Skip to main content
Log in

Erhöhte Darmpermeabilität: Pathomechanismus für metabolische Erkrankungen?

Increased intestinal permeability: a pathomechanism for metabolic diseases?

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Eine intakte Darmbarriere ist die Schnittstelle zwischen Umwelt‑, Verhaltens- und intrinsisch biologischen Faktoren und stellt einen wesentlichen Parameter der Integrität eines gesunden Organismus dar. Neben ihrer Rolle in einer Vielzahl physiologischer Prozesse kann die Darmmikrobiota zur Beeinträchtigung der Darmbarriere und Veränderung der intestinalen Permeabilität beitragen. Letztere wird sowohl über exogene Faktoren wie Ernährung, Alkohol, Medikamenteneinnahme und pathogene Bakterien als auch über körpereigene Mechanismen, die z. B. durch veränderte Immunabwehr oder gestörte Glukosetoleranz getriggert werden, reguliert. Aufgrund einer erhöhten Darmpermeabilität gelangen verstärkt Bakterien sowie deren Bestandteile in den Kreislauf, was systemisch zur Aggravation einer bestehenden Adipositas sowie einer zunehmenden Insulinresistenz bis hin zu kardiovaskulären Ereignissen beitragen kann. Außerdem kommt es auf der Ebene von Organen und Geweben durch die erhöhte bakterielle Exposition zu einem circulus vitiosus, in dem über eine Schädigung der lokalen Abwehr mit weiterer Erhöhung der Darmpermeabilität eine lokale inflammatorische Aktivierung entsteht, die einen systemischen proinflammatorischen, diabetogenen und atherogenen Status unterhält. Die Modulation der Darmpermeabilität durch Ernährung und andere Interventionen, einschließlich Manipulation des Darmmikrobioms durch Prä‑, Pro- oder Synbiotika, stellt ein potenzielles Präventions- und Behandlungsziel für kardiometabolische Erkrankungen dar, das aber derzeit in der klinischen Praxis noch kaum eine Rolle spielt. Voraussetzung für eine gezielte Therapie, die Veränderungen des Mikrobioms bewirken soll, ist ein besseres Verständnis der Wechselwirkungen zwischen Mikrobiota und kardiometabolischen Erkrankungen.

Abstract

The intestinal barrier is an interface between ourselves and our environments and therefore an integral regulator of health. Among other factors, gut barrier integrity is regulated by bacteria and bacterial metabolites, which have been evidenced to have both protective or detrimental effects on gut integrity and permeability. Similarly, both external and internal factors related to host metabolic state  can lead to alterations of tight junction integrity and hence to increased influx of bacteria or bacterial components into the host circulation. This so-called ‘metabolic endotoxemia’ has been associated with impaired metabolic host status, aggravation of existing obesity, increase in insulin resistance, and onset of cardiovascular events. From the gut, bacteria and their components and metabolites are further transported through the blood to peripheral tissues, where they can induce chronic pro-inflammatory signals at the tissue and systemic level. This, in turn, can further increase intestinal permeability leading to a detrimental feedback loop. Modulation of gut barrier function through nutritional or medicinal interventions, including manipulation of gut microbiota by pre-, pro- or synbiotics, represents a promising prevention and treatment target for metabolic diseases. Prerequisite for microbiome based targeted prevention and treatment options is a better understanding of the interactions between the microbiome and cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes. Molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572. https://doi.org/10.1002/emmm.201100159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, Lepage P, Klopp C, Mariette J, Bouchez O, Perez L, Courtney M, Marre M, Klopp P, Lantieri O, Doré J, Charles MA, Balkau B, Burcelin R (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54(12):3055–3061. https://doi.org/10.1007/s00125-011-2329-8

    Article  CAS  PubMed  Google Scholar 

  3. Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, Courtney M, Marre M, Charles MA, Balkau B, Burcelin R, D.E.S.I.R. Study Group, Bayer A (2012) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population. The D.E.S.I.R. study. PLoS ONE 8(1):e54461. https://doi.org/10.1371/journal.pone.0054461

    Article  CAS  Google Scholar 

  4. Anhê FF, Jensen BAH, Varin TV, Servant F, Van Blerk S, Richard D, Marceau S, Surette M, Biertho L, Lelouvier B, Schertzer JD, Tchernof A, Marette A (2020) Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab 374:788. https://doi.org/10.1038/s42255-020-0178-9

    Article  Google Scholar 

  5. Berry LJ, Smythe DS, Young LG (1959) Effects of bacterial endotoxin on metabolism. I. Carbohydrate depletion and the protective role of cortisone. J Exp Med 110:389–405. https://doi.org/10.1084/jem.110.3.389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J‑D, Serino M, Tilg H, Watson A, Wells JM (2014) Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol 14(1):189. https://doi.org/10.1186/s12876-014-0189-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bjarnason I, Ward K, Peters T (1984) The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 323(8370):179–182. https://doi.org/10.1016/S0140-6736(84)92109-3

    Article  Google Scholar 

  8. Burcelin R, Serino M, Chabo C, Garidou L, Pomie C, Courtney M, Amar J, Bouloumie A (2013) Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 15(3):61–70. https://doi.org/10.1111/dom.12157

    Article  CAS  PubMed  Google Scholar 

  9. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. https://doi.org/10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  10. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M (2019) The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol 9:148. https://doi.org/10.3389/fcimb.2019.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cox AJ, Zhang P, Bowden DW, Devereaux B, Davoren PM, Cripps AW, West NP (2017) Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab 43(2):163–166. https://doi.org/10.1016/j.diabet.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  12. Damms-Machado A, Louis S, Schnitzer A, Volynets V, Rings A, Basrai M, Bischoff SC (2017) Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr 105(1):127–135. https://doi.org/10.3945/ajcn.116.131110

    Article  CAS  PubMed  Google Scholar 

  13. Franchini R, Petri A, Migliario M, Rimondini L (2011) Poor oral hygiene and gingivitis are associated with obesity and overweight status in paediatric subjects. J Clin Periodontol 38(11):1021–1028. https://doi.org/10.1111/j.1600-051X.2011.01770.x

    Article  CAS  PubMed  Google Scholar 

  14. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–22. https://doi.org/10.1016/j.jaci.2009.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, Humphrey G, Sanders K, Ratnayake Y, Chan KSL, Hendrick G, Caldera JR, Arias C, Moskowitz JE, Ho Sui SJ, Yang S, Underhill D, Brady MJ, Knott S, Kaihara K, Steinbaugh MJ, Li H, McGovern DPB, Knight R, Fleshner P, Devkota S (2020) Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell. https://doi.org/10.1016/j.cell.2020.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harris TJC, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514. https://doi.org/10.1038/nrm2927

    Article  CAS  PubMed  Google Scholar 

  17. Harte AL, Varma MC, Tripathi G, McGee KC, Al-Daghri NM, Al-Attas OS, Sabico S, O’Hare JP, Ceriello A, Saravanan P, Kumar S, McTernan PG (2012) High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 35(2):375–382. https://doi.org/10.2337/dc11-1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Howitt MR, Garrett WS (2012) A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat Med 18(8):1188–1189. https://doi.org/10.1038/nm.2895

    Article  CAS  PubMed  Google Scholar 

  19. Hu Y‑J, Wang Y‑D, Tan F‑Q, Yang W‑X (2013) Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 40(11):6123–6142. https://doi.org/10.1007/s11033-013-2724-y

    Article  CAS  PubMed  Google Scholar 

  20. Isobe N, Suzuki M, Oda M, Tanabe S (2008) Enzyme-modified cheese exerts inhibitory effects on allergen permeation in rats suffering from indomethacin-induced intestinal inflammation. Biosci Biotechnol Biochem 72(7):1740–1745. https://doi.org/10.1271/bbb.80042

    Article  CAS  PubMed  Google Scholar 

  21. Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 294(1):G208–16. https://doi.org/10.1152/ajpgi.00398.2007

    Article  CAS  PubMed  Google Scholar 

  22. Krogh-Madsen R, Plomgaard P, Akerstrom T, Møller K, Schmitz O, Pedersen BK (2008) Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab 294(2):E371–9. https://doi.org/10.1152/ajpendo.00507.2007

    Article  CAS  PubMed  Google Scholar 

  23. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, Hofstaedter CE, Roche AM, Mattei LM, Bittinger K, Elovitz MA, Leite R, Parry S, Bushman FD (2018) Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6(1):1–11. https://doi.org/10.1186/s40168-018-0575-4

    Article  Google Scholar 

  24. Luther J, Garber JJ, Khalili H, Dave M, Bale SS, Jindal R, Motola DL, Luther S, Bohr S, Jeoung SW, Deshpande V, Singh G, Turner JR, Yarmush ML, Chung RT, Patel SJ (2015) Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol 1(2):222–232.e2. https://doi.org/10.1016/j.jcmgh.2015.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  25. Massier L, Chakaroun R, Tabei S, Crane A, Didt KD, Fallmann J, von Bergen M, Haange S‑B, Heyne H, Stumvoll M, Gericke M, Dietrich A, Blüher M, Musat N, Kovacs P (2020) Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut. https://doi.org/10.1136/gutjnl-2019-320118

    Article  PubMed  Google Scholar 

  26. Massier L, Chakaroun R, Kovacs P, Heiker JT (2020) Blurring the picture in leaky gut research: how shortcomings of zonulin as a biomarker mislead the field of intestinal permeability. Gut. https://doi.org/10.1136/gutjnl-2020-323026

    Article  PubMed  Google Scholar 

  27. Monte SV, Caruana JA, Ghanim H, Sia CL, Korzeniewski K, Schentag JJ, Dandona P (2012) Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en‑Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery 151(4):587–593. https://doi.org/10.1016/j.surg.2011.09.038

    Article  PubMed  Google Scholar 

  28. Nakatsuji T, Chiang H‑I, Jiang SB, Nagarajan H, Zengler K, Gallo RL (2013) The microbiome extends to subepidermal compartments of normal skin. Nat Commun 4:1431. https://doi.org/10.1038/ncomms2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nolan JP, Hare DK, McDevitt JJ, Vilayat AM (1977) In vitro studies of intestinal endotoxin absorption. Gastroenterology 72(3):434–439. https://doi.org/10.1016/S0016-5085(77)80253-9

    Article  CAS  PubMed  Google Scholar 

  30. Ortiz S, Zapater P, Estrada JL, Enriquez P, Rey M, Abad A, Such J, Lluis F, Frances R (2014) Bacterial DNA translocation holds increased insulin resistance and systemic inflammatory levels in morbid obese patients. J Clin Endocrinol Metab 99(7):2575–2583. https://doi.org/10.1210/jc.2013-4483

    Article  CAS  PubMed  Google Scholar 

  31. Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H (2017) Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 7(1):11955. https://doi.org/10.1038/s41598-017-12109-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100(2):123–136. https://doi.org/10.1007/bf02209145

    Article  CAS  PubMed  Google Scholar 

  33. Parahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP (2009) Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev 22(1):46–64

    Article  CAS  Google Scholar 

  34. Pedicino D, Severino A, Ucci S, Bugli F, Flego D, Giglio AF, Trotta F, Ruggio A, Lucci C, Iaconelli A, Paroni Sterbini F, Biasucci LM, Sanguinetti M, Glieca F, Luciani N, Massetti M, Crea F, Liuzzo G (2017) Epicardial adipose tissue microbial colonization and inflammasome activation in acute coronary syndrome. Int J Cardiol 236:95–99. https://doi.org/10.1016/j.ijcard.2017.02.040

    Article  PubMed  Google Scholar 

  35. Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34(2):392–397. https://doi.org/10.2337/dc10-1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rossi O, van Baarlen P, Wells JM (2013) Host-recognition of pathogens and commensals in the mammalian intestine. In: Dobrindt U, Hacker JH, Svanborg C (Hrsg) Between pathogenicity and commensalism. Springer, Berlin, Heidelberg, S 291–321

    Google Scholar 

  37. Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, Komiya K, Kawaguchi M, Shimizu T, Ogihara T, Tamura Y, Sakurai Y, Yamamoto R, Mita T, Fujitani Y, Fukuda H, Nomoto K, Takahashi T, Asahara T, Hirose T, Nagata S, Yamashiro Y, Watada H (2014) Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37(8):2343–2350. https://doi.org/10.2337/dc13-2817

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki T, Tanabe S, Hara H (2011) Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells. J Nutr 141(1):87–94. https://doi.org/10.3945/jn.110.125633

    Article  CAS  PubMed  Google Scholar 

  39. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M, Ben-Zeev R, Lehavi-Regev D, Katz MN, Pevsner-Fischer M, Gertler A, Halpern Z, Harmelin A, Aamar S, Serradas P, Grosfeld A, Shapiro H, Geiger B, Elinav E (2018) Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359(6382):1376–1383. https://doi.org/10.1126/science.aar3318

    Article  CAS  PubMed  Google Scholar 

  40. Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63(9):1513–1521. https://doi.org/10.1136/gutjnl-2014-306928

    Article  CAS  PubMed  Google Scholar 

  41. Trøseid M, Nestvold TK, Rudi K, Thoresen H, Nielsen EW, Lappegård KT (2013) Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care 36(11):3627–3632. https://doi.org/10.2337/dc13-0451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  43. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14. https://doi.org/10.1126/scitranslmed.3000322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Udayappan SD, Kovatcheva-Datchary P, Bakker GJ, Havik SR, Herrema H, Cani PD, Bouter KE, Belzer C, Witjes JJ, Vrieze A, de Sonnaville ESV, Chaplin A, van Raalte DH, Aalvink S, Dallinga-Thie GM, Heilig HGHJ, Bergström G, van der Meij S, van Wagensveld BA, Hoekstra JBL, Holleman F, Stroes ESG, Groen AK, Bäckhed F, de Vos WM, Nieuwdorp M (2017) Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE 12(11):e181693. https://doi.org/10.1371/journal.pone.0181693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Viswanathan VK, Koutsouris A, Lukic S, Pilkinton M, Simonovic I, Simonovic M, Hecht G (2004) Comparative analysis of EspF from enteropathogenic and enterohemorrhagic escherichia coli in alteration of epithelial barrier function. Infect Immun 72(6):3218–3227. https://doi.org/10.1128/IAI.72.6.3218-3227.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 312(3):G171–G193. https://doi.org/10.1152/ajpgi.00048.2015

    Article  PubMed  Google Scholar 

  47. White RH, Frayn KN, Little RA, Threlfall CJ, Stoner HB, Irving MH (1987) Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique. JPEN J Parenter Enteral Nutr 11(4):345–353. https://doi.org/10.1177/0148607187011004345

    Article  CAS  PubMed  Google Scholar 

  48. Zulian A, Cancello R, Cesana E, Rizzi E, Consolandi C, Severgnini M, Panizzo V, Di Blasio AM, Micheletto G, Invitti C (2016) Adipose tissue microbiota in humans. An open issue. Int J Obes (Lond) 40(11):1643–1648. https://doi.org/10.1038/ijo.2016.111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Chakaroun.

Ethics declarations

Interessenkonflikt

M. Patt, L. Massier, P. Kovacs, M. Blüher und R. Chakaroun geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patt, M., Massier, L., Kovacs, P. et al. Erhöhte Darmpermeabilität: Pathomechanismus für metabolische Erkrankungen?. Diabetologe 17, 382–390 (2021). https://doi.org/10.1007/s11428-021-00726-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-021-00726-y

Schlüsselwörter

Keywords

Navigation