Skip to main content
Log in

Intriguing minerals: quartz and its polymorphic modifications

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This lecture text condenses the characteristics of quartz and its rich palette of varieties. The mineralogy and crystallography of quartz and its forms, the origin of its colors, and their important physical and chemical characteristics are discussed. The geological occurrence of quartz and its varieties in the world is also presented, with special attention to North Macedonia. Their applications in various industries are also included. Knowledge of the specific properties of SiO2 minerals is indispensable for understanding and reconstruction of geological processes, as well as for specific technical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Notes

  1. Named after the German mineralogist Karl Hugo Strunz (1910–2006), who introduced a new mineral classification in 1941, later published together with the Canadian mineralogist Ernest Henry Nickel (1925–2009).

  2. Named after the British mineralogist Max H. Hey (1904–1984).

References

  1. https://mrdata.usgs.gov/major-deposits/map-us.html (Accessed 21 Jan 2022)

  2. Theophrastus, History of stones. Edited and translated by Sir John Hill. London, 2nd edition, 1774

  3. Tomkief SI (1942) On the origin of the name quartz. Miner Mag 26:172–178

    Google Scholar 

  4. Agricola G (1530) Quarzum. in: Georgii Agricolae Medici Bermannus, Sive De Re Metallica, in aedibus Frobenianis Basileae 88, 129

  5. Brown E (1685) Travels in divers parts of Europe… with some observations on the gold, silver, copper, quick silver mines. London, 2nd edition, p.170

  6. Henckel JF (1725) Pyritologia oder Kiess-Historie. Leipzig. English translation: Pyritologia; or, a history of the pyrites, &c. London, 1757

  7. https://en.wikipedia.org/wiki/Quartz (Accessed 21 Jan 2022)

  8. https://de.wikipedia.org/wiki/Quarz (Accessed 21 Jan 2022)

  9. http://webmineral.com/danaclass.shtml#.YU7gHrgzaUk (Accessed 21 Jan 2022)

  10. http://www.webmineral.com/strunz.shtml#.YU7g8LgzaUk (Accessed 21 Jan 2022)

  11. https://www.mindat.org/cim.php (Accessed 21 Jan 2022)

  12. Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

    Article  CAS  Google Scholar 

  13. Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO2 interface 2. Plenum Press, New York, pp 131–144

  14. Götze J (2009) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Miner Mag 73:645–671

    Article  CAS  Google Scholar 

  15. https://serc.carleton.edu/details/images/32743.html (Accessed 21 Jan 2022)

  16. Graetsch HA, Miehe G (1992) Crystal structure of moganite: a new structure type for silica. Eur J Miner 4:693–706

    Article  Google Scholar 

  17. https://www.mindat.org/min-3337.html (Accessed 21 Jan 2022)

  18. http://www.quartzpage.de/gro_text.html (Accessed 21 Jan 2022)

  19. http://www.quartzpage.de/crs_intro.html (Accessed 21 Jan 2022)

  20. Hosaka M, Miyata T, Sunagawa I (1995) Growth and morphology of quartz crystals synthesized above the transition temperature. J Cryst Growth 152:300–306

    Article  CAS  Google Scholar 

  21. Rykart R (1984) Authigene quarz-kristalle. Lapis Mineralien Magazin: 9(6)

  22. Rykart R (1995) Quarz- Monographie. Ott-Verlag – German Edition

  23. https://www.mindat.org/photo-753794.html (Accessed 21 Jan 2022)

  24. Lang AR (1965) Mapping Dauphiné and Brazil twins in quartz by X-ray topography. Appl Phys Lett 7:168–170

    Article  Google Scholar 

  25. McLaren AC, Phakey PP (1969) Diffraction contrast from Dauphiné twin boundaries in quartz. Phys Status Solidi 31:723–737

    Article  CAS  Google Scholar 

  26. Leydolt F (1855) Über eine neue Methode, die Structur und Zusammensetzung der Krystalle zu untersuchen, mit besonderer Berücksichtigung der Varietäten des rhomboedrischen Quarzes. Sitzungsberichte der mathematisch naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften 15:59–81

    Google Scholar 

  27. Van Goethem L, Van Landuyt J, Amelinckx S (1977) The α-β transition in amethyst quartz as studied by electron microscopy and diffraction. The interaction of Dauphiné with Brazil twins. Phys Status Solidi 41:129–137

    Article  Google Scholar 

  28. Weiss CS (1829) Über die herzförmig genannten Zwillingskrystalle von Kalkspath, und gewisse analoge von Quarz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 77‒87

  29. Sunagawa I, Yasuda T (1983) Apparent re-entrant corner effect upon the morphologies of twinned crystals; a case study of quartz twinned according to Japanese twin law. J Cryst Growth 65:43–49

    Article  CAS  Google Scholar 

  30. https://opengeology.org/Mineralogy/6-igneous-rocks-and-silicate-minerals/ (Accessed 21 Jan 2022)

  31. http://www.quartzpage.de/px/rc_br_joaquim_felicio_Q271_1_org.jpg (Accessed 21 Jan 2022)

  32. http://www.quartzpage.de/crs_twins.html (Accessed 21 Jan 2022)

  33. https://www.mindat.org/photo-266098.html (Accessed 21 Jan 2022)

  34. Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-Ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509

    Article  CAS  Google Scholar 

  35. Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–77

    Article  CAS  Google Scholar 

  36. Heaney PJ, Veblen DR (1991) Observations of the alpha-beta phase transition in quartz: a review of imaging and diffraction studies and some new results. Am Miner 76:1018–1032

    CAS  Google Scholar 

  37. Drees L, Wilding L, Smeck N, Senyaki A (1989) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JP (ed) Minerals in soil environments. Soil Science Society of America, Madison, pp 913–975

    Google Scholar 

  38. http://www.quartzpage.de/gen_struct.html (Accessed 21 Jan 2022)

  39. https://www.mindat.org/photo-751082.html (Accessed 21 Jan 2022)

  40. Gibbs GV, Rosso KM, Teter DM, Boisen MB Jr, Bukowinski MST (1999) Model structures and properties of the electron density distribution for low quartz at pressure: a study of the SiO bond. J Mol Struc 485–486:13–25

    Article  Google Scholar 

  41. Smyth JR (1989) Electrostatic characterization of oxygen sites in minerals. Geochim Cosmochim Acta 53:1101–1110

    Article  CAS  Google Scholar 

  42. Cohen RE (1994) Silica. Mineralogical Society, Washington, p 369

    Book  Google Scholar 

  43. Prencipe M, Nestola F (2007) Minerals at high pressure. Mechanics of compression from quantum mechanical calculations in a case study: the beryl (Al4Be6Si12O36). Phys Chem Miner 30:471–479

    Google Scholar 

  44. Prencipe M, Tribaudino M, Nestola F (2002) Charge density analysis of spodumene (LiAlSi2O6) from ab initio Hartree-Fock calculations. Phys Chem Miner 30:606–614

    Article  CAS  Google Scholar 

  45. Harrison WA (1978) Is silicon dioxide covalent or ionic? In: Pantelides ST (ed) The Physics of SiO2 and its interfaces, p. 105 Chapter 2. Pergamon Press, New York

    Google Scholar 

  46. Stewart RF, Whitehead MA, Donnay G (1980) The ionicity of the Si-O bond in low quartz. Am Min 65:324–326

    CAS  Google Scholar 

  47. Gibbs GV, Wallace AF, Cox DF, Downs RT, Ross NL, Rosso KM (2009) Bonded interactions in silica polymorphs, silicates, and siloxane molecules. Am Miner 94:1085–1102

    Article  CAS  Google Scholar 

  48. Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  49. Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem SocChem Commun. https://doi.org/10.1039/c39840001271

    Article  Google Scholar 

  50. Jackson MD, Gordon RG (1988) MEG investigation of low pressure silica—Shell model for polarization. Phys Chem Miner 16:212–220

    Article  CAS  Google Scholar 

  51. Burnham CW (1990) The ionic model: perceptions and realities in mineralogy. Am Miner 73:443–463

    Google Scholar 

  52. Phillips JC (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317–356

    Article  CAS  Google Scholar 

  53. Vempati CS, Jacobs PWM (1983) Crystal potentials for alpha-quartz. Radiat Eff Defects Solids 73:285–289

    Article  CAS  Google Scholar 

  54. Schnöckel H (1978) IR spectroscopic detection of molecular SiO2. Angew Chem Int Ed 17:616–617

    Article  Google Scholar 

  55. Schnöckel H (1996) In: Corriu R, Jutzi P (eds) Tailor-made silicon-oxygen compounds: from molecules to materials. Vieweg, Braunschweig, pp 131–140

  56. Maier G, Reisenauer HP, Egenolf H, Glatthaar J (2003) Investigations on the reactivity of atomic silicon: a playground for matrix isolation spectroscopy. In: Jutzi P and Schubert U (eds) Silicon chemistry: from the atom to extended systems. Wiley-VCH Verlag, Weinheim, pp 4–19

  57. Weil R (1931) Quelques observations concernant la structure du quartz. Compte Rendu 1er Réunion de l'Institut d'Optique: 2–11

  58. Bambauer HU (1961) Spurenelementgehalte und γ-Farbzentren in quarzen aus zerrklüften der Schweizer Alpen. Schweiz Min Petr Mitt 41:335–369

    Google Scholar 

  59. Bambauer HU, Brunner GO, Laves F (1962) Wasserstoff gehalte in quarzen aus zerrklüften der Schweizer Alpen und deutung ihrer regionalen abhängigkeit. Schweiz Min Petr Mitt 42:221–236

    Google Scholar 

  60. Bambauer HU, Brunner GO, Laves F (1963) Merkmale des OH-spektrums alpiner quarze (3 µ-gebiet). Schweiz Min Petr Mitt 43:259–268

    CAS  Google Scholar 

  61. Hertweck B, Beran A, Niedermayr G (1998) IR-spektroskopische untersuchungen des OH-Gehaltes alpiner kluftquarze aus österreichischen vorkommen. Mitteilungen der österreichischen Mineralogischen Gesellschaft 143:304–306

    Google Scholar 

  62. Friedlaender C (1951) Untersuchung über die eignung alpiner quarze für piezoelektrische zwecke. Beiträge zur geologie der Schweiz, Geotechnische Serie, Lieferung 29, 98 S

  63. Roedder E (1981) Origin of fluid inclusions and changes that occur after trapping. Mineralogical Association of Canada, Short course handbook 6:101–137

  64. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography 55:27–47

  65. Roedder E (1984) Fluid inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, Chantilly, Virginia, USA, pp 645

  66. Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, p 239

    Google Scholar 

  67. Leeder O, Thomas R, Klemm W (1987) Einschlüsse in ineralen. VEB Deutscher Grundstoffverlag, Leipzig

    Google Scholar 

  68. Tasev G, Serafimovski T, Dolenec M, Rogan Šmuc N (2019) Contribution to understanding of ore fluids in the Zletovo mine based on fluid inclusion data. RMZ-Mater Geoenviron 66:75–86

    Article  CAS  Google Scholar 

  69. Kostov RI, Bershov LV (1987) Systematics of paramagnetic electron-hole centres in natural quartz, Izv Akad Nauk USSR. Ser Geol 7:80–87 (in Russian)

    Google Scholar 

  70. Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

    Article  CAS  Google Scholar 

  71. Weil JA (1993) A review of the EPR spectroscopy of the point defects in a-quartz: The decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and chemistry of SiO2 and the SiSiO2 interface 2. Plenum Press, New York, pp 131‒144

  72. Stevens-Kalceff MA, Phillips MR, Moon AR Kalceff W (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In: Pagel, M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer Verlag, Berlin, pp 193‒224

  73. Sjöberg S (1996) Silica in aqueous environments. J Non Cryst Solids 196:51–57

    Article  Google Scholar 

  74. Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69:139–144

    Article  CAS  Google Scholar 

  75. Exley C (2015) A possible mechanism of biological silicification in plants, Front Plant Sci 6: Article 853

  76. Choppin GR, Pathak P, Thakur P (2008) Polymerization and complexation behavior of silicic acid: a review. Main Group Met Chem 31:53–71

    Article  CAS  Google Scholar 

  77. Iler RK (1979) In: The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. John Wiley & Sons Inc, New York

    Google Scholar 

  78. Traexler KA, Utsunomiya S, Kersting AB, Ewing RC (2004) Mat Res Soc Symp Proc, 807

  79. Karkanas P, Bar-Yosef O, Goldberg P, Weiner S (2000) Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J Archaeol Sci 27:915–929

    Article  Google Scholar 

  80. O'Brien MCM (1955) The structure of the colour centres in smoky quartz. Proceedings of the Royal Society of London. Series A, Math Phys Sci 231: 404–414

  81. Lehmann G, Moore WJ (1966) Color center in amethyst quartz. Science 152:1061–1062

    Article  CAS  PubMed  Google Scholar 

  82. Maschmeyer D, Niemann K, Hake K, Lehmann G, Räuber A (1980) Two modified smoky quartz centres in natural citrine. Phys Chem Miner 6:145–156

    Article  CAS  Google Scholar 

  83. Maschmeyer D, Lehmann G (1983) A trapped-hole center causing rose coloration of natural quartz. Z Kristallogr 163:181–186

    Article  CAS  Google Scholar 

  84. Makreski P, Jovanovski G, Stafilov T, Boev B (2004) Minerals from Macedonia XII. The dependence of quartz and opal color on trace element composition- AAS, FT IR and micro Raman spectroscopy study. Bull Chem Technol Maced 23:171–184

    CAS  Google Scholar 

  85. Heaney PJ, Prewitt CT, Gibbs GV (1994) Physical behavior, geochemistry and materials applications. Reviews in Mineralogy 29, Mineralogical Society of America

  86. Rossman GR. (1994) The colored varieties of the silica minerals. in Silica: physical behavior, geochemistry and materials applications. Reviews in Mineralogy 29, Mineralogical Society of America

  87. Neumann E, Schmetzer K (1984) Mechanism of thermal conversion of colour and colour centres by heat treatment of amethyst. N Jb Miner Monat 272‒282

  88. Neumann E, Schmetzer K (1984) Farbe, farbursache und mechanismen der farbumwandlung von amethyst. Z Dt Gemmol Ges 33:35–42

    Google Scholar 

  89. Bank H (1976) Citrin. Z Dt Gemmol Ges 25:189–194

  90. https://www.irocks.com/minerals/specimen/29747 (Accessed 21 Jan 2022)

  91. Blatt H, Christie JM (1963) Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. J Sediment Res 33:559–579

    Google Scholar 

  92. http://www.minsocam.org/msa/collectors_corner/article/mohs.htm (Accessed 21 Jan 2022)

  93. Jeršek M, Jovanovski G, Boev B, Makreski P (2021) Intriguing minerals: corundum in the world of rubies and sapphires with special attention to Macedonian rubies. ChemTexts 7:19

    Article  CAS  Google Scholar 

  94. Saigusa Y (2017) Chapter 5 – Quartz-based piezoelectric mterials. In: Uchino Kenji (ed) Advanced piezoelectric materials. Woodhead publishing of materials, 2nd edition. Woodhead publishing, pp 197‒233

  95. (Accessed 21 Jan 2022)

  96. Quartz. (1997) In: Handbook of Mineralogy. III (Halides, Hydroxides, Oxides). Anthony JW, Bideaux RA, Bladh KW, Nichols MC (eds.), Mineralogical Society of America, Chantilly, VA

  97. https://geologyscience.com/minerals/quartz/ (Accessed 21 Jan 2022)

  98. Hurlbut CS, Klein C (1985) Manual of Mineralogy, 20th edn. Wiley, New York

    Google Scholar 

  99. https://www.earthsciences.hku.hk/shmuseum/earth_mat_1_4.php (Accessed 21 Jan 2022)

  100. https://gemstagram.com/tourmalated-quartz-meanings-properties-and-benefits/ (Accessed 21 Jan 2022)

  101. Simmons R, Ahsian N (2007) The book of stones: Who they are and what they teach, 4th ed. pp 336

  102. Jovanovski G, Boev B, Makreski P, Najdoski M, Mladenovski G (2003) Minerals from Macedonia. XI. Silicate varieties and their localities – identification by FT IR spectroscopy. Bull Chem Technol Macedonia 22:111–141

    CAS  Google Scholar 

  103. O'Brien MCM (1955) The structure of the colour centres in smoky quartz. Proceedings of the Royal Society of London. Series A, Math Phys Sci 231:404‒414

  104. Partlow DP, Cohen AJ (1986) Optical studies of biaxial Al-related color centers in smoky quartz. Am Miner 71:589–598

    CAS  Google Scholar 

  105. Wiel JA (1975) The aluminium centers in α quartz. Radiat Eff 26:261–265

    Article  Google Scholar 

  106. Nuttall RHD, Weil JA (1980) Two hydrogenic trapped-hole species in a-quartz. Solid State Commun 33:99–102

    Article  CAS  Google Scholar 

  107. Nuttall RHD, Weil JA (1981) The magnetic properties of the oxygen-hole aluminium centers in crystalline SiO2. I. [AlO4]0. Can J Phys 59:1696–1708

    Article  CAS  Google Scholar 

  108. Meyer BK, Lohse F, Spaeth JM, Weil JA (1984) Optically detected magnetic resonance of the (AlO4)0 centre in crystalline quartz. J Phys C: Solid State Phys 17:L31

    Article  CAS  Google Scholar 

  109. Holden EF (1925) The cause of color in smoky quartz and amethyst. Am Miner 10:203–252

    CAS  Google Scholar 

  110. Fritsch E, Rossman GR (1988) An Update on color in gems. Part 2: Colors involving multiple atoms and color centers. Gems Gemol 24:3–15

    Article  CAS  Google Scholar 

  111. Cox RT (1977) Optical absorption of the d4 ion Fe4+ in pleochroic amethyst quartz. J Phys C10:4631–4643

    Google Scholar 

  112. Gilg HA, Morteani G, Kostitsyn Y, Preinfalk C, Gatter I, Strieder AJ (2003) Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner Deposita 38:1009–1025

    Article  CAS  Google Scholar 

  113. Jayaraman N (1939) The cause of colour of the blue quartzes of the charnockites of South India and of the champion gneiss and other related rocks of Mysore: Proc. Indian Acad. Sci., Sect. A-9, pp 265‒285

  114. Van Vultee J, Lietz JN (1955) Über die orientierten Verwachsungen von Rutil in Quarz. N Jb Miner Abh 87(3):389–415

    Google Scholar 

  115. Zolensky ME, Paces SPJ, JB, (1988) Origin and significance of blue coloration in quartz from Llano rhyolite (llanite), north-central Llano Country, Texas. Am Miner 73:313–332

    CAS  Google Scholar 

  116. Bukanov VV, Markova GA (1969) The smoky and citrine color of natural quartz. Dokl. Akad. Nauk SSSR. Earth Sci Sections 187:115–117

    Google Scholar 

  117. Aines RD, Rossman GR (1986) Relationships between radiation damage and trace water in zircon, quartz, and topaz. Am Miner 71:1186–1193

    CAS  Google Scholar 

  118. Krefft GB (1975) Efects of high-temperature electrolysis on the coloration characteristics and OH-absorption bands in α-quartz. Radiat Eff 26:249–260

    Article  CAS  Google Scholar 

  119. Nassau K, Prescott BE (1975) A reinterpretation of smoky quartz. Phys Stat Sol 29:659–663

    Article  CAS  Google Scholar 

  120. Nassau K, Prescott BE (1977) Smoky, blue, greenish yellow, and other irradiation-related colors in quartz. Mineral Mag 4:301–312

    Article  Google Scholar 

  121. Nassau K, Prescott BE (1977) A unique green quartz. Am Miner 62:589–590

    CAS  Google Scholar 

  122. Hurrel K, Johnson ML (2016) Gemstones: a complete color reference for precious and semiprecious stones of the world. Chartwell Books, New York

    Google Scholar 

  123. Applin K, Brian H (1987) Fibers of dumortierite in quartz. Am Miner 72:170–172

    CAS  Google Scholar 

  124. Goreva JS, Ma C, Rossman GR (2001) Fibrous nano-inclusions in massive rose quartz: the organ of rose coloration. Am Miner 86:466–472

    Article  CAS  Google Scholar 

  125. Ma C, Goreva JS, Rossman GR (2002) Fibrous nano-inclusions in massive rose quartz: HRTEM and AEM investigations. Am Miner 87:269–276

    Article  CAS  Google Scholar 

  126. Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centres in rose quartz. Nature 197:246–248

    Article  CAS  Google Scholar 

  127. Lehmann G, Bambauer HU (1973) Quarzkristalle und ihre Farben. Angew Chem 86:281–290

    Article  Google Scholar 

  128. Schmetzer K, Krzemnicki M (2006) The orientation and symmetry of light spots and asterism in rose quartz spheres from Madagascar. J Gemmol 30:183–191

    Article  CAS  Google Scholar 

  129. Killingback H (2008) The positions of light spots on rose quartz star spheres. J Gemmol 31:40–42

    Article  Google Scholar 

  130. https://www.fabreminerals.com/search_show.php?SECTION=RSBR&CODE=TR66J0 (Accessed 21 Jan 2022)

  131. Platonov AN, Sachanbiński M, Wróblewski P, Ignatov SI (1991) Rare varieties of green quartz from quartz-agate geodes in Lower Silesia, Poland. Mineral Zh 13:10–17 (in Russian)

    CAS  Google Scholar 

  132. http://www.quartzpage.de/prasiolite.html (Accessed 21 Jan 2022)

  133. Bahman R, Parisa H (2021) “Herkimer diamond” quartz from North-western Iran. J Gemmol 37:567–569

    Article  Google Scholar 

  134. https://www.mindat.org/min-1877.html (Accessed 21 Jan 2022)

  135. Baldwin M (2003) Herkimer diamonds. MAGS Explorer, Memphis Archaeological and Geological Society Youth Newsletter 2(7):1–3

  136. Strasser M (2007) “Herkimer quarze” aus der ehnbachklamm in zirl. Tirol Lapis 32:23–24

    Google Scholar 

  137. Smith CH (1952) Recent Herkimer “diamond” hunting. Rocks Miner 27:272–275

    Article  Google Scholar 

  138. Lt. Bill, F. Francis (1953) The largest Herkimer “diamond”? Rocks Miner 28:26–27

  139. Marshall BC (1954) A still larger Arkansas Herkimer “diamond.” Rocks Miner 29:360–361

    Article  Google Scholar 

  140. https://www.mindat.org/min-960.html (Accessed 21 Jan 2022)

  141. https://www.mindat.org/photo-162457.html (Accessed 21 Jan 2022)

  142. https://www.mindat.org/min-51.html (Accessed 21 Jan 2022)

  143. https://www.flickr.com/photos/jsjgeology/44632240655/ (Accessed 21 Jan 2022)

  144. Barasanov GP, Yakovleva ME (1981) Mineralogical investigations of some precious and semi-precious varieties of cryptocrystalline silica. USSR Academy of Sciences, In New Mineral Data, p 29

  145. Heflik W, Kwiecińska B, Natkaniec-Nowak L (1989) Colour of chrysoprase in light of mineralogical studies. Austral Gemmol 17(43–46):58–59

    Google Scholar 

  146. Faust GT (1966) The hydrous nickel-magnesium silicates—the garnierite group. Am Mineral 51:33–36

    Google Scholar 

  147. Sachanbinski M, Janeczek J, Platonov A, Rietmeijer FJM (2001) The origin of colour of chrysoprase from Szklary (Poland) and Sarykul Boldy (Kazakhstan). N Jb Miner Abh 177:61–76

    Article  CAS  Google Scholar 

  148. Frondel C (1962) The system of mineralogy of James Dwight Dana and Edward Salisbury Dana. Vol 3, 7th edition, Silica Minerals. John Wiley and Sons, New York, pp 334

  149. Bons PD (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydro fractures. Tectonophysics 336:1–17

    Article  CAS  Google Scholar 

  150. Semaw S, Renne P, Harris JWK, Feibel CS, Bernor RL, Fesseha N, Mowbray K (1997) 2.5-million-year-old stone tools from Gona. Ethiopia Nat 385:333–336

    CAS  Google Scholar 

  151. Nathan Y, Segal I, Delage C (1999) Geochemical characterization of cherts from northern Israel (western Galilee). Isr J Earth Sci 48:235–245

    Google Scholar 

  152. Barkai R, Gopher A, La Porta PC (2002) Palaeolithic landscape of extraction: flint surface quarries and workshops at Mt Pua, Israel. Antiquity 76:672–680

    Article  Google Scholar 

  153. Vermeersch PM, Paulissen E, Van Peer P (1990) Palaeolithic chert exploitation in the limestone stretch of the Egyptian Nile Valley. Afr Archaeol Rev 8:77–102

    Article  Google Scholar 

  154. Nachev C, Kanchev K (1978) Investigation of the chert material from the archaeological excavations: problems and purposes (Interdisciplinary studies) 2:81–89 (in Bulgarian)

  155. Nachev IK, Nachev CI (1989), Distribution and evolution of siliceous rocks in Bulgaria. In: Hein JR, Obradović J (eds) Siliceous deposits of the Tethys and Pacific Regions. Springer-Verlag, New York, pp 81–92

  156. Gurova M, Nachev C (2008) Formal early neolitic flint toolkits: archeological and sedimentological aspects Proceedings of the international conference of Geoarchaeology and Archaeomineralogy, Sofia, Bulgaria, pp 29–35

  157. Olofsson A. Rodushkin I (2011) Provenancing flint artefacts with ICP-MS using REE signatures and Pb isotopes as discriminants: preliminary results of a case study from Northern Sweden. Archaeometry 53. Oxford

  158. https://en.wikipedia.org/wiki/Heliotrope_(mineral) (Accessed 21 Jan 2022)

  159. https://pixabay.com/photos/rock-mineral-cristobalite-nature-4135390/ (Accessed 10 Jan 2021)

  160. Downs RT, Palmer DC (1994) The pressure behavior of a cristobalite. Am Miner 79:9–14

    CAS  Google Scholar 

  161. Leadbetter AJ, Wright AF (1976) The α-β transition in the cristobalite phases of SiO2 and AIPO4 I. X-ray studies. Philos Mag 33:105–112

    Article  CAS  Google Scholar 

  162. https://www.mindat.org/min-4015.html (Accessed 21 Jan 2022)

  163. https://commons.wikimedia.org/wiki/File:Tridymite_aggregate_-_Ochtendung,_Eifel,_Germany.jpg (Accessed 21 Jan 2022)

  164. Konnert JH, Appleman DE (1978) Crystal structure of low tridymite. Acta Crystallogr B 34:391–493

    Article  Google Scholar 

  165. Podwórny J, Zawada J (2010) The structure of low-temperature tridymite in silica refractories. Solid State Phenom 163:187–190

    Article  CAS  Google Scholar 

  166. https://www.mindat.org/min-3004.html (Accessed 21 Jan 2022)

  167. Burg SL, Parnell AJ (2018) Self-assembling structural colour in nature. J Condens Matter Phys 30: Article 413001

  168. https://www.uniqueopals.ch/opal-play-of-colour.htm (Accessed 21 Jan 2022)

  169. https://www.itp.uni-hannover.de/fileadmin/itp/emeritus/zawischa/static_html/scattering.html (Accessed 21 Jan 2022)

  170. Jovanovski G, Boev B, Makreski P (2012) Minerals from the Republic of Macedonia with an introduction to mineralogy, Macedonian Academy of Sciences and Arts, Skopje

  171. Rudnick RL, Gao S (2003) 3.01 Composition of the continental crust. Treatise On Geochemistry, Volume 3: The Crust. Elsevier Ltd. 1st Edition, 1–64

  172. Wangen M, Munz IA (2004) Formation of quartz veins by local dissolution and transport of silica. Chem Geol 209:179–192

    Article  CAS  Google Scholar 

  173. Pati JK, Patel SC, Pruseth KL, Malviya VP, Arima M, Raju S, Pati P, Prakash K (2007) Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, Central India and their implications. J Earth Syst Sci 116:497–510

    Article  CAS  Google Scholar 

  174. Vinx R (2015) Gesteinsbestimmung im Gelände. Springer Verlag, Heidelberg, p 480

    Google Scholar 

  175. Sawyer EW, Robin P-YF (1986) The subsolidus segregation of layer-parallel quartz-feldspar veins in greenschist to upper amphibolite facies metasediments. J Metamorph Geol 4:237–260

    Article  CAS  Google Scholar 

  176. Heddle MF (1901) Mineralogy of Scotland. Edinburgh 2:110–112

  177. Beljankin DS, Petrov VP (1938) Occurrence of cristobalite in a sedimentary rock. Am Miner 23:153–155

    Google Scholar 

  178. Darling RS, Chou I-M, Bodnara RJ (1997) Occurrence of metastable cristobalite in high-pressure garnet. Science 276(5309):91–93

    Article  CAS  PubMed  Google Scholar 

  179. https://www.britannica.com/science/tridymite (Accessed 21 Jan 2022)

  180. Lakdawalla E (2015) Curiosity stories from AGU: the fortuitous find of a puzzling mineral on Mars, and a gap in Gale's history. The Planetary Society

  181. Mitchell RS, Tufts S (1973) Wood opal—a tridymite-like mineral. Am Miner 58:717–720

    CAS  Google Scholar 

  182. Sanders JV (1975) Microstructure and crystallinity of gem opals. Am Miner 60:749–757

    Google Scholar 

  183. Stoiber RE, Tolman C, Butler RD (1945) Geology of quartz crystal deposits. Am Miner 30:219–229

    Google Scholar 

  184. https://www.worldatlas.com/articles/top-15-quartz-exporting-countries.html (Accessed 21 Jan 2022)

  185. http://www.bonzle.com/c/a?a=p&p=299008&cmd=sp&op=767 (Accessed 21 Jan 2022)

  186. Roberts RJ, Irving EM (1957) Quartz deposits Guatemala: in Mineral deposits of Central America. Bull US Geol Surv 1034:161–169

    Google Scholar 

  187. https://www.mindat.org/locentries.php?p=14314&m=3337 (Accessed 21 Jan 2022)

  188. https://www.flickr.com/photos/42200412@N03/51397645711 (Accessed 21 Jan 2022)

  189. https://www.mindat.org/photo-34654.html (Accessed 21 Jan 2022)

  190. https://www.geologyin.com/2020/04/worlds-largest-quartz-crystal-cluster.html (Accessed 21 Jan 2022)

  191. https://www.flickr.com/photos/squeakymarmot/134532956/in/set-72057594116134496/ (Accessed 21 Jan 2022)

  192. Platonov AN, Szuszkiewicz A (2016) Green to blue-green quartz from Rakowice Wielkie (Sudetes, south-western Poland)—a re-examination of prasiolite-related colour varieties of quartz. Mineralogia 46:19–28

    Article  Google Scholar 

  193. https://www.mindat.org/locentries.php?p=2147&m=3337 (Accessed 21 Jan 2022)

  194. Blažev K (1991) Mineralogy of the raw materials of Macedonia and their economic importance, PhD thesis, Ss Cyril and Methodius University in Skopje (in Macedonian)

  195. Blažev K, Doneva B, Dimov G, Delipetrev M (2017) Secondary silica raw materials in quaternary continental formations, X Expert counseling with international participation Podex-Povex ’17, 03–05 November 2017, Ohrid, Macedonia, Book of Abstracts 267–271 (in Macedonian)

  196. Filipovski B (1974) Geologic composition and ore wealth of SR Macedonia. Scientifically popular literature-book, publishing community at NIP New Macedonia, Skopje, 1‒139 (in Macedonian)

  197. Blažev K (1981) Report on the occurrences of piezo-optical quartz in the area of villages Budinarci-Mitrasinci. Geological part of the company Opalit-Chešinovo

  198. Blažev K, Šijakova-Ivanova T, Stojanova V, Doneva B (2016) Piezooptic quartz localities Budinarci-Mitrašinci. IX Profesional conference Podeks-Poveks’16 with international participation, 11–13 Nov 2016, Strumica, Macedonia, Book of Abstracts 41–44 (in Macedonian)

  199. Adjigogov L (1971) Final report for regional investigation of quartzite in Vardar zone, Geological survey of the Republic of Macedonia

  200. Blažev K, Doneva B, Dimov G, Delipetrev M, Delipetrov T (2017) Types of silica raw materials on the territory of the Republic of Macedonia. 7-th Balkan Mining Congress, 11–13 Oct 2017, Prijedor, Bosnia and Herzegovina, Book of Abstracts 33–38

  201. Blažev K, Doneva B, Dimov G, Panov Z, Delipetrov T, Delipetrev M (2018) Geomechanical characteristics of quartzites as construction material and their potentiality in the Republic of Macedonia. VIII International Geomechanics Conference, 2–6 July 2018, Varna, Bulgaria, Proceedings 3–9

  202. Blažev K, Doneva B, Dimov G, Delipetrev M, Delipetrov T, Panov Z(2017) Physical and mechanical characteristics of the secondary quartzites from the deposit Peshter in the Republic of Macedonia. XIV International Conference of the Open and Underwater Mining of Minerals, 3–7 July 2017, Varna, Bulgaria, Book of Abstracts 46–51.

  203. Barić L (1964) Mineralogy of the Crni Kamen locality near the village Alinci in Macedonia, Mineralogic-Petrographic Museum, Zagreb, 23–30 (in German)

  204. Šijakova-Ivanova T (1989) Crystallographic and crystal chemistry characteristics of the non-metallic minerals from scarn ore deposit Sasa. M. Sc. Thesis, Faculty of Mining and Geology, Belgrade (in Serbian)

  205. Aleksandrov M, Serafimovski T (1993) The association of the elements in the lead–zinc locality Golema Reka (Sasa). Geologica Macedonica 6:3–14 (in Macedonian)

    Google Scholar 

  206. Denkovski G, (1974) The mineral genesis of the vein 2 in the Dobrevo mine, VIII Congress of Geologists of Yugoslavia, Bled, Book of Papers, 41–54 (in Macedonian)

  207. Serafimovski T (1993) The structure and metalogenetic characteristis of the Lecce-Chalcidici zone. Faculty Mining Geol 2:328

    Google Scholar 

  208. Rakičević T, Dumurdžanov N, Petkovski P (1976) The Interpretation of the basic geological map of the Republic of Macedonia for the Štip Sheet. Geological survey of Macedonia (in Macedonian)

  209. Serafimovski T (1990) Metalogenetic characteristics of the Lecce-Chalcidici zone, Ph.D. Thesis, Faculty of Mining and Geology, Štip (in Macedonian)

  210. Dumurdžanov N, Hristov S, Pavlovski B, Ivanova V (1976) The interpretation of the basic geological map of the Republic of Macedonia for sheet K-34–104 Vitolište and K-34–116 Kajmakčalan, 61, Geological survey of Macedonia (in Macedonian)

  211. https://sciencing.com/differences-between-minerals-calcite-quartz-8447374.html (Accessed 21 Jan 2022)

  212. https://uniquecrystalminerals.com/quartz-applications/ (Accessed 21 Jan 2022)

  213. Aasly K, Malvik T, Myrhaug EH (2007) A review of previous work on important properties of quartz for FeSI and Si metal production. Innovations in ferro alloy industry, New Delhi, India, INFOCON XI, pp 393‒401

  214. Jamo HU (2016) Structural analysis and surface morphology of quartz. Bayero J Pure Appl Sci 9:230–233

    Article  Google Scholar 

  215. Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. CR Acad Sci 91:294–295

    Google Scholar 

  216. Curie J, Curie P (1880) Sur l’électricité polaire dans les cristaux hémièdres à faces inclines. C R Acad Sci 91:383–386

    Google Scholar 

  217. Lippmann G (1881) Principe de la conservation de l’électricité. Ann Chim Phys 24:145–178

    Google Scholar 

  218. Katzir S (2003) The discovery of the piezoelectric effect. Arch Hist Exact Sci 57:61–91

    Article  Google Scholar 

  219. https://everything.explained.today/Piezoelectricity/ (Accessed 21 Jan 2022)

  220. Lombardi M (2008) The accuracy and stability of quartz watches. Horol J 57–59.

  221. https://www.hodinkee.com/articles/four-revolutions-quartz-revolution (Accessed 21 Jan 2022)

  222. Bottom VE (1981). A history of the quartz crystal industry in the USA. In: Proceeding of 35th annual frequency control symposium 3–12

  223. Johnson GR (2004). History of the industrial production and technical development of single crystal cultured quartz. In: Proceedings of the IEEE international frequency control symposium and exposition, pp 35–45

  224. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf (Accessed 21 Jan 2022)

  225. Iwasaki F, Iwasaki H (2002) Historical review of quartz crystal growth. J Cryst Growth 237–239:820–827

    Article  Google Scholar 

  226. https://it.wikipedia.org/wiki/Giorgio_Spezia (Accessed 21 Jan 2022)

  227. Spezia G (1909) Sull’ accresimento del quarzo. Atti Accad Sci Torino 44:95–109

    Google Scholar 

  228. Spezia G (1905) La pressione e’ chimicamente inattive nella solubilite e riecostituzione del quarzo. Atti Accad Sci Torino 40:254–262

    Google Scholar 

  229. https://de.wikipedia.org/wiki/Richard_Nacken (Accessed 21 Jan 2022)

  230. Nacken R (1950) Die hydrothermale mineralsynthese als grundlage zur zuchtung von quarzkristallen. Chemiker-Ztg Jahrg 50:745–749

    Google Scholar 

  231. Feigelson RS (2004). Contributors. In: Feigelson RS (eds) 50 years progress in crystal growth. Elsevier, xxvi.

  232. Buehler E, Walker AC (1949) Growing quartz crystals. Sci Monthly 69:148–155

  233. Brown CS, Kell RC, Thomas LA, Wooster N, Wooster WA (1952) The growth and properties of large crystals of synthetic quartz. Min Mag 29:858–874

    CAS  Google Scholar 

  234. Feigelson RS (2015). Crystal growth through the ages. In: Handbook of crystal growth (2nd Edition), Elsevier 1–83

  235. Bhat HL (2014). Growth from liquid solutions. In: Introduction to crystal growth (1st Edition), CRC Press 183–240

  236. Kolis JW, Korzenski MB (2007) Synthesis of inorganic solids. In: Jessop PG, Leitner W (eds) Chemical synthesis using supercritical fluids. Wiley, Hoboken, pp 213–242

    Chapter  Google Scholar 

  237. Byrappa K, Yoshimura M (2001) Apparatus. Handbook of hydrothermal technology—a technology for crystal growth and materials processing. Elsevier, pp 82–160

  238. Laudise RA, Barns RL (1988) Perfection of quartz and its connection to crystal growth. IEEE Trans Ultrason Ferroelectr Freq Control 35:277–287

    Article  CAS  PubMed  Google Scholar 

  239. Anthony AM, Collongues R (1972) Modern methods of growing single crystals of high-melting-point oxides. In: Hagenmuller P (ed) Preparative methods in solid state chemistry. Elsevier, pp 147–249

  240. King JC, Ballman AA, Laudise RA (1962) Improvement of the mechanical Q of quartz by the addition of impurities to the growth solution. J Phys Chem Sol 23:1019–1021

    Article  Google Scholar 

  241. Laudise RA, Nielsen JW (1961) Hydrothermal crystal growth. Solid State Phys 12:149–222

    Article  CAS  Google Scholar 

  242. Nagy J, Tarján I (1957) Über die züchtung künstlicher quarzkristalle. Acta Phys Acad Sci Hun 6:485–488

    Article  CAS  Google Scholar 

  243. Brown CS, Kell RC, Middleton P, Thomas LA (1955) Influence of impurities on the growth of quartz crystals from flint and quartzite. Nature 175:602–603

    Article  CAS  Google Scholar 

  244. Brown CS, Kell RC, Thomas LA, Wooster N, Wooster WA (1951) Growth of large quartz crystals. Nature 167:940–941

    Article  CAS  PubMed  Google Scholar 

  245. http://www.theimage.com/newgems/synthetic/syntheticanimate4.html (Accessed 21 Jan 2022)

  246. Regreny A (1973) Recristallisation hydrothermale du quartz et caractérisation en vue des applications radioélectriques. Ann Télécommun 28:111–122

    Article  Google Scholar 

  247. Tareen JAK, Basavalingu B, Shankara MA, Fazeli AR (1986) A simple hydrothermal cell for synthesis at moderate temperatures and pressures. Bull Mater Sci 8:543–546

    Article  CAS  Google Scholar 

  248. Regreny A, Aumont R (1970) Recristallisation hydrothermale du quartz. Ann Télécommun 25:294–306

    Article  Google Scholar 

  249. Walker AC (1953) Hydrothermal synthesis of quartz crystals. J Am Ceram Soc 36:250–256

    Article  CAS  Google Scholar 

  250. https://www.nanoquarzwafer.com/products/fused-silica-wafer/ (Accessed 21 Jan 2022)

  251. https://en.wikipedia.org/wiki/Fused_quartz (Accessed 21 Jan 2022)

  252. Kitamura R, Laurent P, Miroslaw J (2007) Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperatures. Appl Opt 46:8118–8133

    Article  CAS  PubMed  Google Scholar 

  253. Salem JA (2013) Transparent armor ceramics as spacecraft windows. J Am Ceram Soc 96:281–289

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Macedonian Academy of Sciences and Arts (grant 07-361/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gligor Jovanovski or Petre Makreski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanovski, G., Šijakova-Ivanova, T., Boev, I. et al. Intriguing minerals: quartz and its polymorphic modifications. ChemTexts 8, 14 (2022). https://doi.org/10.1007/s40828-022-00165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-022-00165-2

Keywords

Navigation