolutionskulturellen Unterschiede im Gesang, die komplexen Phrasen in R. strigiceps und R. stolzmanni sowie die Einzelsilben in R. dabbenei weisen darauf hin, dass bei Letzterer Änderungen in den angeborenen Gesangslernmustern während der Artbildung entstanden sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ábalos R, Areta JI (2009) Historia natural y vocalizaciones del Doradito Limón (Pseudocolopteryx cf. citreola) en Argentina. Ornitol Neotrop 20:215–230

    Google Scholar 

  • Alcaide M, Scordato ESC, Price TD, Irwin DE (2014) Genomic divergence in a ring species complex. Nature 511:83–85

    CAS  PubMed  Google Scholar 

  • Areta JI (2008) Entre Ríos Seedeater (Sporophila zelichi): a species that never was. J Field Ornithol 79:352–363

    Google Scholar 

  • Areta JI (2012) Winter songs reveal geographic origin of three migratory Seedeaters (Sporophila spp.) in southern Neotropical grasslands. Wilson Bull 124:688–697

    Google Scholar 

  • Areta JI, Repenning M (2011) Systematics of the Tawny-bellied Seedeater (Sporophila hypoxantha). I. Geographic variation, ecology and evolution of vocalizations. Condor 113:664–677

    Google Scholar 

  • Areta JI, Noriega JI, Pagano L, Roesler I (2011) Unraveling the ecological radiation of the capuchinos: systematics of the Dark-throated Seedeater Sporophila ruficollis, and description of a new black-collared form. Bull Br Ornithol Club 131:4–23

    Google Scholar 

  • Areta JI, Pearman M, Ábalos R (2012) Taxonomy and biogeography of the Monte Yellow-Finch (Sicalis mendozae): understanding the endemic avifauna of Argentina’s Monte Desert. Condor 114:654–671

    Google Scholar 

  • Areta JI, Kirwan G, Dornas T, Araujo-Silva LE, Aleixo A (2017) Mixing the waters: a linear hybrid zone between two riverine Neotropical cardinals (Paroaria baeri and P. gularis). Emu 117:40–50

    Google Scholar 

  • Baptista LF (1996) Nature and its nurturing in avian vocal development. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 39–60

    Google Scholar 

  • Baptista LF, Kroodsma DE (2001) Foreword: Avian bioacoustics: a tribute to Luis Felipe Baptista. In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 6. Lynx Edicions, Barcelona, pp 11–52

    Google Scholar 

  • Baptista LF, Morton ML (1981) Interspecific song acquisition by a white-crowned sparrow. Auk 98:383–385

    Google Scholar 

  • Barker FK, Burns KJ, Klicka J, Lanyon SM, Lovette IJ (2015) New insights into new world biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. Auk 132:333–348

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Google Scholar 

  • Bellamy CC, Scott CD, Altringham JD (2013) Multiscale, presence-only habitat suitability models: fine resolution models for eight bat species. J Appl Ecol 50:892–901

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, Sunderland

    Google Scholar 

  • Bryson RW, Faircloth BC, Tsai WLE, McCormack JE, Klicka J (2016) Target enrichment of thousands of ultraconserved elements sheds new light on early relationships within New World sparrows (Aves: Passerellidae). Auk 133:451–458

    Google Scholar 

  • Burns KJ, Shultz AJ, Title PO, Mason NA, Barker FK, Klicka J, Lanyon SM, Lovette IJ (2014) Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Mol Phylogenet Evol 75:41–77

    PubMed  Google Scholar 

  • Capllonch P, Lobo Allende R, Ortiz D, Ovejero R (2005) La avifauna de la selva de galería en el noreste de Corrientes, Argentina: Biodiversidad, Patrones de Distribución y Migración. Temas de la Biodiversidad del Litoral fluvial argentino II INSUGEO, Miscelánea 14:483–498

    Google Scholar 

  • Capurro HA, Bucher EH (1988) Lista comentada de las aves del bosque chaqueño de Joaquín V. Gonzalez, Salta, Argentina. Hornero 13:39–46

    Google Scholar 

  • Chavarría-Pizarro T, Gutiérrez-Espeleta G, Fuchs EJ, Barrantes G (2010) Genetic and morphological variation of the sooty-capped Bush Tanager (Chlorospingus pileatus), a highland endemic species from Costa Rica and Western Panama. Wilson Bull 122:279–287

    Google Scholar 

  • Codesido M, Bilenca D (2004) Variación estacional de un ensamble de aves en un bosque subtropical semiárido del Chaco Argentino. Biotropica 36:544–554

    Google Scholar 

  • Collar NJ, Fishpool LDC, del Hoyo J, Pilgrim JD, Seddon N, Spottiswoode CN, Tobias JA (2016) Toward a scoring system for species delimitation: a response to Remsen. J Field Ornithol 87:104–110

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  • Cracraft J (1983) Species concepts and speciation analysis. Curr Ornithol 1:159–187

    Google Scholar 

  • DaCosta JM, Spellman GM, Escalante P, Klicka J (2009) A molecular systematic revision of two historically problematic songbird clades: Aimophila and Pipilo. J Avian Biol 40:206–216

    Google Scholar 

  • de la Peña MR (2016) Aves Argentinas: descripción, comportamiento, reproducción y distribución. Mimidae a Passeridae. Comunicaciones del Museo Provincial de Ciencias Naturales “Florentino Ameghino” (Nueva Serie) 21:1–564

    Google Scholar 

  • DeMatteo KE, Rinas MA, Zurano JP, Selleski N, Schneider RG, Arguelles CF (2017) Using niche-modelling and species-specific cost analyses to determine a multispecies corridor in a fragmented landscape. PLoS One 12(8):e0183648. https://doi.org/10.1371/journal.pone.0183648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinelli L (1918) Notas biológicas sobre las aves del noroeste de la Rep, Argentina. Hornero 1:57–68

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann LG, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC.Overton J, Peterson AT, Phillips S, Richardson K, Scachetti-Pereira R, Schapire R, Soberon J, Williams S, Wisz M, Zimmerman N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Falls JB, Kopachena JG (2010) White-throated Sparrow (Zonotrichia albicollis). In: Rodewald PG (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca. https://birdsna.org/Species-Account/bna/species/whtspa

  • Fernando SP, Irwin DE, Seneviratne SS (2016) Phenotypic and genetic analysis support distinct species status of the Red-backed Woodpecker (Lesser Sri Lanka Flameback: Dinopium psarodes) of Sri Lanka. Auk 133:497–511

    Google Scholar 

  • Friedman NR, Remeš V (2017) Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob Ecol Biogeogr 26:261–274

    Google Scholar 

  • Gould J (1839) Part 3, Birds. In: Darwin C (ed) The zoology of the voyage of H. M. S. Beagle. Smith, Elder and Co, London

    Google Scholar 

  • Hellmayr C (1912) Bemerkungen über eine wenig bekannte neotropische Ammer (Zonotrichia strigiceps Gould). Verh Orn Ges Bay 11:187–190

    Google Scholar 

  • Hellmayr C (1938) Catalogue of birds of the Americas and the adjacent islands. Field Mus Nat Hist Zool Ser 13 (pt. 11). https://doi.org/10.5962/bhl.title.5570

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Holzmann I, Agostini I, DeMatteo K, Areta JI, Merino ML, Di Bitetti MS (2015) Using species distribution modeling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America. Int J Primatol 36:18–32

    Google Scholar 

  • Hoy G (1971) Über Brutbiologie und Eier einiger Vögel aus Nordwest-Argentinien II. J Ornithol 112:158–163

    Google Scholar 

  • Irwin DE, Irwin JH, Price TD (2001) Ring species as bridges between microevolution and speciation. Genetica 112–113:223–243

    PubMed  Google Scholar 

  • Jaramillo A (2011) Genus Rhynchospiza (species accounts). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the birds of the world, vol 16. Lynx Edicions, Barcelona, pp 565–566

    Google Scholar 

  • Jordan EA, Areta JI, Holzmann I (2018) Mate recognition systems and species limits in a warbling-finch complex (Poospiza nigrorufa/whitii). Emu 117:344–358

    Google Scholar 

  • Klicka J, Spellman GM (2007) A molecular evaluation of the North American “Grassland” Sparrow clade. Auk 124:537–551

    Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Google Scholar 

  • Kratter AW, Sillett TS, Chesser RT, O’Neill JP, Parker TA III, Castillo A (1993) Avifauna of a Chaco locality in Bolivia. Wilson Bull 105:114–141

    Google Scholar 

  • Kroodsma DE, Pickert R (1984) Repertoire size, auditory templates, and selective vocal learning in songbirds. Anim Behav 32:395–399

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebers D, de Knijff P, Helbig AJ (2004) The herring gull complex is not a ring species. Proc R Soc Lond B 271:893–901

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Google Scholar 

  • Marateo G, Povedano H, Alonso J (2009) Inventario de las aves del Parque Nacional El Palmar, Argentina. Cotinga 31:47–60

    Google Scholar 

  • Marler P (1970) A comparative approach to vocal learning: song development in white-crowned sparrows. J Comp Physiol Psychol Monogr 71:1–25

    Google Scholar 

  • Marshall JT (1964) Voice in communication and relationships among brown towhees. Condor 66:345–356

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Google Scholar 

  • Mlíkovský J (2009) Types of birds in the collections of the Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland. Part 3: South American birds. J Natl Mus (Prague) Nat Hist Ser 178:17–180

    Google Scholar 

  • Navas JR (1965) Notas sobre Aimophila strigiceps y su distribución geográfica. Hornero 10:215–224

    Google Scholar 

  • Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54:2119–2133

    CAS  PubMed  Google Scholar 

  • Paterson HEH (1980) A comment on “mate recognition systems”. Evolution 34:330–331

    PubMed  Google Scholar 

  • Paterson HEH (1985) The recognition concept of species. In: Vrba ES (ed) Species and speciation, vol 4. Transvaal Museum Monographs, Transvaal Museum, Johannesburg, pp 21–29

  • Paynter RA (1967) Notes on the Emberizine sparrow Rhynchospiza stolzmanni. Breviora 278:1–6

    Google Scholar 

  • Perktaş U, Gosler AG (2010) Measurement error revisited: its importance for the analysis of size and shape of birds. Acta Ornithol 45:161–172

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    CAS  PubMed  Google Scholar 

  • Price T (2008) Speciation in birds. Roberts & Co, Denver

    Google Scholar 

  • Pryke SR, Griffith SC (2009) Postzygotic genetic incompatibility between sympatric color morphs. Evolution 63:793–798

    PubMed  Google Scholar 

  • Rambaut A, Drummond A (2007) Tracerv1.4. http://tree.bio.ed.ac.uk/software/tracer/

  • Remsen JV Jr (2015) [Review of] HBW and BirdLife international illustrated checklist of the birds of the world. Non-passerines (N. J. Collar and J. del Hoyo, eds.), vol. 1, 903 pp. J Field Ornithol 86:182–187

    Google Scholar 

  • Remsen JV Jr (2016) A “rapid assessment program” for assigning species rank? J Field Ornithol 87:110–115

    Google Scholar 

  • Remsen JV Jr, Areta JI, Cadena CD, Claramunt S, Jaramillo A, Pacheco JF, Pérez-Emán J, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ (2019) A classification of the bird species of South America. American Ornithologists’ Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm. Accessed 31 Jul 2019

  • Ridgely RS, Tudor G (1989) The birds of South America, vol 1. University of Texas Press, Austin

    Google Scholar 

  • Salewski V, Watt C (2017) Bergmann’s rule: a biophysiological rule examined in birds. Oikos 126:161–172

    Google Scholar 

  • Schwartz P (1975) Solved and unsolved problems in the Sporophila bouvronides/lineola complex (Aves: Emberizidae). Ann Carnegie Mus 45:277–285

    Google Scholar 

  • Sharpe RB (1888) Catalogue of birds in the British museum, vol XII. Passeriformes–Fringilliformes: Part III. Taylor & Francis, London

    Google Scholar 

  • Short LL (1975) A zoogeographic analysis of the South American Chaco avifauna. Bull Am Mus Nat Hist 154:165–352

    Google Scholar 

  • Short LL (1976) Aimophila strigiceps new to Paraguay. Auk 93:189–190

    Google Scholar 

  • Slabbekoorn H, Smith TB (2003) Bird song, ecology and speciation. Philos Trans R Soc Lond B 357:493–503

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Stattersfield AJ, Crosby MJ, Long MJ, Wege DC (1998) Endemic bird areas of the world: priorities for biodiversity conservation, vol 7. Conservation series. BirdLife International, Cambridge

    Google Scholar 

  • Stein RC (1958) The behavioral, ecological and morphological characteristics of two populations of the Alder Flycatcher, Empidonax traillii (Audubon). N Y State Mus Sci Serv Bull 371:1–63

    Google Scholar 

  • Storer RW (1955) A preliminary survey of the sparrows of the genus Aimophila. Condor 57:193–201

    Google Scholar 

  • Taczanowski L (1877) Liste des Oiseaux recueillis en 1876 au nord du Pérou occidental par MM. Jelski et Stolzmann. Proc Zool Soc Lond 1877:319–333

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LDC, Collar NJ (2010) Quantitative criteria for species delimitation. Ibis 152:724–746

    Google Scholar 

  • Ülker ED, Tavşanoğlu C, Perktaş U (2018) Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’ model of Pleistocene biogeography. Biol J Lin Soc 123:338–347

    Google Scholar 

  • Williams MD (1981) First description of the nest, eggs, and young of the Tumbes Sparrow (Aimophila [Rhynchospiza] stolzmanni). Condor 83:83–84

    Google Scholar 

  • Wolf LJ (1977) Species relationships in the avian genus Aimophila. Ornithol Monogr 23:1–220

    Google Scholar 

  • Zimmer KJ, Whittaker A (2000) The Rufous Cachalote (Furnariidae: Pseudoseisura) is two species. Condor 102:409–422

    Google Scholar 

Download references

Acknowledgements

We thank all recordists, birdwatchers, and collectors who through time have helped build an impressive database. We thank Patricia Capllonch for clarification on some Tucumán localities and for making CENAA data available; Markus Unsöld (ZSM), Ben Marks and Mary Hennen (FMNH), Sara Bertelli and Sebastián Aveldaño (FML), J.V. Remsen Jr (LSUMNS), Yolanda Davies (MACN), Diego Montalti (MLP), Kristof Zyskowski (YPM), Stephen P. Rogers (CM), Nate Rice (ANSP), Hein Van Grow (BMNH), Paul Sweet (AMNH), and Carla Cicero (MVZ) for information on, access to, or pictures of museum specimens under their care; Carlos and Silvia Ferrari for advice on fieldwork with R. strigiceps; and G. Núñez-Montellano, E. Gulson, and T. Pegan for field companionship. Matt Medler and Matt Young promptly provided sound recordings from the MLNS. G. Núñez allowed use of his photograph of R. dabbenei and R. Ahlman of his photograph of R. stolzmanni. Carlos Bianchi provided crucial help by making the maps. Juan Freile, Fernando Angulo Pratolongo, and Tom Schulenberg helped clarify the distribution of R. stolzmanni. Fabricio C. Gorleri helped with sampling event data from eBird and illustrated the birds shown in the phylogenetic tree. John Klicka granted access to his lab and samples for phylogenetic analyses. This contribution was possible thanks to funding by a CONICET grant to JIA for the project “Taxonomía de las aves de los Andes del noroeste de Argentina” (Grant no. 3216/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Areta.

Additional information

Communicated by J. T. Lifjeld.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Deceased: Sergio A. Salvador.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10336_2019_1695_MOESM1_ESM.xlsx

Supplementary material 1 Online Resource 1. Main database of all threeRhynchospizaspecies. List of measured and/or studied specimens, distributional records and sound recordings, type specimens and morphometric data of Yungas Sparrow (Rhynchospiza dabbenei), Chaco Sparrow (Rhynchospiza strigiceps) and Tumbes Sparrow (Rhynchospiza stolzmanni) obtained in this study. (XLSX 7063 kb)

10336_2019_1695_MOESM2_ESM.pdf

Supplementary material 2 Online Resource 2. Morphological characterization of Chaco Sparrow (R. strigiceps), Yungas Sparrow (Rhynchospiza dabbenei), and Tumbes Sparrow (R. stolzmanni). Measurements reported as mean ± SD, with range between square brackets and sample size between parentheses. All measurements in mm, except for weight in grams. Letters indicate significant sexual dimorphism within each taxon at alfa = 0.05 for Mann–Whitney U two-tailed tests. See Fig. 3 for interspecific comparisons. (PDF 58 kb)

10336_2019_1695_MOESM3_ESM.pdf

Supplementary material 3 Online Resource 3. Potential, geographic, seasonal and altitudinal distributions of all threeRhynchospizaspecies. A) Geographic and potential distribution of Yungas Sparrow (Rhynchospiza dabbenei) based on ecological-niche models using the full dataset. B) Geographic and potential distribution of Chaco Sparrow (Rhynchospiza strigiceps) based on ecological-niche models using the full dataset. C) Geographic and potential distribution of Yungas Sparrow (Rhynchospiza dabbenei) and Chaco Sparrow (Rhynchospiza strigiceps) and based on ecological-niche models using the full dataset of dabbenei and breeding records only in strigiceps. D) Geographic and potential distribution of Tumbes Sparrow (Rhynchospiza stolzmanni) based on ecological-niche models using the full dataset. E) Geographic, seasonal and altitudinal distribution of Yungas Sparrow (Rhynchospiza dabbenei) and Chaco Sparrow (Rhynchospiza strigiceps). F) Geographic, seasonal and altitudinal distribution of Tumbes Sparrow (Rhynchospiza stolzmanni). (PDF 19191 kb)

10336_2019_1695_MOESM4_ESM.pdf

Supplementary material 4 Online Resource 4. Bestiaries of songs of all threeRhynchospizaspecies. A) Yungas Sparrow (Rhynchospiza dabbenei). B) Chaco Sparrow (Rhynchospiza strigiceps). C) Tumbes Sparrow (Rhynchospiza stolzmanni). See Online Resource 1 for recording data. (PDF 7908 kb)

10336_2019_1695_MOESM5_ESM.tif

Supplementary material 5 Online Resource 5. Phylogenetic tree of allRhynchospizataxa (ND2 gene) and expanded selection of species from closely related genera. MCC tree from BEAST with posterior probability values above the nodes and corresponding maximum likelihood bootstrap value from RAxML below node; “–” indicates that the specific node did not occur in the RAxML tree. (TIFF 765 kb)

10336_2019_1695_MOESM6_ESM.pdf

Supplementary material 6 Online Resource 6. Estimates of evolutionary divergence between ND2 gene sequences of allRhynchospizataxa and selected species species from closely related genera. The number of base substitutions per site from between sequences are shown. Rhynchospiza taxa are highlighted in bold font. See Methods for details. (PDF 86 kb)

Appendix 1: Museum source and localities of specimens used in phylogenetic reconstructions

Appendix 1: Museum source and localities of specimens used in phylogenetic reconstructions

Taxon

Sample sourcea

Collecting locality

GenBank accession number

Specimen ID

Rhynchospiza stolzmanni

LSUMNS (B‐5227)

PERU: Las Pampas, Km 885 Pan American Hwy., 11 road km N Olmos, Lambayeque

FJ547317

LSUMZ-100779

Rhynchospiza strigiceps

UWBM (DHB2425)

ARGENTINA: 40 km southeast of Joaquín V. González, Salta

MN145865

UWBM-92146

Rhynchospiza dabbenei

UWBM (DHB2376)

ARGENTINA: 24 km north of Salta city, Salta

MN145864

UWBM-92147

Chlorospingus ophthalmicus

MBM (JK99‐074)

HONDURAS: Copan

FJ547290

 

Chlorospingus flavigularis

FMNH (430078)

PERU: Cuzco

FJ547291

 

Peucaea carpalis

MZFC (ORRS102)

MEXICO: Sonora

FJ547309

 

Peucaea sumichrasti

CNAV (Po13226)

MEXICO: Oaxaca

FJ547308

 

Peucaea botterii

LSUMNS (B‐9880)

USA: Arizona

FJ547312

 

Peucaea aestivalis

LSUMNS (B‐2461)

USA: Louisiana

FJ547311

 

Peucaea cassini

MVZ (FC20222)

USA: Oklahoma

FJ547310

 

Peucaea humeralis

CNAV (Po11084)

MEXICO: Morelos

FJ547306

 

Peucaea mysticalis

MZFC (OVMP773)

MEXICO: Puebla

FJ547307

 

Aimophila ruficauda ruficauda

MBM (DAB1680)

NICARAGA: Rivas

FJ547304

 

Aimophila ruficauda acuminata

CNAV (Po13223)

MEXICO: Oaxaca

FJ547305

 

Ammodramus savannarum

BMNH (JK94‐056)

USA: Montana

AF290125

 

Ammodramus humeralis

MBM (GAV1018)

ARGENTINA: Salta

FJ547324

 

Ammodramus aurifrons

J. Avise laboratory (DS74)

Not available

FJ547323

 

Arremonops tocuyensis

Pending

Pending

Pending

 

Arremonops conirostris

MBM (DAB1049)

NICARAGUA: Atlantico Norte

FJ547296

 

Arremonops chloronotus

KU (KU2031)

MEXICO: Campeche

FJ547295

 

Arremonops rufivirgatus

BMNH (X6828)

USA: Texas

FJ547294

 
  1. aMuseum sources for specimens used in this study. LSUMNS Louisiana State University Museum of Natural Science, UWBM University of Washington, Burke Museum of Natural History, MBM Marjorie Barrick Museum of Natural History, FMNH Field Museum of Natural History, MZFC Universidad Nacional Autónoma de Mexico, Museo de Zoología, CNAV Colección Nacional de Aves, MVZ University of California, Berkeley, Museum of Vertebrate Zoology, BMNH James Ford Bell Museum of Natural History, KU University of Kansas Natural History Museum. Those numbers in parentheses represent tissue or collector/preparator numbers instead of study-skin voucher numbers. Most samples were used by DaCosta et al. (2009), except for those of Arremon tocuyensis, Rhynchospiza strigiceps, and Rhynchospiza dabbenei
  2. We provide more details on the key samples of Rhynchospiza taxa (see also ESM 1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areta, J.I., Depino, E.A., Salvador, S.A. et al. Species limits and biogeography of Rhynchospiza sparrows. J Ornithol 160, 973–991 (2019). https://doi.org/10.1007/s10336-019-01695-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01695-2

Keywords

Navigation