Skip to main content
Log in

Influence of Cement Replacement by Calcinated Kaolinitic and Montmorillonite Clays on the Properties of Mortars

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study aims to investigate the decomposition and pozzolanic reactivity of two different clays (kaolinitic and montmorillonite) from different origins and to determine their effects after calcination on the properties of cement mortars when used to replace Portland cement partially. Mineralogical and chemical compositions of the clay samples were determined using XRD (X-ray Diffractometer) and XRF (X-ray Fluorescence) tests, respectively. TG–DTA (Thermogravimetry–Differential Thermal Analyses) was used to determine the temperature profiles and the burning temperatures of the clays. The density and fineness of the burnt clays were also determined. In order to investigate the optimum material properties, different burning temperatures and replacement levels were considered. It was found that for all temperatures, the two burnt clays possess good pozzolanic activity. The highest compressive strength and lowest water absorption capacity were achieved when the clay determined as kaolinitic was burned at 700 °C and with 10% replacement level. While for the clay determined as montmorillonite, the optimum properties were obtained at 700 °C with a 20% substitution level. Kaolinite had better pozzolanic reactivity than montmorillonite, achieving higher strength performance with lower water absorption when partially replaced with cement. Moreover, it had compressive strength values even higher than plain cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Trümer, A.; Ludwig, H.-M.; Schellhorn, M.; Diedel, R.: Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Appl. Clay Sci. 168, 36–42 (2019)

    Article  Google Scholar 

  2. Hollanders, S.; Adriaens, R.; Skibsted, J.; Cizer, O.; Elsen, J.: Pozzolanic reactivity of pure calcined clays. Appl. Clay Sci. 132–133, 552–660 (2016)

    Article  Google Scholar 

  3. Scrivener, K.L.; John, V.M.; Gartner, E.M.; UN Environment: Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. and Concr. Res. 114, 2–26 (2018)

    Article  Google Scholar 

  4. Singh, M.; Grag, M.: Reactive pozzolana from Indian clays—their use in cement mortars. Cem. Concr. Res. 36, 1903–1907 (2006)

    Article  Google Scholar 

  5. Mccarthy, M.J.; Dyer, T.D.: Pozzoalans and pozzolanic materials. In: Hewlett, P.C., Liska, M. (eds.) Lea’s Chemistry of Cement and Concrete, 5th edn., p. 370. Elsevier, Amsterdam (2019)

    Google Scholar 

  6. Fernandez, R.; Martirena, F.; Scrivener, K.L.: The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 41, 113–122 (2011)

    Article  Google Scholar 

  7. Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F.: Potential use of Argentine kaolinite clays as pozzolanic material. Appl. Clay Sci. 101, 468–476 (2014)

    Article  Google Scholar 

  8. Tironi, A.; Cravero, F.; Scian, A.N.; Irassar, E.F.: Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Appl. Clay Sci. 147, 11–18 (2017)

    Article  Google Scholar 

  9. Alujas, A.; Fernandez, R.; Quintana, R.; Scrivener, K.L.; Martierna, F.: Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 108, 94–101 (2015)

    Article  Google Scholar 

  10. Sabir, B.B.; Wild, S.; Bai, J.: Metakaolin and calcined clays as pozzolans for concrete: a review. Cem. Concr. Compos. 23, 441–454 (2001)

    Article  Google Scholar 

  11. Skibsted, J.; Snellings, R.: Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 124, 1–16 (2019)

    Article  Google Scholar 

  12. Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S.: Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49–56 (2018)

    Article  Google Scholar 

  13. Tironi, A.; Scian, A.N.; Irassar, E.F.: Blended cements with limestone filler and kaolinitic calcined clay: filler and pozzolanic effects. J. Mater. Civ. Eng. 29(9), 04017116 (2017)

    Article  Google Scholar 

  14. Avet, F.; Snellings, R.; Diaz, A.A.; Haha, M.B.; Scrivener, K.: Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem. Concr. Res. 85, 1–11 (2016)

    Article  Google Scholar 

  15. Avet, F.; Li, X.; Scrivener, K.: Determination of the amount of reacted metakaolin in calcined clay blends. Cem. Concr. Res. 106, 40–48 (2018)

    Article  Google Scholar 

  16. Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; Pillai, R.G.: Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 107, 136–151 (2018)

    Article  Google Scholar 

  17. Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K.: Limestone calcined clay cement and concrete: a state-of-the-art review. Cem. Concr. Res. 149, 106564 (2021)

    Article  Google Scholar 

  18. Al-Noaimat, Y.A.; Chougan, M.; Al-kheetan, M.J.; Al-Mandhari, O.; Al-Saidi, W.; Al-Maqbali, M.; Al-Hosni, H.; Ghaffar, S.H.: 3D printing of limestone-calcined clay cement: a review of its potential implementation in the construction industry. Results Eng. 18, 101115 (2023)

    Article  Google Scholar 

  19. European Committee for Standardization: Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Europe, EN 197-1 (2000)

  20. European Committee for Standardization: Methods of Test Cement-Part 1: Determination of Strength. Europe, EN 196-1 (2005)

  21. American Society for Testing and Materials: Standard Test Method for Density of Hydraulic Cement. U.S., ASTM C-188 (1995)

  22. American Society of Testing and Materials: Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for use in Portland Cement Concrete. U.S., ASTM C-311 (2002)

  23. American Society of Testing and Materials: Standard Test Method for Fineness of Hydraulic Cement by the 45-μm (No. 325) Sieve. U.S., ASTM C-430 (1996)

  24. Seiffarth, T.; Hohmann, M.; Posern, K.; Kaps, C.: Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders. Appl. Clay Sci. 73(6), 35–41 (2013)

    Article  Google Scholar 

  25. Tchadjie, L.N.; Ekolu, S.O.: Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J. Mater. Sci. 53(7), 4709–4733 (2018)

    Article  Google Scholar 

  26. Khalifa, A.Z.; Pontikes, Y.; Elsen, J.; Cizer, Ö.: Comparing the reactivity of different natural clays under thermal and alkali activation. RILEM Tech. Lett. 40, 74–80 (2019)

    Article  Google Scholar 

  27. Irassar, E.F.; Bonavetti, V.L.; Castellano, C.C.; Trezza, M.A.; Rahhal, V.F.; Cordoba, G.; Lemma, R.: Calcined illite-chlorite shale as supplementary cementing material: thermal treatment, grinding, color and pozzolanic activity. Appl. Clay Sci. 179, 105143 (2019)

    Article  Google Scholar 

  28. Taylor-Lange, S.C.; Lamon, E.L.; Riding, K.A.; Juenger, M.C.: Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Appl. Clay Sci. 108, 84–93 (2015)

    Article  Google Scholar 

  29. Mohammed, S.; Elhem, G.; Mekki, B.: Valorization of pozzolanicity of Algerian clay: optimization of the heat treatment and mechanical characteristics of the involved cement mortars. Appl. Clay Sci. 132, 711–721 (2016)

    Article  Google Scholar 

  30. American Society of Testing and Materials: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). U.S., ASTM C-109 (2002)

  31. British Standards Institution: Testing Concrete, Method for Determination of Water Absorption. U.K., BS 1881: 122 (2011)

  32. American Society for Testing and Materials: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolana for use in Concrete. U.S., ASTM C-618 (2003)

  33. Danner, T.; Norden, G.; Justnes, H.: Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl. Clay Sci. 162, 391–402 (2018)

    Article  Google Scholar 

  34. Cordoba, G.P.; Zito, S.V.; Sposito, R.; Rahhal, V.F.; Tironi, A.; Thienel, C.; Irassar, E.F.: Concretes with calcined clay and calcined shale: workability, mechanical, and transport properties. J. Mater. Civ. Eng. 32(8), 04020224 (2020)

    Article  Google Scholar 

  35. Zaribaf, B.H.; Kurtis, K.E.: Admixture compatibility in metakaolin–portland-limestone cement blends. Mater. Struct. 51, 1–13 (2018)

    Article  Google Scholar 

  36. Zaribaf, B.H.; Uzal, B.; Kurtis, K.: Compatibility of superplasticizers with limestone-metakaolin blended cementitious system. In: Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, pp. 427–434. Springer Netherlands (2015)

  37. Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F.: Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 37, 319–327 (2013)

    Article  Google Scholar 

  38. Wang, Y.; Cao, Y.; Zhang, P.; Ma, Y.; Zhao, T.; Wang, H.; Zhang, Z.: Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze thaw cycles. Constr. Build. Mater. 209, 566–576 (2019)

    Article  Google Scholar 

  39. Li, L.; Liu, W.; You, Q.; Chen, M.; Zeng, Q.; Zhou, C.; Zhang, M.: Relationships between microstructure and transport properties in mortar containing recycled ceramic powder. J. Clean. Prod. 263, 121384 (2020)

    Article  Google Scholar 

  40. Pandey, A.; Kumar, B.: Evaluation of water absorption and chloride ion penetration of rice straw ash and microsilica admixed pavement quality concrete. Heliyon 5(8), e02256 (2019)

    Article  Google Scholar 

  41. Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K.: Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 41, 937–949 (2008)

    Article  Google Scholar 

  42. Gleize, P.J.; Cyr, M.; Escadeillas, G.: Effects of metakaolin on autogenous shrinkage of cement pastes. Cement Concr. Compos. 29, 80–87 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors take this opportunity to thank Professor Mustafa Tokyay for his guidance, comments and suggestions throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Akis.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of this paper

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Noaimat, Y.A., Akis, T. Influence of Cement Replacement by Calcinated Kaolinitic and Montmorillonite Clays on the Properties of Mortars. Arab J Sci Eng 48, 14043–14057 (2023). https://doi.org/10.1007/s13369-023-08041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08041-y

Keywords

Navigation