Skip to main content
Log in

The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

A facies analysis of the epicontinental marine Cenomanian sediments of northern Germany shows the presence of 17 facies types (FTs, including several subtypes) which can be assigned to three facies associations: 1) an inner shelf facies association (FT 1–8) with high amounts of terrigenous material and/or high-energy depositional features, 2) a middle shelf facies association (FT 9–15) of predominantly calcareous sediments with moderate amounts of generally fine siliciclastics, and 3) an outer shelf facies association (FT 16–17) of low-energy, fine-grained, pure limestones. These three facies associations roughly correspond to the well-known lithological units of the Cenomanian of northern Germany, i.e., the Essen Greensand/Cenomanian Marls complex, the Pläner Limestones, and the Poor rhotomagense Limestones. The sediments were deposited on a northward-dipping homoclinal ramp with more-or-less shoreline-parallel facies belts. The sediment composition on this ramp-like shelf was a function of the varying importance of three different sediment sources: 1) terrigenous input from the south (Rhenobohemia), generally fining/decreasing in a proximal–distal (i.e., S–N) direction; 2) production of skeletal grains, mainly by macrobenthic organisms; and 3) settling of planktic carbonate (mainly calcispheres and calcareous nannofossils). In response to decreasing water energy with increasing water depth, the seaward decreasing terrigenous influence, and increasing planktic carbonate production, increasingly finer and more calcareous sediments were deposited in a proximal–distal transect. This rather straightforward picture was slightly modified by highest carbonate accumulation rates (planktic and benthic) on the middle shelf, forming a mid-shelf depocenter (fossiliferous, calcisphere-rich Pläner Limestones). Time-transgressive, southward-directed onlap of this biosedimentary system during the Cenomanian caused a significant retreat of the coastline towards the south and a retrogradational stacking of facies belts, explaining the broadly similar facies development and lithology of Cenomanian successions across northern Germany. The boundaries of the lithological units, however, tend to be considerably diachronous in a distal–proximal transect. In the late Middle and early Late Cenomanian, a final drowning and facies levelling (“oceanization”) is indicated by the widespread deposition of uniform calcareous nannofossil mudstones (Poor rhotomagense Limestones).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. Europ Ass Petrol Geosci 1:149–159

    Google Scholar 

  • Bärtling R (1920) Transgressionen, Regressionen und Faziesverteilung in der Mittleren und Oberen Kreide des Beckens von Münster. Z Dt Geol Ges 72:161–217

    Google Scholar 

  • Becker BF, Kaever MJ (1982) Das Kreideprofil der Bohrung Heidental 4/79n in der Kernzone des Osnings, südwestlich Detmold. Münstersche Forsch Geol Paläont 57:137–162

    Google Scholar 

  • Brasier MD (1995) Fossil indicators of nutrient levels. 1: eutrophication and climatic change. In: Bosence DW, Allison PA (eds) Marine palaeoenvironmental analysis from fossils. Geol Soc Lond Spec Publ 83:113–132

    Google Scholar 

  • Carter DJ, Hart MB (1977) Aspects of mid-Cretaceous stratigraphical micropaleontology. Bull Brit Mus Lond 29:1–135

    Google Scholar 

  • Christensen WK (1990) Actinocamax primus Arkhangelsky (Belemnitellidae, Upper Cretaceous): Biometry, comparison and biostratigraphy. Paläont Z 64:75–90

    Google Scholar 

  • Christensen WK (1997) Palaeobiogeography and migration in the Late Cretaceous belemnite family Belemnitellidae. Acta Palaeont Pol 42:457–495

    Google Scholar 

  • Dale B (1996) Dinoflagellate cyst ecology: modelling and geological application. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. Am Assoc Stratigr Palynol Found 3:1249–1275

    Google Scholar 

  • Erbacher J, Thurow J, Littke R (1996) Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:499–502

    Google Scholar 

  • Ernst G, Rehfeld U (1997) Transgressive development in the Early Cenomanian of the Salzgitter area (northern Germany) recorded by sea level controlled eco- and litho-events. Freiberger Forschungsh C468:79–107

    Google Scholar 

  • Ernst G, Wood CJ (1995) Die tiefere Oberkreide des subherzynen Niedersachsens. Terra Nostra 5/95:41–84

    Google Scholar 

  • Ernst G, Schmid F, Seibertz E (1983) Event-Stratigraphie im Cenoman und Turon von NW-Deutschland. Zitteliana 10:531–554

    Google Scholar 

  • Ernst G, Niebuhr B, Wiese F, Wilmsen M (1996) Facies development, basin dynamics, event correlation and sedimentary cycles in the Upper Cretaceous of selected areas of Germany and Spain. In: Reitner J, Neuweiler F, Gunkel F (eds) Global and regional controls on biogenic sedimentation. II. Cretaceous sedimentation. Research Reports. Göttinger Arb Geol Paläont Sb3:87–100

  • Friedman GM (1969) Trace elements as possible environmental indicators in carbonate sediments. In: Friedman GM (ed) Depositional environments in carbonate rocks. SEPM Spec Publ 14:193–198

    Google Scholar 

  • Frieg C, Kemper E, Baldschuhn R (1989) Mikropaläontologische Gliederung und Abgrenzung von Ober-Alb und Unter-Cenoman in Nordwestdeutschland. Geol Jb A113:73–193

    Google Scholar 

  • Frieg C, Hiss M, Kaever M (1990) Alb und Cenoman im zentralen und südlichen Münsterland (NW-Deutschland). Stratigraphie, Fazies, Paläogeographie. N Jb Geol Paläont Abh 181:325–363

    Google Scholar 

  • Gale AS (1995) Cyclostratigraphy and correlation of the Cenomanian stage in Western Europe. In: House MR, Gale AS (eds) Orbital forcing timescales and cyclostratigraphy. Geol Soc Lond Spec Publ 85:177–197

    Google Scholar 

  • Gale AS, Young JR, Shackleton NJ, Crowhurst SJ, Wray DS (1999) Orbital tuning of Cenomanian marly chalk successions: towards a Milankovitch time-scale for the Late Cretaceous. Phil Trans R Soc Lond 357:1815–1829

    Google Scholar 

  • Gale AS, Smith AB, Monks NEA, Young JA, Howard A, Wray DS, Huggett JM (2000) Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. J Geol Soc Lond 157:745–757

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27:83–100

    Google Scholar 

  • Graf G (1992) Benthic–pelagic coupling: a benthic view. Oceanogr Mar Biol Ann Rev 30:149–190

    Google Scholar 

  • Hancock JM, Kauffman EG (1979) The great transgressions of the Late Cretaceous. J Geol Soc Lond 136:175–186

    Google Scholar 

  • Hay WW (1995) Cretaceous paleoceanography. Geol Carpathica 46:257–266

    Google Scholar 

  • Hilbrecht H, Dahmer DD (1994) Sediment dynamics during the Cenomanian–Turonian (Cretaceous) Oceanic Anoxic Event in northwestern Germany. Facies 30:63–84

    Google Scholar 

  • Hillmer G, Senowbari-Daryan B (1986) Sphinctozoa aus dem Cenoman von Mühlheim-Broich, SW-Westfalen. Mitt Geol Paläont Inst Univ Hannover 61:161–187

    Google Scholar 

  • Hiss M (1982a) Neue Ergebnisse zur Paläogeographie des Cenomans in Westfalen. N Jb Geol Paläont Mh 1982:533–546

    Google Scholar 

  • Hiss M (1982b) Cenoman-Transgressionen und kleinräumige Faziesänderungen der Transgressionssedimente am Beispiel des Geologischen Gartens in Bochum und der Steinbrüche bei Frömern (Westfalen). Münstersche Forsch Geol Paläont 57:137–162

    Google Scholar 

  • Hiss M (1982c) Lithostratigraphie der Kreide-Basisschichten (Cenoman-Unterturon) am Haarstrang zwischen Unna und Möhnsee (südöstliches Münsterland). Münstersche Forsch Geol Paläont 57:59–135

    Google Scholar 

  • Hiss M (1982d) Ammoniten des Cenomans vom Südrand der westfälischen Kreide zwischen Unna und Möhnsee. Paläont Z 56:177–208

    Google Scholar 

  • Hiss M (1983) Biostratigraphie der Kreide-Basisschichten am Haarstrang (SE-Westfalen) zwischen Unna und Möhnsee. Zitteliana 10:43–54

    Google Scholar 

  • Hiss M (1985) Faziesanalyse der Cenoman-Sedimente am Haarstrang zwischen Unna und Möhnsee. Münstersche Forsch Geol Paläont 63:109–170

    Google Scholar 

  • Hiss M (1989) with contr. of Erkwoh F-D, Jäger B, Michel G, Vieth-Redemann A. Erläuterungen zu Blatt 4417 Büren. Geol. Kt. Nordrh.-Westf. 1:25 000, 4417, 152 pp

  • Hiss M (1995) Kreide. In: Landesamt NRW (ed) Geologie im Münsterland, pp 41–63

  • Hiss M, Mutterlose J, Niebuhr B, German Subcommission on Cretaceous Stratigraphy (2002) Cretaceous. In: German Stratigraphic Commission (ed) Stratigraphic table of Germany

  • Horna F (1996) Multistratigraphisch-sedimentologische Untersuchungen an pelagischen Karbonaten. Das Oberkreide-Profil von Hoppenstedt (Subherzynes Becken). Freiberger Forschungsh C464:73–144

    Google Scholar 

  • Hottinger L (1996) Sels nutritifs et biosédimentation. Mém Soc Géol Fr NS 169:99–107

    Google Scholar 

  • Houghton SD (1988) Thermocline control on coccolith diversity and abundance in recent sediments from the Celtic Sea and English Channel. Mar Geol 83:313–319

    Google Scholar 

  • Jago CF, Jones SE (2002) Diagnostic criteria for reconstruction of tidal continental shelf regimes: changing the paradigm. Mar Geol 191:95–117

    Google Scholar 

  • Jago CF, Bale AJ, Green MO, Howarth MJ, Jones SE, McCave IN, Millward GE, Morris AW, Rowden AA, Williams JJ (1993) Resuspension processes and seston dynamics. Phil Trans R Soc Lond A 343:475–491

    Google Scholar 

  • Johnson HD (1978) Shallow siliciclastic seas. In: Reading HD (ed) Sedimentary environments and facies. Blackwell, Oxford, pp 207–258

    Google Scholar 

  • Kahrs E (1927) Zur Paläogeographie der Oberkreide in Rheinland-Westfalen. N Jb Min Geol Paläont, Beil 58B:627–687

    Google Scholar 

  • Kaplan U, Keller S, Wiedmann J (1984) Ammoniten- und Inoceramen-Gliederung des norddeutschen Cenoman. Schriftenr Erdwiss Komm 7:307–347

    Google Scholar 

  • Kaplan U, Kennedy WJ, Lehmann J, Marcinowski R (1998) Stratigraphie und Ammonitenfaunen des westfälischen Cenoman. Geol Paläont Westfalen 51:1–236

    Google Scholar 

  • Keller S (1982) Die Oberkreide der Sack-Mulde bei Alfeld (Cenoman – Unter-Coniac); Lithologie, Biostratigraphie und Inoceramen. Geol Jb A64:2–171

    Google Scholar 

  • Kemper E (1984) Ober-Alb und Unter-Cenoman in Nordwestdeutschland. Geol Jb A75:465–487

    Google Scholar 

  • Kennedy WJ, Garrison RE (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22:311–386

    Google Scholar 

  • Kiel S, Bandel K (2004) The Cenomanian Gastropoda of the Kassenberg quarry in Mühlheim (Germany, Late Cretaceous). Paläont Z 78:103–126

    Google Scholar 

  • Krautter M (1997) Aspekte zur Paläökologie postpaläozoischer Kieselschwämme. Profil 11:199–324

    Google Scholar 

  • Kunitzer A, Basford D, Craeymeersch JA, Dewarumez JM, Dorjes J, Duineveld GCQ, Eleftheriou A, Heip C, Herman P, Kingston P, Niermann U, Rachor E, Rumohr H, de Wilde PAJ (1992) The benthic infauna of the North Sea: species distribution and assemblages. ICES J Mar Sci 49:127–143

    Google Scholar 

  • Lehmann J (1999) Integrated stratigraphy and palaeoenvironment of the Cenomanian-Lower Turonian (Upper Cretaceous) of northern Westphalia, North Germany. Facies 40:25–70

    Google Scholar 

  • Lehmann J, Höll K (1989) Asseln aus dem Cenoman (Oberkreide) Nordwestdeutschlands. Arbeitskr Paläont Hannover 17:1–15

    Google Scholar 

  • Löser H (1994) Die Korallenfauna des Kassenberges in Mülheim/Ruhr (Westfälisches Kreidebecken, NW-Deutschland; Oberkreide), (1) Geologie und Palökologie. Coral Res Bull 2:1–19

    Google Scholar 

  • Meyer T (1990) Biostratigraphische und sedimentologische Untersuchungen in der Plänerfazies des Cenoman von Nordwestdeutschland. Mitt Geol Inst Univ Hannover 30:114

    Google Scholar 

  • Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170

    Google Scholar 

  • Mount J (1985) Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology 32:435–442

    Google Scholar 

  • Mutterlose J, Wood CJ, Ernst G (1998) The Lower and Upper Cretaceous of the Hannover-Braunschweig area (NW-Germany). In: Mutterlose J, Bornemann A, Rauer S, Spaeth C, Wood CJ (eds) Key localities of the Northwest European Cretaceous. Bochumer Geol Geotech Arb 48:39–51

    Google Scholar 

  • Niebuhr B, Baldschuhn R, Ernst G, Walaszczyk I, Weiss W, Wood CJ (1999) The Upper Cretaceous succession (Cenomanian–Santonian) of the Staffhorst Shaft, Lower Saxony, northern Germany: integrated biostratigraphic, lithostratigraphic and downhole geophysical log data. Acta Geol Pol 49:175–213

    Google Scholar 

  • Niebuhr B, Wiese F, Wilmsen M (2001) The cored Konrad 101 borehole (Cenomanian– Lower Coniacian, Lower Saxony): calibration of surface and subsurface log data for the lower Upper Cretaceous of northern Germany. Cret Res 22:643–674

    Google Scholar 

  • Odin GS, Matter A (1981) De glauconarium origine. Sedimentology 28:611–641

    Google Scholar 

  • Philip J, Floquet M (2000) Late Cenomanian (94.7–93.5). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys palaeogeographical maps. CCGM/CGMW, pp 129–136

  • Pingree RD, Holligan PM, Mardell GT, Head RN (1978) The efects of vertical stability on phytoplankton distribution in the summer on the nortwest European shelf. Deep Sea Res 25:1011–1028

    Google Scholar 

  • Reid PC, Lancelot C, Gieskes WWC, Hagmeier E, Weichart G (1990) Phytoplankton of the North Sea and its dynamics: a review. Neth J Sea Res 26:295–331

    Google Scholar 

  • Robaszynski F, Juignet P, Gale AS, Amédro F, Hardenbol J (1998) Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: Graciansky P de, Hardenbol J, Jaquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Spec Publ 60:363–385

    Google Scholar 

  • Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian–Turonian Oceanic Anoxic Event. Stratigraphy and distribution of organic carbon-rich beds and the marine13C-excursion. Geol Soc Lond Spec Publ 26:371–399

    Google Scholar 

  • Schönfeld J, Schiebel R, Timm S (1991) The Rotpläner (Upper Cenomanian to Lower Turonian) of Baddeckenstedt (north-western Germany): lithology, geochemistry, foraminifers and stratigraphic correlations. Meyniana 43:73–95

    Google Scholar 

  • Tett P, Joint I, Purdie D, Baars M, Oosterhuis S, Daneri G, Hannah F, Mills DK, Plummer D, Pomroy A, Walne AW, Witte HJ (1993) Biological consequences of tidal stirring gradients in the North Sea. Phil Trans R Soc Lond A 340:493–508

    Google Scholar 

  • Tröger KA (1989) Problems of Upper Cretaceous inoceramid biostratigraphy and palaeobiogeography in Europe and western Asia. In: Wiedmann J (ed) Cretaceous of the Western Tethys. Proc 3rd Int Cret Symp Tübingen 1987, pp 911–930

  • Tröger KA, Schubert J (1993) Bemerkungen zur Ausbildung und Biostratigraphie des Oberkreide-Profils im nördlichen Teil des Holunger Grabens (Thüringer Becken). Z Geol Wiss 21:403–415

    Google Scholar 

  • Von Strombeck A (1857) Gliederung des Pläners im nordwestlichen Deutschland nächst dem Harze. Z Dt Geol Ges 9:415–419

    Google Scholar 

  • Weiss W (1982) Planktonische Foraminiferen aus dem Cenoman und Turon von Nordwest- und Süddeutschland. Palaeontographica A178:49–108

    Google Scholar 

  • Wendler J, Gräfe KU, Willems H (2002a) Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cysts. Palaeogeogr Palaeoclimatol Palaeoecol 179:19–41

    Google Scholar 

  • Wendler J, Gräfe KU, Willems H (2002b) Palaeoecology of calcareous dinoflagellate cysts in the mid-Cenomanian Boreal Realm: implications for the reconstruction of palaeoceanography of the NW European shelf sea. Cret Res 23:213–229

    Google Scholar 

  • Wendler I, Zonneveld KAF, Willems H (2002c) Production of calcareous dinoflagellate cysts in response to monsoon forcing off Somalia: a sediment trap study. Marine Micropaleont 46:1–11

    Google Scholar 

  • Wiedmann J, Schneider HL (1979) Cephalopoden und Alter der Cenoman-Transgression von Mühlheim-Broich, SW-Westfalen. In: Wiedmann J (ed) Aspekte der Kreide Europas. IUGS A6:645–680

    Google Scholar 

  • Wiedmann J, Kaplan U, Lehmann J, Marcinowski R (1989) Biostratigraphy of the Cenomanian of NW Germany. In: Wiedmann J (ed) Cretaceous of the Western Tethys. Proc 3rd Int Cret Symp Tübingen 1987, pp 931–948

  • Wiese F, Wilmsen M (1999) Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (Cantabria, N-Spain). N Jb Geol Paläont Abh 212:131–173

    Google Scholar 

  • Wildberg H (1980) Glaukonitgenese und Lithofazies im Cenoman von Dortmund (Westfalen). N Jb Geol Paläont Mh 1980:52–64

    Google Scholar 

  • Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cret Res 24:525–568

    Google Scholar 

  • Wilmsen M, Niebuhr B (2002) Stratigraphic revision of the upper Lower and Middle Cenomanian in the Lower Saxony Basin (northern Germany) with special reference to the Salzgitter area. Cret Res 23:445–460

    Google Scholar 

  • Wilmsen M, Wiese F (2004) Exkursion 4: Biosedimentologie des Cenoman und Turon im Niedersächsischen Becken. In: Reitner J, Reich M, Schmidt G (eds) Geobiologie 2. Univ Göttingen, pp 73–112

  • Wilmsen M, Wood CJ (2004) The Cenomanian of Hoppenstedt, northern Germany: a Subhercynian key section revisited. Newsl Strat 40:209–230

    Google Scholar 

  • Wilmsen M, Niebuhr B, Wood CJ (2001) Early Cenomanian (Cretaceous) inoceramid bivalves from the Kronsberg Syncline (Hannover area, Lower Saxony, northern Germany): stratigraphic and taxonomic implications. Acta Geol Polon 51:121–136

    Google Scholar 

  • Wilmsen M, Wood CJ, Niebuhr B, Zawischa D (subm) The fauna and inferred depositional environment of the Middle Cenomanian Praeactinocamax primus Event from northern Germany with special reference to the type-locality (Wunstorf quarry, Hannover area). Cret Res

  • Witbaard R, Duineveld GCA, Bergman M (2001) The effect of tidal resuspension on benthic food quality in the southern North Sea. Senckenb Mar 31:225–234

    Google Scholar 

Download references

Acknowledgements

This research was financed by a grant of the Jubiläumsstiftung of the Bayerische Julius-Maximilians-Universität Würzburg (to MW). The manuscript benefited from discussions with J. Schönfeld (Kiel), S. Voigt (Köln), W. Weiss (Hannover), and F. Wiese (Berlin). Mrs. H. Schönig (Würzburg) is thanked for her photographic work. Anonymous reviews are gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wilmsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmsen, M., Niebuhr, B. & Hiss, M. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51, 242–263 (2005). https://doi.org/10.1007/s10347-005-0058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0058-5

Keywords

Navigation