Skip to main content

Advertisement

Log in

Efficient post-plasma catalytic degradation of toluene via series of Co–Cu/TiO2 catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) represent a very important class of pollutants that causes serious health effects. There is an urgent requirement to establish efficient technologies that can reduce and control VOCs. Non-thermal plasma (NTP) is an emerging technology that can decompose low concentration VOCs. However, the low efficiency and high power cost are major hindrances in its commercialization. In this work, Co–Cu with TiO2 support catalysts are prepared by using the deposition precipitation method and utilized in post-plasma catalysis for the efficient degradation of toluene selected as a model VOC. The synergistic effect of Co–Cu/TiO2 with different Co/Cu molar ratios along with pure Co/TiO2 and Cu/TiO2 catalysts are studied for their catalytic activity. Results showed that the degradation efficiency of toluene for the control experiments (plasma-alone) increased from 10 to 85% with the increase in input power from 11 to 44 W. In comparison, a significant improvement in the degradation efficiency is achieved with post-plasma catalysis owing to better physicochemical properties such as particle surface area and microstructures of the Co–Cu/TiO2 catalysts. The Co50–Cu50/TiO2 exhibited highest degradation efficiency of toluene, i.e. 55% being 5.5 times higher than control at lowest input power of 11 W while 96% at the highest input power of 44 W, attributed to interaction of Co and Cu species, adsorbed oxygen content, and redox properties by exchange of pairs Co+3/Co+2 and Cu+2/Co+3. In summary, the post-plasma catalysis integrated with Co50–Cu50/TiO2 catalyst rendered optimal outcomes in terms of power consumption and degradation of VOCs, envisioning commercial viability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. B. Wang, X. Xu, W. Xu, N. Wang, H. Xiao, Y. Sun, H. Huang, L. Yu, M. Fu, J. Wu, L. Chen, D. Ye, Catal. Surv. From Asia 22, 73 (2018)

    Article  CAS  Google Scholar 

  2. S. Mohanty, A.K. Das, S.P. Das, Chem. Sci. Rev. Lett. 4, 889 (2015)

    CAS  Google Scholar 

  3. X. Zhu, S. Liu, Y. Cai, X. Gao, J. Zhou, C. Zheng, X. Tu, Appl. Catal. B Environ. 183, 124 (2016)

    Article  CAS  Google Scholar 

  4. M.F. Mustafa, X. Fu, W. Lu, Y. Liu, Y. Abbas, H. Wang, M.T. Arslan, J. Clean. Prod. 174, 670 (2018)

    Article  CAS  Google Scholar 

  5. C. Qin, X. Dang, J. Huang, J. Teng, X. Huang, Chem. Eng. J. 299, 85 (2016)

    Article  CAS  Google Scholar 

  6. F. Ghorbani Shahna, A. Bahrami, I. Alimohammadi, R. Yarahmadi, B. Jaleh, M. Gandomi, H. Ebrahimi, K. AdDinAbedi, J. Hazard. Mater. 324, 544 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. T. Chang, J. Lu, Z. Shen, B. Zhang, Y. Huang, J. Cao, H. Liu, S.K.P. Veerapandian, N. De Geyter, R. Morent, Ind. Eng. Chem. Res. 58, 14719 (2019)

    Article  CAS  Google Scholar 

  8. N. Jiang, C. Qiu, L. Guo, K. Shang, N. Lu, J. Li, Y. Wu, Water. Air. Soil Pollut. 228, 1 (2017)

    Article  CAS  Google Scholar 

  9. T. Processes, Micropollutants and challenges (2020).

  10. X. Xu, P. Wang, W. Xu, J. Wu, L. Chen, M. Fu, D. Ye, Chem. Eng. J. 283, 276 (2016)

    Article  CAS  Google Scholar 

  11. B. Wang, S. Yao, Y. Peng, Y. Xu 6, 3819 (2018)

    CAS  Google Scholar 

  12. C. Qin, X. Huang, X. Dang, J. Huang, J. Teng, Z. Kang, Chemosphere 162, 125 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. C. Subrahmanyam, M. Magureanu, A. Renken, L. Kiwi-Minsker, Appl. Catal. B Environ. 65, 150 (2006)

    Article  CAS  Google Scholar 

  14. M.F. Mustafa, X. Fu, Y. Liu, Y. Abbas, H. Wang, W. Lu, J. Hazard. Mater. 347, 317 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. H. Yi, X. Yang, X. Tang, S. Zhao, X. Xie, T. Feng, Y. Ma, X. Cui, Energy Fuels 31, 11217 (2017)

    Article  CAS  Google Scholar 

  16. W. Liang, H. Sun, X. Shi, Y. Zhu, Catalysts 10, 511 (2020)

    Article  CAS  Google Scholar 

  17. C. Norsic, J.M. Tatibouët, C. Batiot-Dupeyrat, E. Fourré, Chem. Eng. J. 304, 563 (2016)

    Article  CAS  Google Scholar 

  18. X. Xu, J. Wu, W. Xu, M. He, M. Fu, L. Chen, A. Zhu, D. Ye, Catal. Today 281, 527 (2017)

    Article  CAS  Google Scholar 

  19. K. Wu, Y. Sun, J. Liu, J. Xiong, J. Wu, J. Zhang, M. Fu, L. Chen, H. Huang, D. Ye, J. Hazard. Mater. 405, 124156 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. W. Lu, Y. Abbas, M.F. Mustafa, C. Pan, H. Wang, Front. Environ. Sci. Eng. 13, 1 (2019)

    Article  CAS  Google Scholar 

  21. J. Li, H. Zhang, D. Ying, Y. Wang, T. Sun, J. Jia, Int. J. Environ. Res. Public Health 16, 711 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  22. S. Li, X. Dang, X. Yu, G. Abbas, Q. Zhang, L. Cao, Chem. Eng. J. 388, 124275 (2020)

    Article  CAS  Google Scholar 

  23. H. Song, F. Hu, Y. Peng, K. Li, S. Bai, J. Li, Chem. Eng. J. 347, 447 (2018)

    Article  CAS  Google Scholar 

  24. S.K.P. Veerapandian, Z. Ye, J.M. Giraudon, N. De Geyter, R. Morent, J.F. Lamonier, J. Hazard. Mater. 379, 120781 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. X. Feng, C. Chen, C. He, S. Chai, Y. Yu, J. Cheng, J. Hazard. Mater. 383, 121143 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. M.B. Gawande, R.K. Pandey, R.V. Jayaram, Catal. Sci. Technol. 2, 1113 (2012)

    CAS  Google Scholar 

  27. X. Li, S. Wang, X. Zhang, D. Mei, Y. Xu, P. Yu, Y. Sun, J. Clean. Prod. 332, 130107 (2022)

    Article  CAS  Google Scholar 

  28. Y. Sun, L. Zhou, L. Zhang, H. Sui, J. Environ. Sci. 24, 891 (2012)

    Article  CAS  Google Scholar 

  29. L. Sun, W. Luo, W. Sun, J. Yang, Res. Chem. Intermed. 45, 2903 (2019)

    Article  CAS  Google Scholar 

  30. B. Zhu, L.Y. Zhang, M. Li, Y. Yan, X.M. Zhang, Y.M. Zhu, Chem. Eng. J. 381, 122599 (2020)

    Article  CAS  Google Scholar 

  31. X. Yao, J. Zhang, X. Liang, C. Long, Chemosphere 208, 922 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. H.R. Omran, S.M. EL-Marsafy, F.H. Ashour, E.F. Abadir, Egypt J. Pet. 26, 855 (2017)

    Article  Google Scholar 

  33. Z. Shi, H. Yang, P. Gao, X. Chen, H. Liu, L. Zhong, Chin. J. Catal. 39, 1294 (2018)

    Article  CAS  Google Scholar 

  34. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  35. H. Bu, Y. Ju, J. Tan, G. Wang, X. Li, J. Nat. Gas Sci. Eng. 24, 166 (2015)

    Article  CAS  Google Scholar 

  36. U. Farooq, M. Danish, S. Lu, M.L. Brusseau, M. Naqvi, X. Fu, X. Zhang, Q. Sui, Z. Qiu, Appl. Catal. A Gen. 544, 10 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Saud, D.B. Nguyen, S.G. Kim, H.W. Lee, S.B. Kim, Y.S. Mok, Catalysts 10, 1 (2020)

    Article  CAS  Google Scholar 

  38. Z. Shi, H. Yang, P. Gao, X. Li, L. Zhong, H. Wang, H. Liu, W. Wei, Y. Sun, Catal. Today 311, 65 (2018)

    Article  CAS  Google Scholar 

  39. W.Q. Zaman, Z. Wang, W. Sun, Z. Zhou, M. Tariq, L. Cao, X.Q. Gong, J. Yang, ACS Energy Lett. 2, 2786 (2017)

    Article  CAS  Google Scholar 

  40. W. Lv, L. Li, Q. Meng, X. Zhang, J. Mater. Sci. 55, 2492 (2020)

    Article  CAS  Google Scholar 

  41. J. Yuan, J.J. Zhang, M.P. Yang, W.J. Meng, H. Wang, J.X. Lu, Catalysts 8, 171 (2018)

    Article  CAS  Google Scholar 

  42. G.N. Shao, S.J. Jeon, M.S. Haider, N. Abbass, H.T. Kim, J. Colloid Interface Sci. 474, 179 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. A. Hastir, R.L. Opila, N. Kohli, Z. Onuk, B. Yuan, K. Jones, R.C. Singh, J. Mater. Sci. 52, 8502 (2017)

    Article  CAS  Google Scholar 

  44. T. Chang, Z. Shen, Y. Huang, J. Lu, D. Ren, J. Sun, J. Cao, Chem. Eng. J. 348, 15 (2018)

    Article  CAS  Google Scholar 

  45. Z. Abbas, W.Q. Zaman, M. Danish, A. Shan, C. Ma, K.S. Ayub, M. Tariq, Q. Shen, L. Cao, J. Yang, Res. Chem. Intermed. 47, 2407 (2021)

    Article  CAS  Google Scholar 

  46. E.C. Neyts, K. Ostrikov, M.K. Sunkara, A. Bogaerts, Chem. Rev. 115, 13408 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. X. Zhang, B. Ren, Y. Xu, X. Li, P. Yu, Y. Sun, H. Zheng, Sep. Purif. Technol. 257, 117973 (2021)

    Article  CAS  Google Scholar 

  48. Z. Wu, W. Zhou, Z. Zhu, X. Hao, X. Zhang, IEEE Trans. Plasma Sci. 48, 163 (2020)

    Article  CAS  Google Scholar 

  49. N. Jiang, J. Hu, J. Li, K. Shang, N. Lu, Y. Wu, Appl. Catal. B Environ. 184, 355 (2016)

    Article  CAS  Google Scholar 

  50. T. Chang, Z. Shen, Y. Huang, J. Lu, D. Ren, J. Sun, J. Cao, H. Liu, Chem. Eng. J. 348, 15 (2018)

    Article  CAS  Google Scholar 

  51. H.H. Kim, S.M. Oh, A. Ogata, S. Futamura, Appl. Catal. B Environ. 56, 213 (2005)

    Article  CAS  Google Scholar 

  52. X. Yu, X. Dang, S. Li, J. Zhang, Q. Zhang, L. Cao, J. Clean. Prod. 276, 124251 (2020)

    Article  CAS  Google Scholar 

  53. S. Li, X. Yu, X. Dang, H. Guo, P. Liu, C. Qin, Chem. Eng. J. 375, 122027 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is based on the work supported by the National Natural Science Foundation of China (51778229).

Funding

Ji Yang reports financial support was provided by National Natural Science Foundation of China (51778229).

Author information

Authors and Affiliations

Authors

Contributions

KSA designed, conducted the experimental work, and analysed and wrote the paper under the supervision of YJ. WQZ and W helped to analyse the characterization data and conceptualization. ZA supported experiments, characterizations, and conceptualization. MA, UM, and AS analysed experimental data. The manuscript was revised through discussion and comments of all the authors.

Corresponding author

Correspondence to Ji Yang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 377 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, K.S., Zaman, W.Q., Miran, W. et al. Efficient post-plasma catalytic degradation of toluene via series of Co–Cu/TiO2 catalysts. Res Chem Intermed 48, 4227–4248 (2022). https://doi.org/10.1007/s11164-022-04805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04805-7

Keywords

Navigation