Skip to main content

Materials for Blackbody Radiators

  • Chapter
  • First Online:
Blackbody Radiometry

Abstract

The most common types of materials used in the design of radiating elements of blackbodies are considered in this chapter. Along with traditional high-emissivity paints, the carbon nanotube arrays are examined as promising coatings for low-temperature blackbodies. For variable-temperature blackbodies of medium-temperature range, the radiation properties of some oxidized metals are reviewed. Thermophysical and radiation characteristics of ordinary synthetic graphite and pyrolytic graphite are discussed in connection with their use in high-temperature blackbodies with the direct resistance heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PhysikalischTechnische Bundesanstalt (Germany).

  2. 2.

    Centro Nacional de Metrología (Mexico).

  3. 3.

    Tempil®, a division of Illinois Tool Works Inc. was acquired by LA-CO Industries, Inc. (USA) in 2013.

  4. 4.

    AISI is for American Iron and Steel Institute.

References

  1. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors. Numerical Data and Graphical Information (Springer, New York, 1999)

    Google Scholar 

  2. S. Adachi, The Handbook on Optical Constants of Metals in Tables and Figures (World Scientific, Hackensack, NJ, 2012)

    Google Scholar 

  3. A. Adibekyan, C. Monte, M. Kehrt et al., Emissivity measurement under vacuum from 4 µm to 100 µm and from −40 °C to 450 °C at PTB. Int. J. Thermophys. 36, 283–289 (2015)

    ADS  Google Scholar 

  4. A. Adibekyan, E. Kononogova, C. Monte et al., High-accuracy emissivity data on the coatings Nextel 811–21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black. Int. J. Thermophys. 38, 89 (2017)

    ADS  Google Scholar 

  5. A.J. Ames, Z306 Black Paint Measurements. Proc. SPIE 1331, 299–304 (1990)

    ADS  Google Scholar 

  6. J.M. Ane, M. Huetz-Aubert, Stratified media theory interpretation of measurements of the spectral polarized directional emissivity of some oxidized metals. Int. J. Thermophys. 7, 1191–1208 (1986)

    ADS  Google Scholar 

  7. ASTM A941–18. Standard Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys (ASTM International, West Conshohocken, PA, 2018)

    Google Scholar 

  8. ASTM B580–79: Standard Specification for Anodic Oxide Coatings on Aluminum. (ASTM International, West Conshohocken, PA, 2014)

    Google Scholar 

  9. G.W. Autio, E. Scala, Anisotropy in emissivity of single-crystal refractory materials, in Anisotropy in Single-Crystal Refractory Compounds. Proc. Int. Symp. Anisotropy in Single-Crystal Refractory Compounds held on June 13–15, 1967, in Dayton Ohio, vol. 1, ed. by F.W. Vahldiek, S.A. Mersol (Springer Science+Business Media, New York, 1968), pp. 357–381

    Google Scholar 

  10. H. Badenhorst, W. Focke, Comparative analysis of graphite oxidation behaviour based on microstructure. J. Nucl. Materials 442, 75–82 (2013)

    ADS  Google Scholar 

  11. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–681 (2011)

    ADS  Google Scholar 

  12. B. Balling, A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard. Master’s thesis, AFIT/GE/ENP/09-M01 (Air Force Inst. Technol., 2009), https://apps.dtic.mil/dtic/tr/fulltext/u2/a495933.pdf. Accessed 11 Feb 2020

  13. M. Barilli, A. Mazzoni, An equipment for measuring 3D bi-directional scattering distribution function of black painted and differently machined surfaces. Proc. SPIE 5962, 59620L (2005)

    ADS  Google Scholar 

  14. M. Battuello, S. Clausen, J. Hameury et al., The spectral emissivity of surface layers, currently applied in blackbody radiators, covering the spectral range from 0,9 to 20 μm. An international comparison, in Proc. TEMPMEKO ‘99 (The 7th International Symposium on Temperature and Thermal Measurements in Industry and Science), vol. 2, ed. by J.F. Dubbeldam, M.J. de Groot (IMEKO/NMi Van Swinden Laboratorium, Delft, Netherlands, 1999), pp. 601–602 

    Google Scholar 

  15. J. Bauer, J. Mehrten, J. Young, MODIS on board calibrator blackbody performance. SPIE 3439, 269–276 (1998)

    ADS  Google Scholar 

  16. W. Bauer, A. Moldenhauer, H. Oertel et al., Thermal radiation properties of different metals. Proc. SPIE 6205, 62050E (2006)

    ADS  Google Scholar 

  17. R.E. Bedford, C.K. Ma, Emissivities of diffuse cavities: isothermal and nonisothermal cones and cylinders. J. Opt. Soc. Am. 64, 339–349 (1974)

    ADS  Google Scholar 

  18. R.E. Bedford, C.K. Ma, Emissivities of diffuse cavities, II: isothermal and nonisothermal cylindro-cones. J. Opt. Soc. Am. 65, 565–572 (1975)

    ADS  Google Scholar 

  19. R.E. Bedford, C.K. Ma, Emissivities of diffuse cavities, III: isothermal and nonisothermal double cones. Opt. Soc. Am. 66, 724–730 (1976)

    ADS  Google Scholar 

  20. V.V. Belousov, A.A. Klimashin, High-temperature oxidation of copper. Russian Chem. Rev. 82, 273–288 (2013)

    ADS  Google Scholar 

  21. S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Let. 84, 4613–4616 (2000)

    ADS  Google Scholar 

  22. P. Berdahl, Spectral emissivity of anodized aluminum and the thermal transmittance of aluminum window frames. Nordic J. Building Phys. 3, 1–12 (2001)

    Google Scholar 

  23. L.A. Berni, M.S. Ribeiro, T.F. Paes, et al., System for measuring the spatial reflectance distribution of material surfaces. J. Phys.: Conf. Series 605, 012003 (2015)

    Google Scholar 

  24. D.B. Betts, F.J.J. Clarke, L.J. Cox et al., Infrared reflection properties of five types of black coating for radiometric detectors. J. Phys. E: Sci. Instrum. 18, 689–696 (1985)

    ADS  Google Scholar 

  25. H.H. Blau Jr., J.R. Jasperse, Spectral emittance of refractory materials. Appl. Opt. 3, 281–286 (1964)

    ADS  Google Scholar 

  26. P. Bloembergen, L.M. Hanssen, S.N. Mekhontsev et al., A Determination study of the cavity emissivity of the eutectic fixed points Co-C, Pt-C, and Re-C. Int. J. Thermophys. 32, 2623–2632 (2011)

    ADS  Google Scholar 

  27. S. Boles, I. Pušnik, D. Mac Lochlainn et al., Development and characterisation of a bath-based vertical blackbody cavity calibration source for the range −30 °C to 150 °C. Measurement 106, 121–127 (2017)

    ADS  Google Scholar 

  28. Brost, O., Neuer, G.: Wärmerohre zur Verbesserung der Temperaturhomogenität in Öfen. Brennsl.-Wärme-Kraft 29, 444–449 (1977)

    Google Scholar 

  29. T.D. Burchell, Graphite: Properties and Characteristics, in Comprehensive Nuclear Materials, vol. 2, ed. by R.J.M. Konings (Elsevier, Amsterdam, Netherlands, 2012), pp. 285–302

    Google Scholar 

  30. J.J. Butler, G.T. Georgiev, J.L. Tveekrem et al., Initial studies of the bidirectional reflectance distribution function of carbon nanotube structures for stray light control applications. Proc. SPIE 7862, 78620D (2010)

    Google Scholar 

  31. A. Cai, L. Yang, J. Chen et al., Thermal conductivity of anodic alumina film at (220 to 480) K by laser flash technique. J. Chem. Eng. Data 55, 4840–4843 (2010)

    Google Scholar 

  32. G. Cao, S.J. Weber, S.O. Martin et al., Spectral emissivity measurements of candidate materials for very high temperature reactors. Nucl. Eng. Des. 251, 78–83 (2012)

    Google Scholar 

  33. D. Cárdenas-García, C. Monte, Bilateral intercomparison of spectral directional emissivity measurement between CENAM and PTB. Int. J. Thermophys. 35, 1299–1309 (2014)

    ADS  Google Scholar 

  34. S.L. Carman, Deep concentric grooves enhance blackbody spectral and spatial uniformity. Proc. SPIE 416, 178–186 (1983)

    ADS  Google Scholar 

  35. D. Chen, Z. Li, W. Miao et al., Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites. Materials Trans. 53, 1159–1163 (2012)

    Google Scholar 

  36. W.-K. Choi, B.-J. Kim, E.-S. Kim, Oxidation behavior of IG and NBG nuclear graphites. Nucl. Eng. Design 241, 82–87 (2011)

    Google Scholar 

  37. B. Chu, G. Machin, The upgraded NPL blackbody calibration facility, in Proc. TEMPMEKO’99, 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J.F. Dubbeldam, M.J. de Groot (IMEKO/NMi Van Swinden Laboratorium, Delft, Netherlandws, 1999), pp. 543–548

    Google Scholar 

  38. C.J. Chunnilall, J.H. Lehman, E. Theocharous et al., Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region. Carbon 50, 5340–5350 (2012)

    Google Scholar 

  39. C.J. Chunnilall, E. Theocharous, Infrared hemispherical reflectance measurements in the 2.5 µm to 50 µm wavelength region using a Fourier transform spectrometer. Metrologia 49, S73–S80 (2012)

    Google Scholar 

  40. F.J.J. Clarke, Measurement of the radiometric properties of materials for building and aerospace applications. Proc. SPIE 234, 40–47 (1980)

    ADS  Google Scholar 

  41. F.J.J. Clarke, J.A. Larkin, Measurement of total reflectance, transmittance and emissivity over the thermal IR spectrum. Infrared Phys. 25, 359–367 (1985)

    ADS  Google Scholar 

  42. S. Clausen, Spectral emissivity of surface blackbody calibrators. Int. J. Thermophys. 28, 2145–2154 (2007)

    ADS  Google Scholar 

  43. G.R. Cunnington, A.I. Funai, T.K. McNab, Radiative properties of advanced spacecraft heat shield materials. NASA Contractor Report 3740 (1983), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840003190.pdf. Accessed 11 Feb 2020

  44. J. De Lucas, J.J. Segovia, Uncertainty calculation of the effective emissivity of cylinder-conical blackbody cavities. Metrologia 53, 61–75 (2016)

    ADS  Google Scholar 

  45. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman et al., Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    ADS  Google Scholar 

  46. L. del Campo, R.B. Pérez-Sáez, M.J. Tello, Iron oxidation kinetics study by using infrared spectral emissivity measurements below 570 °C. Corrosion Sci. 50, 194–199 (2008)

    Google Scholar 

  47. P. Demont, H.T. Nguyen, J.F. Sacadura, Influence de l'oxydation et de la rugosité sur les caractéristiques radiatives des aciers inoxydables. Journal de Physique Colloques 42(C1), C1–161–C1–171 (1981)

    Google Scholar 

  48. D.P. DeWitt, J.C. Richmond, Thermal radiative properties of materials, in Theory and Practice of Radiation Thermometry. ed. by D.P. DeWitt, G.D. Nutter (Wiley, New York, 1988), pp. 91–187

    Google Scholar 

  49. M.J. Donachie, S.J. Donachie, Superalloys. A Technical Guide, 2nd edn. (ASM International, Materials Park, OH, 2002)

    Google Scholar 

  50. C.J. Donlon, W. Wimmer, I. Robinson et al., A second-generation blackbody system for the calibration and verification of seagoing infrared radiometers. J. Atm. Oceanic Technol. 31, 1104–1127 (2014)

    Google Scholar 

  51. L. Dupont, Y. Avenas, Evaluation de paramètres thermosensibles basés sur la mesure de la tension directe pour une utilisation dans des conditions d’usage. Symposium de Génie Électrique 2014 (Cachan, France, 2014), https://hal.archives-ouvertes.fr/file/index/docid/1065323/filename/SGE2014_PETS_resume.pdf. Accessed 11 Feb 2020

  52. M.R. Dury, T. Theocharous, N. Harrison, et al., Common black coatings—reflectance and ageing characteristics in the 0.32–14.3 µm wavelength range. Optics Communications 270, 262–272 (2007)

    Google Scholar 

  53. J.S. Dyer, R.C. Benson, T.E. Phillips et al., Outgassing analyses performed during vacuum bakeout of components painted with Chemglaze Z306/9922. Proc. SPIE 1754, 177–194 (1992)

    ADS  Google Scholar 

  54. S.F. Edwards, A.G. Kantsios, J.P. Voros, et al., Apparatus description and data analysis of a radiometric technique for measurements of spectral and total normal emittance. NASA Technical Note TN D-7798 (1975), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750007880.pdf. Accessed 11 Feb 2020

  55. M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes, in Carbon Nanotubes. Advanced Topics in the Synthesis, Structure, Properties and Applications, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, 2008), pp. 13–62

    Google Scholar 

  56. M. Eppley, A.R. Karoli, Absolute radiometry based on a change in electrical resistance. J. Opt. Soc. Amer. 47, 748–755 (1957)

    ADS  Google Scholar 

  57. E.C. Fest, Stray Light Analysis and Control (SPIE Press, Bellingham, WA, 2013)

    Google Scholar 

  58. A.S. Fialkov, A.I. Baver, N.M. Sidorov et al., Pyrographite (preparation, structure, properties). Russian Chem. Rev. 34, 46–57 (1965)

    ADS  Google Scholar 

  59. J. Fischer, J. Seidel, B. Wende, The double-heatpipe black body: a radiance and irradiance standard for accurate infrared calibrations in remote sensing. Metrologia 35, 441–445 (1998)

    ADS  Google Scholar 

  60. J. Fischer, M. Battuello, M. Sadli et al., Uncertainty Budgets for Realisation of Scales by Radiation Thermometry. CCT/03–03. (CCT-WG5 on radiation thermometry, 2003), https://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf. Accessed 11 Feb 2020

  61. J. Fischer, P. Saunders, M. Sadli et al., Uncertainty Budgets for Calibration of Radiation Thermometers below the Silver Point. Version 1.71. (CCT-WG5 on Radiation Thermometry, 2008), https://www.bipm.org/wg/CCT/CCT-WG5/Allowed/Miscellaneous/Low_T_Uncertainty_Paper_Version_1.71.pdf. Accessed 11 Feb 2020

  62. J.C. Fleming, S. Collins, B. Kelsic et al., Carbon nanotube flat plate blackbody calibrator, in 33rd Space Symp., Technical Track. Colorado Springs, CO. Presented on Apr. 3, 2017 (2017), https://2019.spacesymposium.org/wp-content/uploads/2017/10/Fleming_John_Carbon_Nanotube_Flat_Plate_Blackbody_Calibrator.pdf. Accessed 11 Feb 2020

  63. S. Galal Yousef, P. Sperfeld, J. Metzdorf, Measurement and calculation of the emissivity of a high-temperature black body. Metrologia 37, 365–368 (2000)

    ADS  Google Scholar 

  64. F.J. García-Vidal, J.M. Pitarke, J.B. Pendry, Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Let. 78, 4289–4292 (1997)

    ADS  Google Scholar 

  65. F.J. García-Vidal, J.M. Pitarke, Optical absorption and energy-loss spectra of aligned carbon nanotubes. Eur. Phys. J. B 22, 257–265 (2001)

    ADS  Google Scholar 

  66. B. Geddes, H. Leon, X. Huang, Superalloys. Alloying and Performance. (ASM International, Materials Park, OH, 2010)

    Google Scholar 

  67. T.A. Germer, J.C. Stover, S. Schröder, Angle-resolved diffuse reflectance and transmittance, in Spectrophotometry: Accurate Measurement of Optical Properties of Materials. ed. by T.A. Germer, J.C. Zwinkels, B.K. Tsai (Elsevier, Amsterdam, Netherlands, 2014), pp. 291–331

    Google Scholar 

  68. D. Guarnera, G.C. Guarnera, A. Ghosh et al., BRDF representation and acquisition. Computer Graphics Forum 35, 625–650 (2016)

    Google Scholar 

  69. T. Guo, P. Nikolaev, A. Thess et al., Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)

    ADS  Google Scholar 

  70. J.G. Hagopian, S.A. Getty, M. Quijada et al., Multiwalled carbon nanotubes for stray light suppression in space flight instruments. Proc. SPIE 7761, 77610F (2010)

    Google Scholar 

  71. J. Hameury, A. Koenen, B. Hay et al., Identification and characterization of new materials for construction of heating plates for high-temperature guarded hot plates. Int. J. Thermophys. 39, 16 (2018)

    ADS  Google Scholar 

  72. L. Hanssen, S. Mekhontsev, V. Khromchenko, Infrared spectral emissivity characterization facility at NIST. Proc. SPIE 5405, 1–12 (2004)

    ADS  Google Scholar 

  73. L.M. Hanssen, S.N. Mekhontsev, J. Zeng et al., Evaluation of blackbody cavity emissivity in the infrared using total integrated scatter measurements. Int. J. Thermophys. 29, 352–369 (2008)

    ADS  Google Scholar 

  74. L. Hanssen, B. Wilthan, J.-R. Filtz et al., Infrared spectral normal emittance/emissivity comparison. Metrologia 53, 03001 (2016)

    ADS  Google Scholar 

  75. B. Hapke, Theory of Reflectance and Emittance Spectroscopy, 2nd edn. (Cambridge University Press, Cambridge, UK, 2012)

    Google Scholar 

  76. J. Hartmann, J. Fischer, Radiator standards for accurate JR calibrations in remote sensing based on heatpipe blackbodies. Proc. SPIE 3821, 395–403 (1999)

    ADS  Google Scholar 

  77. K. Hata, D.N. Futaba, K. Mizuno et al., Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004)

    ADS  Google Scholar 

  78. B. Hay, K. Anhalt, L. Chapman, et al., Traceability improvement of high temperature thermal property measurements of materials for new fission reactors. Proc. 3rd Int. Conf. Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). (Marseille, France, 2013). https://doi.org/10.1109/ANIMMA.2013.6727928

  79. C.L. Hepplewhite, R.E.J. Watkins, F. Row et al., HIRDLS instrument radiometric calibration black body targets. Proc. SPIE 5152, 223–230 (2003)

    ADS  Google Scholar 

  80. C.B. Herron, S.L. Steely, R.P. Young, Arnold Engineering Development Center low-background blackbody calibration. Report AEDC-TR-93–17. (Arnold Engineering Development Center, Arnold Air Force Base, Tennessee, Air Force Materiel Command, USAF, 1993)

    Google Scholar 

  81. K.D. Hill, D.J. Woods, Characterizing the NRC blackbody sources for radiation thermometry from 150 °C to 962 °C. Int. J. Thermophys. 30, 105–123 (2009)

    ADS  Google Scholar 

  82. T. Hirai, S. Yajima, Structural features of pyrolytic graphite. J. Materials Sci. 2, 18–27 (1967)

    ADS  Google Scholar 

  83. C.K. Ho, A.R. Mahoney, A. Ambrosini et al., Characterization of Pyromark 2500 paint for high-temperature solar receivers. J. Solar Energy Engineering 136, 014502 (2014)

    Google Scholar 

  84. J. Hollandt, R. Friedrich, B. Gutschwager, et al., High-accuracy radiation thermometry at the National Metrology Institute of Germany, the PTB. High Temp.–High Press. 35/36, 379–415 (2003/2004)

    Google Scholar 

  85. J. Hollandt, C. Monte, The determination of the uncertainties of spectral emissivity measurements in air at the PTB. Metrologia 47, S172–S181 (2010)

    Google Scholar 

  86. B.G. Hoover, V.L. Gamiz, Diffractive bidirectional reflectance distributions of surfaces with large effective roughness in one dimension. Proc. SPIE 5575, 137–142 (2004)

    ADS  Google Scholar 

  87. A. Höpe, Diffuse reflectance and transmittance, in Spectrophotometry: Accurate Measurement of Optical Properties of Materials. ed. by T.A. Germer, J.C. Zwinkels, B.K. Tsai (Acad. Press, Amsterdam, Netherlands, 2014), pp. 179–219

    Google Scholar 

  88. J.R. Howell, M.P. Mengüç, R. Siegel, Thermal Radiation Heat Transfer, 6th edn. (CRC Press, Boca Raton, FL, 2016)

    Google Scholar 

  89. W.-H. Huang, S.-C. Tsai, C.-W. Yang et al., The relationship between microstructure and oxidation effects of selected IG- and NBG-grade nuclear graphites. J. Nucl. Materials 454, 149–158 (2014)

    ADS  Google Scholar 

  90. M. Huetz-Aubert, J.F. Sacadura, Mesure des émissivités et des réflectivités monochromatiques directionnelles des matériaux opaques. Revue Phys. Appl. 17, 251–260 (1982)

    Google Scholar 

  91. J.G. Hust, Standard Reference Materials: A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM’s From 5 to 2500 K. NBS Spec. Publ. 260–89. (U.S. Dept. of Commerce, Natl. Bureau of Standards, Washington, DC, 1984)

    Google Scholar 

  92. M. Inagaki, Applications of polycrystalline graphite, in Graphite and Precursors, ed. by Delhaès (Gordon and Breach Sci. Publ., Amsterdam, Netherlands, 2001), pp. 179–198

    Google Scholar 

  93. J. Ishii, A. Ono, A Fourier-transform spectrometer for accurate thermometric applications at low temperatures. AIP Conf. Proc. 684, 705–710 (2003)

    ADS  Google Scholar 

  94. ISO 7599:2018: International Standard: Anodizing of aluminium and its alloys—Method for specifying decorative and protective anodic oxidation coatings on aluminium (ISO, Geneva, Switzerland, 2018)

    Google Scholar 

  95. H. Itami, Isotropic graphite for electric discharge machining, in Handbook of Advanced Ceramics. Materials, Applications, Processing, and Properties, 2nd ed., ed. by S. Somiya (Acad. Press, Amsterdam, 2013), pp. 135–141

    Google Scholar 

  96. T. Iuchi, T. Furukawa, S. Wada, Emissivity modeling of metals during the growth of oxide film and comparison of the model with experimental results. Appl. Opt. 42, 2317–2326 (2003)

    ADS  Google Scholar 

  97. H. Jäger, W. Frohs, M. Banek et al. Carbon, 4. Industrial carbons, in Ullmann's Encyclopedia of Industrial Chemistry, vol. 6, 7th ed., ed. by V.C.H. Wiley V. C. H. (John Wiley and Sons, 2011), pp. 731–770. https://doi.org/10.1002/14356005.n05_n03

  98. D.A. Jaworske, T.J. Skowronski, Portable infrared reflectometer for evaluating emittance, in Space Technology and Applications International Forum-2000, ed. by M.S. El-Genk. AIP Conf. Proc. 504, 791–796 (2000)

    Google Scholar 

  99. D.A. Jaworske, Optical and calorimetric evaluation of Z-93-P and other thermal control coatings. Thin Solid Films 290–291, 278–282 (1996)

    ADS  Google Scholar 

  100. JCGM 101:2008. Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method (BIPM Joint Committee for Guides in Metrology, Paris, 2008)

    Google Scholar 

  101. J.M. Jones, P. Mason, A. Williams, A Compilation of data on the radiant emissivity of some materials at high temperatures. J. Energy Institute (2018). https://doi.org/10.1016/j.joei.2018.04.006

    Article  Google Scholar 

  102. P.D. Jones, D.E. Dorai-Raj, D.G. McLeod, Spectral-directional emittance of oxidized copper. J. Thermophys. Heat Transfer 10, 343–349 (1996)

    Google Scholar 

  103. P.D. Jones, E. Nisipeanu, Spectral-directional emittance of thermally oxidized 316 stainless steel. Int. J. Thermophys 17, 967–978 (1996)

    ADS  Google Scholar 

  104. P.D. Jones, G. Teodorescu, R.A. Overfelt, Spectral-directional emittance of CuO at high temperatures. J. Heat Transfer 128, 382–388 (2006)

    Google Scholar 

  105. G. Jorgensen, P. Schissel, R. Burrows, Optical properties of high-temperature materials for direct absorption receivers. Proc. SPIE 562, 215–222 (1985)

    ADS  Google Scholar 

  106. G. Jorgensen, P. Schissel, R. Burrows, Optical properties of high-temperature materials for direct absorption receivers. Solar Energy Materials 14, 385–394 (1986)

    Google Scholar 

  107. Jupp, D. L. B.: A compendium of kernel and other (semi-) empirical BRDF models (CSIRO Office of Space Science Applications—Earth Observation Centre, 2000), https://www.eoc.csiro.au/tasks/brdf/k_summ.pdf. Accessed 11 Feb 2020

  108. V. Kachur, Properties of ATJ Graphite. Astronuclear Laboratory, Westinghouse Electric Corp. (1964), https://www.osti.gov/servlets/purl/4211375. Accessed 11 Feb 2020

  109. L.X. Kang, D. Li, Z.Z. Yong et al., Growth of aligned carbon nanotubes and their applications, in Industrial Applications of Carbon Nanotubes. ed. by H. Peng, Q. Li, T. Chen (Elsevier, Amsterdam, Netherlands, 2017), pp. 381–401

    Google Scholar 

  110. F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411–419 (1953)

    Google Scholar 

  111. F.J. Kelly, On Kirchhoff’s law and its generalized application to absorption and emission by cavities. J. Res. NBS 69B, 165–171 (1965)

    Google Scholar 

  112. A.J. Kennedy, Graphite: a future structural material. The Aeronautical Quarterly 11, 309–332 (1960)

    Google Scholar 

  113. C.A. Klein, Electrical properties of pyrolytic graphites. Rev. Modern Phys. 34, 56–80 (1962)

    ADS  Google Scholar 

  114. H.-Y. Ko, B.-J. Wen, S.-F. Tsa et al., A high-emissivity blackbody with large aperture for radiometric calibration at low-temperature. Int. J. Thermophys. 30, 98–104 (2009)

    ADS  Google Scholar 

  115. S. Kohara, Y. Niimi, Infrared radiation properties of anodized aluminum. Materials Sci. Forum 217–222, 1623–1628 (1996)

    Google Scholar 

  116. L.R. Koirala, FTIR-Spectroscopic Measurement of Directional Spectral Emissivities of Microstructured Surfaces. Dissertation, (Helmut-Schmidt University, University of the Federal Armed Forces, Hamburg, Germany, 2004), https://www.hsu-hh.de/thermodynamik/wp-content/uploads/sites/741/2017/09/Dissertation-Koirala-1.pdf. Accessed 11 Feb 2020

  117. S. Krenek, D. Gilbers, K. Anhalt et al., A dynamic method to measure emissivity at high temperatures. Int. J. Thermophys. 36, 1713–1725 (2015)

    ADS  Google Scholar 

  118. M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosc. Nanotechnol. 10, 3739–3758 (2010)

    Google Scholar 

  119. Y.W. Kwon, Multiphysics and Multiscale Modeling.Techniques and Applications. (CRC Press, Boca Raton, FL, 2016)

    Google Scholar 

  120. Y. Lan, Y. Wang, Z.F. Ren, Physics and applications of aligned carbon nanotubes. Adv. Phys. 60, 553–678 (2011)

    ADS  Google Scholar 

  121. K.C. Lapworth, T.J. Quinn, L.A. Allnutt, A black-body source of radiation covering a wavelength range from the ultraviolet to the infrared. J. Phys. E: Sci. Instrum. 3, 116–120 (1970)

    ADS  Google Scholar 

  122. J. Lee, Y. Kim, U. Jung et al., Thermal conductivity of anodized aluminum oxide layer: the effect of electrolyte and temperature. Materials Chem. Phys. 141, 680–685 (2013)

    Google Scholar 

  123. S.-M. Lee, D.-S. Kang, J.-S. Roh, Bulk graphite: materials and manufacturing process. Carbon Letters 16, 135–146 (2015)

    Google Scholar 

  124. J. Lehman, A. Sanders, L. Hanssen et al., Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalite. Nano Lett. 10, 3261–3266 (2010)

    ADS  Google Scholar 

  125. J. Lehman, C. Yung, N. Tomlin et al., Carbon nanotube-based black coatings. Appl. Phys. Rev. 5, 011103 (2018)

    ADS  Google Scholar 

  126. A. Leupin, H. Vetsch, F.K. Kneubühl, Investigation, comparison and improvement of technical infrared radiators. Infrared Phys. 30, 199–258 (1990)

    ADS  Google Scholar 

  127. W.Z. Li, S.S. Xie, L.X. Qian et al., Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)

    ADS  Google Scholar 

  128. J. Lohrengel, R. Todtenhaupt, Wärmeleitfähigkeit, Gesamtemissionsgrade und spektrale Emissionsgrade der Beschichtung Nextel-Velvet-Coating 811–21 (RAL 900 15 tiefschwarz matt). PTB-Mitteilungen 106, 259–265 (1996)

    Google Scholar 

  129. W. Ma, T. Miao, X. Zhang et al., Thermal performance of vertically-aligned multi-walled carbon nanotube array grown on platinum film. Carbon 77, 266–274 (2014)

    Google Scholar 

  130. G. Machin, B. Chu, High-quality blackbody sources for infrared thermometry and thermography between –40 and 1000 °C. The Imaging Sci. J. 48, 15–22 (2000)

    Google Scholar 

  131. G. Machin, P. Bloembergen, K. Anhalt et al., Practical implementation of the Mise en Pratique for the definition of the Kelvin above the silver point. Int. J. Thermophys. 31, 1779–1788 (2010)

    ADS  Google Scholar 

  132. A.G. Maki, R. Stair, R.G. Johnston, Apparatus for the measurement of the normal spectral emissivity in the infrared. J. Res. NBS 64C, 99–102 (1960)

    Google Scholar 

  133. A.M. Marconnet, M.A. Panzer, K.E. Goodson, Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Modern Phys. 85, 1296–1327 (2013)

    ADS  Google Scholar 

  134. É.N. Marmer, L.F. Mal’tseva, L.G. Barabanova, Investigation of the evaporation rate of graphite. Soviet Powder Metallurgy and Metal Ceramics 2, 407–412 (1963)

    Google Scholar 

  135. J.L. Marshall, P. Williams, J.-P. Rheault et al., Characterization of the reflectivity of various black materials. Proc. SPIE 9147, 91474F (2014)

    Google Scholar 

  136. B.S. Mastryukov, V.V. Zubov, V.A. Krivandin, Spatial distribution of radiation from oxidized heat-resistant alloys. J. Eng. Phys. 29, 1139–1143 (1975)

    Google Scholar 

  137. D.M. McCroskey, G.C. Abell, M.H. Chidester, A study of Aeroglaze Z306 black paint for cryogenic telescope use. Outgassing and water vapor regain. Proc. SPIE 4096, 119–128 (2000)

    Google Scholar 

  138. S.N. Mekhontsev, A.V. Prokhorov, V.B. Khromchenko, Medium Background Blackbody BB1000. Preliminary Design Review (Vega International, 1999), https://www.researchgate.net/publication/284173830_MEDIUM_BACKGROUND_BLACKBODY_BB1000. Accessed 11 Feb 2020

  139. A. Miklavec, I. Pušnik, V. Batagelj et al., A large aperture blackbody bath for calibration of thermal imagers. Meas. Sci. Technol. 24, 025001 (2013)

    ADS  Google Scholar 

  140. MIL-A-8625F: Amendment 1. Military Specification: Anodic Coatings for Aluminum and Aluminum Alloys. (US Department of Defense, 2003)

    Google Scholar 

  141. K. Mizuno, J. Ishii, H. Kishidac et al., A black body absorber from vertically aligned single-walled carbon nanotubes. PNAS 106, 6044–6047 (2009)

    ADS  Google Scholar 

  142. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Elsevier, New York, 2013)

    Google Scholar 

  143. C. Monte, B. Gutschwager, S.P. Morozova et al., Radiation thermometry and emissivity measurements under vacuum at the PTB. Int. J. Thermophys. 30, 203–219 (2009)

    ADS  Google Scholar 

  144. R. Montes, C. Ureña, An overview of BRDF models. Techn. Report LSI-2012–001 (Universidad de Granada, 2012), https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf. Accessed 11 Feb 2020

  145. M. Monthioux, P. Serp, B. Caussat et al., Carbon nanotubes, in Springer Handbook of Nanotechnology, 4th ed., ed. by B. Bhushan (Springer, Berlin, 2017), pp. 193–247

    Google Scholar 

  146. S.P. Morozova, N.A. Parfentiev, Lisiansky, et al., Vacuum variable-temperature blackbody VTBB100. Int. J. Thermophys. 29, 341–351 (2008)

    Google Scholar 

  147. S.P. Morozova, B.E. Lisyanskiy, A.A. Stakharny et al., Low-temperature blackbodies for temperature range from −60 °C to 90 °C. Int. J. Thermophys. 32, 2544–2559 (2011)

    ADS  Google Scholar 

  148. S.P. Morozova, A.Y. Dunaev, A.A. Katysheva et al., Facility for measuring the spatial uniformity of the radiation power of the surface of the large-area blackbody. Int. J. Thermophys. 38, 74 (2017)

    ADS  Google Scholar 

  149. NBS: NBS Standard Reference Materials Catalog 1979–80 Edition. Special Publication 260 (National Bureau of Standards, Washington, DC, 1979), https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication260e1979.pdf. Accessed 11 Feb 2020

  150. J.T. Neu, M.T. Beecroft, R. Schramm, Extended performance infrared directional reflectometer for the measurement of total, diffuse and specular reflectance. SPIE 2260, 62–73 (1994)

    ADS  Google Scholar 

  151. G. Neuer, Spectral and total emissivity measurements of highly emitting materials. Int. J. Thermophys. 16, 257–265 (1995)

    ADS  Google Scholar 

  152. M. Noorma, S. Mekhontsev, Khromchenko, et al., Water heat pipe blackbody as a reference spectral radiance source between 50 °C and 250 °C. Proc. SPIE 6205, 620502 (2006)

    Google Scholar 

  153. S.A. Ogarev, M.L. Samoylov, N.A. Parfentyev et al., Low-temperature blackbodies for IR calibrations in a medium-background environment. Int. J. Thermophys. 30, 77–97 (2009)

    ADS  Google Scholar 

  154. S.A. Ogarev, S.P. Morozova, A.A. Katysheva, et al., Blackbody radiation sources for the IR spectral range, in Temperature: Its Measurement and Control in Science and Industry, vol. 8, ed. by C.W. Meyer. Proc. 9th International Temperature Symposium. AIP Conf. Proc. 1552, part 2, pp. 654–659 (2013)

    Google Scholar 

  155. H. Oikawa, Y. Shimizu, Y. Yamada, et al., A compact high-emissivity variable-temperature blackbody furnace with carbon-nanotube coated bottom, in Proc. 56th Annual Conf. Soc. Instrument and Control Eng. of Japan (SICE) (Kanazawa, Japan, 2017), pp. 420–423. https://doi.org/10.23919/SICE.2015.8105729

  156. C.-O.A. Olsson, D. Landolt, Passive films on stainless steels—chemistry, structure and growth. Electrochim. Acta 48, 1093–1104 (2003)

    Google Scholar 

  157. D.P. Osterman, S. Collins, J. Ferguson et al., CIRiS: compact infrared radiometer in space. Proc. SPIE 9978, 99780E (2016)

    Google Scholar 

  158. E.D. Palik (ed.), Handbook of Optical Constants of Solids, Volumes 1–5 (Acad. Press, San Diego, CA, 1998)

    Google Scholar 

  159. J. Pappis, S.L. Blum, Properties of pyrolytic graphite. J. Amer. Ceramic Soc. 44, 592–597 (1961)

    Google Scholar 

  160. C.-W. Park, Y.S. Yoo, B.-H. Kim, S. Chun, S.-N. Park, Construction and characterization of a large aperture blackbody for infrared radiometer calibration. Int. J. Thermophys. 32, 1622–1632 (2011)

    ADS  Google Scholar 

  161. F. Paschen, On the distribution of the energy in the spectrum of the black body at low temperatures. Astrophys. J. 10, 40–57 (1899)

    ADS  Google Scholar 

  162. H.J. Patrick, L.M. Hanssen, J. Zeng et al., BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm. Metrologia 49, S81–S92 (2012)

    Google Scholar 

  163. J. Pérez-Izquierdo, E. Sebastián, G.M. Martínez et al., The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement 122, 432–442 (2018)

    ADS  Google Scholar 

  164. M.J. Persky, Review of black surfaces for space-borne infrared systems. Rev. Sci. Instrum. 70, 2193–2217 (1999)

    ADS  Google Scholar 

  165. M.J. Persky, M. Szczesniak, Infrared, spectral, directional-hemispherical reflectance of fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating. Appl. Opt. 47, 1389–1396 (2008)

    ADS  Google Scholar 

  166. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes. Processing and Applications (Noyes. Publ., Park Ridges, NJ, Properties, 1993)

    Google Scholar 

  167. J.D. Plunkett, W.D. Kingery, The spectral and integrated emissivity of carbon and graphite, in Proc. of the Fourth Conference on Carbon (Pergamon Press, Oxford, UK, 1960), pp. 457–472

    Google Scholar 

  168. POCO: Properties and Characteristics of Graphite for Industrial Applications. Poco Graphite, Inc. Decatur, TX (2015), https://poco.com/Portals/0/Literature/Semiconductor/IND-109441-0115.pdf. Accessed 11 Feb 2020

  169. J. Prasek, J. Drbohlavova, J. Chomoucka et al., Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21, 15872–15884 (2011)

    Google Scholar 

  170. A. Prokhorov, Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model. Appl. Opt. 51, 2322–2332 (2012)

    ADS  Google Scholar 

  171. A. Prokhorov, N.I. Prokhorova, Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities. Appl. Opt. 51, 8003–8012 (2012)

    ADS  Google Scholar 

  172. M.A. Quijada, J.G. Hagopian, S. Getty et al., Hemispherical reflectance and emittance properties of carbon nanotubes coatings at infrared wavelengths. Proc. SPIE 8150, 815002 (2011)

    Google Scholar 

  173. T.J. Quinn, A practical black-body cavity for the calibration of radiation pyrometers. J. Sci. Instrum. 44, 221–222 (1967)

    ADS  Google Scholar 

  174. T.J. Quinn, M.C. Ford, On the use of the N. P. L. photoelectric pyrometer to establish the temperature scale above the gold point (1063 °C). Proc. Roy. Soc. A. 312, 31–50 (1969)

    Google Scholar 

  175. S. Ragan, H. Marsh, Science and technology of graphite manufacture. J. Materials Sci. 18, 3161–3176 (1983)

    ADS  Google Scholar 

  176. R.C. Reed, The Superalloys. Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 2006)

    Google Scholar 

  177. Z.F. Ren, Z.P. Huang, J.W. Xu et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    ADS  Google Scholar 

  178. Z. Ren, Y. Lan, Y. Wang, Aligned Carbon Nanotubes. Physics, Concepts, Fabrication and Devices (Springer, Heidelberg, Germany,  2013)

    Google Scholar 

  179. J.C. Richmond, J.E. Stewart, Spectral emittance of ceramic-coated and uncoated specimens of inconel and stainless steel. J. Amer. Ceramic Soc. 42, 633–640 (1959)

    Google Scholar 

  180. J.C. Richmond, D.P. DeWitt, W.D. Hayes, Jr, Procedures for Precise Determination of Thermal Radiation Properties. Technical Note 252 (National Bureau of Standards, Washington, DC, 1964), https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote252.pdf. Accessed 11 Feb 2020

  181. T. Ricolfi, M. Battuello, F. Lanza, Heat-pipe black-body reflectometer for room temperature emissivity measurements. J. Phys. E: Sci. Instrum. 19, 697–700 (1986)

    ADS  Google Scholar 

  182. T. Ricolfi, F. Lanza, Simple method for the absolute calibration of radiant heat flux meters, in Proc. TEMPMEKO 2004, 9th Int. Symp. on Temperature and Thermal Measurements in Industry and Science, vol. 2, ed. by D. Zvizdić (University of Zagreb, Zagreb, Croatia, 2005), pp. 903–908

    Google Scholar 

  183. A. Roos, C.G. Ribbing, Interpretation of integrating sphere signal output for non-Lambertian samples. Appl. Opt. 27, 3833–3837 (1988)

    ADS  Google Scholar 

  184. M. Rosu, P. Zhou, D. Lin et al., Multiphysics Simulation by Design for Electrical Machines, Power Electronics, and Drives (Wiley, Hoboken, NJ, 2018)

    Google Scholar 

  185. J.M. Runge, The Metallurgy of Anodizing Aluminum. Connecting Science to Practice (Springer, Cham, Switzerland, 2018)

    Google Scholar 

  186. G. Ruocco, Introduction to Transport Phenomena Modeling. A Multiphysics, General Equation-Based Approach (Springer, Cham, Switzerland, 2018)

    Google Scholar 

  187. J.-L. Sans, E. Guillot, Assessment of emissivity measurements with a spectroradiometer at high temperature. Solar Facilities for the European Research Area (SFERA II project)—Second Phase (2014), https://sfera2.sollab.eu/uploads/images/jra/Files/SFERAII-D13.4.pdf. Accessed 11 Feb 2020

  188. V.I. Sapritsky, A.V. Prokhorov, Calculation of the effective emissivities of specular-diffuse cavities by the Monte Carlo method. Metrologia 29, 9–14 (1992)

    ADS  Google Scholar 

  189. V.I. Sapritsky, A.V. Prokhorov, Spectral effective emissivities of nonisothermal cavities calculated by the Monte Carlo method. Appl. Opt. 34, 5645–5652 (1995)

    ADS  Google Scholar 

  190. V.I. Sapritsky, B.B. Khlevnoy, V.B. Khromchenko et al., Precision blackbody sources for radiometric standards. Appl. Opt. 36, 5403–5408 (1997)

    ADS  Google Scholar 

  191. A.F. Sarofim, H.C. Hottel, Radiative exchange among non-Lambert surfaces. J. Heat Transfer 88, 37–43 (1966)

    Google Scholar 

  192. A. Savvatimskiy, Carbon at High Temperatures (Springer, Cham, Switzerland, 2015)

    Google Scholar 

  193. C. Schlick, An inexpensive BRDF model for physically based rendering. Comput. Graph. Forum 13, 233–246 (1994)

    Google Scholar 

  194. P.A. Schweitzer, Fundamentals of Metallic Corrosion. Atmospheric and Media Corrosion of Metals. (CRC Press, Boca Raton, FL, 2007)

    Google Scholar 

  195. S.-K. Seo, J.-S. Roh, E.-S. Kim et al., Thermal emissivity of a nuclear graphite as a function of its oxidation degree (1) - Effects of density, porosity, and microstructure. Carbon Letters 10, 225–229 (2009)

    Google Scholar 

  196. S.-K. Seo, J.-S. Roh, E.-S. Kim et al., Thermal emissivity of a nuclear graphite as a function of its oxidation degree (2) - Effect of surface structural changes. Carbon Letters 10, 300–304 (2009)

    Google Scholar 

  197. S.-K. Seo, J.-S. Roh, E.-S. Kim et al., Thermal emissivity of a nuclear graphite as a function of its oxidation degree (3) - Structural study using scanning electron microscope and X-ray diffraction. Carbon Letters 12, 8–15 (2011)

    Google Scholar 

  198. I.L. Shabalin, Ultra-High Temperature Materials. I Carbon (Graphene/Graphite) and Refractory Metals. A Comprehensive Guide and Reference Book (Springer, Dordrecht, Netherlands, 2014)

    Google Scholar 

  199. J.R. Shell, II, Bidirectional reflectance: an overview with remote sensing applications & measurement recommendations. (Rochester Inst. of Technology, Rochester, NY, 2004), https://web.gps.caltech.edu/~vijay/Papers/BRDF/shell-04.pdf. Accessed 11 Feb 2020

  200. T. Shibata, Nuclear graphite, in Handbook of Advanced Ceramics. Materials, Applications, Processing, and Properties, ed. by S. Somiya, 2nd ed. (Acad. Press, Amsterdam, 2013), pp. 113–123

    Google Scholar 

  201. Y. Shimizu, J. Ishii, Blackbody thermal radiator with vertically aligned carbon nanotube coating. Jap. J. App. Phys. 53, 068004 (2014)

    ADS  Google Scholar 

  202. W.S. Slemp, Effects of Preoxidation Treatments on Spectral Normal and Total Normal Emittance of Inconel, Inconel-X, and Type 347 Stainless Steel. Technical Note NASA TN D-2300 (National Aeronautics and Space Administration, Washington, DC, 1964)

    Google Scholar 

  203. W.H. Smith, D.H. Leeds, Pyrolytic graphite, in Modern Materials. Advances in Development and Applications, ed. by B.W. Gonser, 7, 139–221 (1970)

    Google Scholar 

  204. X. Song, K. Huan, W. Dong et al., Research on infrared radiation characteristics of Pyromark1200 high-temperature coating. Proc. SPIE 9300, 93001S (2014)

    ADS  Google Scholar 

  205. J. Song, X.P. Hao, Z.D. Yuan et al., Research of ultra-black coating emissivity based on a controlling the surrounding radiation method. Int. J. Thermophys. 39, 85 (2018)

    ADS  Google Scholar 

  206. D.L. Stierwalt, Infrared absorption of optical blacks. Opt. Eng. 18, 147–151 (1979)

    ADS  Google Scholar 

  207. Surrey NanoSystems: Vantablack S-VIS BRDF data. Surrey NanoSystems Ltd, Newhaven, UK (2017), https://www.surreynanosystems.com/assets/media/brdf-s-vismidir-v0-2017.pdf. Accessed 11 Feb 2020

  208. Surrey NanoSystems: Vantablack® S-IR Data Sheet (Surrey NanoSystems Ltd, Newhaven, UK 2017), https://www.surreynanosystems.com/assets/media/vantablack-s-ir-a4-data-brochure-2017-014.pdf. Accessed 11 Feb 2020

  209. M. Tehrani, P. Khanbolouki, Carbon nanotubes: synthesis, characterization, and applications, in Advances in Nanomaterials. Fundamentals, Properties and Applications, ed. by G. Balasubramanian (Springer, Cham, Switzerland, 2018), pp. 3–35

    Google Scholar 

  210. E. Theocharous, C.J. Chunnilall, R. Mole et al., The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications. Opt. Express 22, 7290–7307 (2014)

    ADS  Google Scholar 

  211. S. Thomas, K.J. Priestley, M. Shankar et al., Pre-launch sensor characterization of the CERES Flight Model 5 (FM5) instrument on NPP mission. Proc. SPIE 8153, 815313 (2011)

    Google Scholar 

  212. K.E. Torrance, E.M. Sparrow, Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 1105–1114 (1967)

    ADS  Google Scholar 

  213. K.E. Torrance, E.M. Sparrow, R.C. Birkebak, Polarization, directional distribution, and off-specular peak phenomena in light reflected from roughened surfaces. J. Opt. Soc. Amer. 56, 916–925 (1966)

    ADS  Google Scholar 

  214. V.S. Touloukian, D.P. DeWitt, Thermophysical Properties of Matter, vol. 7. Thermal Radiative Properties. Metallic Elements and Alloys. (IFI/Plenum, New York, 1970)

    Google Scholar 

  215. V.S. Touloukian, D.P. DeWitt, Thermophysical Properties of Matter, vol. 8: Thermal Radiative Properties. Nonmetallic Solids. (IFI/Plenum, New York, 1972)

    Google Scholar 

  216. V.S. Touloukian, D.P. DeWitt, Thermophysical Properties of Matter, vol. 9: Thermal Radiative Properties. Coatings (IFI/Plenum, New York, 1972)

    Google Scholar 

  217. Toyo Tanso, Carbon-Graphite Products (Toyo Tanso Co, Ltd., 2018), https://www.toyotanso.com/Products/catalog.en.full.pdf. Accessed 11 Feb 2020

  218. D. Urban, S. Krenek, K. Anhalt et al., Improving the dynamic emissivity measurement above 1000 K by extending the spectral range. Int. J. Thermophys. 39, 10 (2018)

    ADS  Google Scholar 

  219. E. Valkonen, B. Karlsson, Spectral selectivity of a thermally oxidized stainless steel. Solar Energy Mater. 7, 43–50 (1982)

    ADS  Google Scholar 

  220. L.V. Vlasov, V.I. Sapritskii, Modern cavity emitters for photometry. Meas. Techniques 34, 156–159 (1991)

    Google Scholar 

  221. L.V. Vlasov, N.A. Ibragimov, A.O. Pominov, Standard infra-red sources. Proc. SPIE 2161, 64–71 (1993)

    ADS  Google Scholar 

  222. P. von Böckh, T. Wetzel, Heat Transfer (Basics and Practice. Springer, Berlin, 2012)

    Google Scholar 

  223. F. Wang, L. Cheng, H. Mei et al., Effect of surface microstructures on the infrared emissivity of graphite. Int. J. Thermophys. 35, 62–75 (2014)

    ADS  Google Scholar 

  224. J. Wang, Z. Yuan, X. Hao et al., A −30 °C to 80 °C stirred-liquid-bath-based blackbody source. Int. J. Thermophys. 36, 1766–1774 (2015)

    ADS  Google Scholar 

  225. X.J. Wang, J.D. Flicker, B.J. Lee et al., Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes. Nanotechnology 20, 215704 (2009)

    ADS  Google Scholar 

  226. X.J. Wang, O.S. Adewuyi, L.P. Wang et al., Reflectance measurements for black absorbers made of vertically aligned carbon nanotubes. Proc. SPIE 7792, 77920R (2010)

    ADS  Google Scholar 

  227. X.J. Wang, L.P. Wang, O.S. Adewuyi et al., Highly specular carbon nanotube absorbers. Appl. Phys. Let. 97, 163116 (2010)

    ADS  Google Scholar 

  228. H. Watanabe, J. Ishii, H. Wakabayashi et al., Spectral emissivity measurements, in Spectrophotometry: Accurate Measurement of Optical Properties of Materials. ed. by T.A. Germer, J.C. Zwinkels, B.K. Tsai (Elsevier, Amsterdam, 2014), pp. 333–365

    Google Scholar 

  229. R.R. Willey, R.W. George, J.G. Ohmart, et al., Total reflectance properties of certain black coatings (from 0.2 to 20.0 micrometers). Proc. SPIE 0384, 19–26 (1983)

    Google Scholar 

  230. R.G. Wilson, G.R. Spitzer, Visible and near-infrared emittance of ablation chars and carbon. AIAA J. 6, 665–671 (1968)

    ADS  Google Scholar 

  231. E.J. Wollack, R.E. Kinzer Jr., S.A. Rinehart, A cryogenic infrared calibration target. Rev. Sci. Instrum. 85, 044707 (2014)

    ADS  Google Scholar 

  232. B.D. Wood, J.S. Dyer, V.A. Thurgood et al., Optical reflection and absorption of carbon nanotube forest films on substrates. J. Appl. Phys. 118, 013106 (2015)

    ADS  Google Scholar 

  233. L. Xiaowei, R. Jean-Charles, Y. Suyuan, Effect of temperature on graphite oxidation behavior. Nucl. Eng. Design 227, 273–280 (2004)

    Google Scholar 

  234. Z.-P. Yang, L. Ci, J.A. Bur et al., Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Let. 8, 446–451 (2008)

    ADS  Google Scholar 

  235. Z.-P. Yang, M.-L. Hsieh, J.A. Bur et al., Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array. Appl. Opt. 50, 1850–1855 (2011)

    ADS  Google Scholar 

  236. C. Yinghang, L. Yaping, L. Yongqian et al., A medium temperature radiation calibration facility using a new design of heatpipe blackbody as a standard source. Meas. Sci. Technol. 12, 491–494 (2001)

    ADS  Google Scholar 

  237. S. Zeidler, T. Akutsu, Y. Torii et al., Measuring scattering light distributions on high-absorptive surfaces for stray-light reduction in gravitational-wave detectors. Opt. Express 27, 16890–16910 (2019)

    ADS  Google Scholar 

  238. J. Zeng, L. Hanssen, An infrared laser-based reflectometer for low reflectance measurements of samples and cavity structures. Proc. SPIE 7065, 70650F (2008)

    ADS  Google Scholar 

  239. J. Zeng, L. Hanssen, Development of an infrared optical scattering instrument from 1 µm to 5 µm. Proc. SPIE 7453, 74530Q (2009)

    ADS  Google Scholar 

  240. F. Zhang, K. Yu, K. Zhang et al., An emissivity measurement apparatus for near infrared spectrum. Infrared Phys. Technol. 73, 275–280 (2015)

    ADS  Google Scholar 

  241. R.Z. Zhang, X. Liu, Z.M. Zhang, Modeling the optical and radiative properties of vertically aligned carbon nanotubes in the infrared region. J. Heat Transfer 137, 091009 (2015)

    Google Scholar 

  242. J.W. Zondlo, Graphite: structure, properties, and applications, in Graphite, Graphene, and Their Polymer Nanocomposites. ed. by P. Mukhopadhyay, R.K. Gupta (CRC Press, Boca Raton, FL, 2013), pp. 1–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Sapritsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapritsky, V., Prokhorov, A. (2020). Materials for Blackbody Radiators. In: Blackbody Radiometry. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-57789-6_6

Download citation

Publish with us

Policies and ethics