Skip to main content
  • 2051 Accesses

Abstract

Magnetic resonance imaging (MRI) is more sensitive than computed tomography (CT) in detecting structural and functional abnormalities of the brain, providing superior structural resolution and tissue contrast. Modalities like positron emission tomography (PET), single-photon emission tomography (SPECT), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) inform us about functional aspects of the brain related to brain metabolism, receptor binding, cerebral blood flow, certain pathological molecular accumulations, and certain molecular changes. Diffusion tensor imaging (DTI) is an MRI method to delineate axonal tracts, utilizing a particular type of diffusion-weighted sequence that measures microstructural water diffusion properties within the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78

    Article  CAS  PubMed  Google Scholar 

  2. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23(Suppl 1):S220–S233

    Article  PubMed  Google Scholar 

  4. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  5. Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  CAS  PubMed  Google Scholar 

  6. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  7. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15(4):247–262

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. NeuroImage 34(3):1227–1237

    Article  PubMed  Google Scholar 

  9. Tieleman A, Deblaere K, Van Roost D, Van Damme O, Achten E (2009) Preoperative fMRI in tumour surgery. Eur Radiol 19(10):2523–2534

    Article  PubMed  Google Scholar 

  10. Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88

    Article  PubMed  Google Scholar 

  11. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796

    Article  PubMed  PubMed Central  Google Scholar 

  12. Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(Pt 3):335–359

    Article  PubMed  PubMed Central  Google Scholar 

  13. Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91(4):1357–1392

    Article  PubMed  Google Scholar 

  14. Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59(2):238–244

    Article  CAS  PubMed  Google Scholar 

  15. Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17(1):353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R et al (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93(6):2382–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dassonville P, Lewis SM, Zhu XH, Ugurbil K, Kim SG, Ashe J (1998) Effects of movement predictability on cortical motor activation. Neurosci Res 32(1):65–74

    Article  CAS  PubMed  Google Scholar 

  18. Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS et al (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11(11):3656–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68(3):653–662

    Article  CAS  PubMed  Google Scholar 

  20. Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7(4):1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arienzo D, Babiloni C, Ferretti A, Caulo M, Del Gratta C, Tartaro A et al (2006) Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: an fMRI study. NeuroImage 33(2):700–705

    Article  CAS  PubMed  Google Scholar 

  22. Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19(18):8043–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chainay H, Krainik A, Tanguy ML, Gerardin E, Le Bihan D, Lehericy S (2004) Foot, face and hand representation in the human supplementary motor area. Neuroreport 15(5):765–769

    Article  PubMed  Google Scholar 

  24. Tanji J, Kurata K (1982) Comparison of movement-related activity in two cortical motor areas of primates. J Neurophysiol 48(3):633–653

    Article  CAS  PubMed  Google Scholar 

  25. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869

    Article  CAS  PubMed  Google Scholar 

  26. Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60(4 Suppl 2):185–201; discussion-2

    PubMed  Google Scholar 

  27. Tanji J, Shima K (1994) Role for supplementary motor area cells in planning several movements ahead. Nature 371(6496):413–416

    Article  CAS  PubMed  Google Scholar 

  28. Peck KK, Bradbury M, Psaty EL, Brennan NP, Holodny AI (2009) Joint activation of the supplementary motor area and presupplementary motor area during simultaneous motor and language functional MRI. Neuroreport 20(5):487–491

    Article  PubMed  Google Scholar 

  29. Peck KK, Bradbury MS, Hou BL, Brennan NP, Holodny AI (2009) The role of the Supplementary Motor Area (SMA) in the execution of primary motor activities in brain tumor patients: functional MRI detection of time-resolved differences in the hemodynamic response. Med Sci Monit 15(4):MT55–MT62

    PubMed  Google Scholar 

  30. Bannur U, Rajshekhar V (2000) Post operative supplementary motor area syndrome: clinical features and outcome. Br J Neurosurg 14(3):204–210

    Article  CAS  PubMed  Google Scholar 

  31. Fontaine D, Capelle L, Duffau H (2002) Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery 50(2):297–303; discussion-5

    PubMed  Google Scholar 

  32. Krainik A, Lehericy S, Duffau H, Capelle L, Chainay H, Cornu P et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60(4):587–594

    Article  CAS  PubMed  Google Scholar 

  33. Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85(4):542–549

    Article  CAS  PubMed  Google Scholar 

  34. Petersen SE, Dubis JW (2012) The mixed block/event-related design. NeuroImage 62(2):1177–1184

    Article  PubMed  Google Scholar 

  35. Birn RM, Cox RW, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. NeuroImage 15(1):252–264

    Article  PubMed  Google Scholar 

  36. Liu TT (2012) The development of event-related fMRI designs. NeuroImage 62(2):1157–1162

    Article  PubMed  Google Scholar 

  37. Friston KJ, Zarahn E, Josephs O, Henson RN, Dale AM (1999) Stochastic designs in event-related fMRI. NeuroImage 10(5):607–619

    Article  CAS  PubMed  Google Scholar 

  38. Amaro E Jr, Barker GJ (2006) Study design in fMRI: basic principles. Brain Cogn 60(3):220–232

    Article  PubMed  Google Scholar 

  39. Zarahn E, Aguirre G, D’Esposito M (1997) A trial-based experimental design for fMRI. NeuroImage 6(2):122–138

    Article  CAS  PubMed  Google Scholar 

  40. Kim PE, Singh M (2003) Functional magnetic resonance imaging for brain mapping in neurosurgery. Neurosurg Focus 15(1):E1

    Article  PubMed  Google Scholar 

  41. Lurito JT, Dzemidzic M (2001) Determination of cerebral hemisphere language dominance with functional magnetic resonance imaging. Neuroimaging Clin N Am 11(2):355–363

    CAS  PubMed  Google Scholar 

  42. Woods RP, Dodrill CB, Ojemann GA (1988) Brain injury, handedness, and speech lateralization in a series of amobarbital studies. Ann Neurol 23(5):510–518

    Article  CAS  PubMed  Google Scholar 

  43. Kurthen M, Helmstaedter C, Linke DB, Hufnagel A, Elger CE, Schramm J (1994) Quantitative and qualitative evaluation of patterns of cerebral language dominance. An amobarbital study. Brain Lang 46(4):536–564

    Article  CAS  PubMed  Google Scholar 

  44. Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krageloh-Mann I (2002) Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. NeuroImage 16(4):954–967

    Article  PubMed  Google Scholar 

  45. Partovi S, Jacobi B, Rapps N, Zipp L, Karimi S, Rengier F et al (2012) Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. AJNR Am J Neuroradiol 33(11):2151–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodrigo S, Oppenheim C, Chassoux F, Hodel J, de Vanssay A, Baudoin-Chial S et al (2008) Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography. Epilepsia 49(8):1367–1376

    Article  PubMed  Google Scholar 

  47. Thivard L, Hombrouck J, du Montcel ST, Delmaire C, Cohen L, Samson S et al (2005) Productive and perceptive language reorganization in temporal lobe epilepsy. NeuroImage 24(3):841–851

    Article  PubMed  Google Scholar 

  48. Woermann FG, Jokeit H, Luerding R, Freitag H, Schulz R, Guertler S et al (2003) Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61(5):699–701

    Article  CAS  PubMed  Google Scholar 

  49. Medina LS, Aguirre E, Bernal B, Altman NR (2004) Functional MR imaging versus Wada test for evaluation of language lateralization: cost analysis. Radiology 230(1):49–54

    Article  PubMed  Google Scholar 

  50. Caulo M, Esposito R, Mantini D, Briganti C, Sestieri C, Mattei PA et al (2011) Comparison of hypothesis- and a novel hybrid data/hypothesis-driven method of functional MR imaging analysis in patients with brain gliomas. AJNR Am J Neuroradiol 32(6):1056–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Medina LS, Bernal B, Dunoyer C, Cervantes L, Rodriguez M, Pacheco E et al (2005) Seizure disorders: functional MR imaging for diagnostic evaluation and surgical treatment–prospective study. Radiology 236(1):247–253

    Article  PubMed  Google Scholar 

  52. Jones SE, Mahmoud SY, Phillips MD (2011) A practical clinical method to quantify language lateralization in fMRI using whole-brain analysis. NeuroImage 54(4):2937–2949

    Article  PubMed  Google Scholar 

  53. Dym RJ, Burns J, Freeman K, Lipton ML (2011) Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology 261(2):446–455

    Article  PubMed  Google Scholar 

  54. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66(6):865–874

    Article  CAS  PubMed  Google Scholar 

  55. Yordanova YN, Moritz-Gasser S, Duffau H (2011) Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J Neurosurg 115(2):232–239

    Article  PubMed  Google Scholar 

  56. Verburg N, de Witt Hamer PC (2020) State-of-the-art imaging for glioma surgery. Neurosurg Rev. https://doi.org/10.1007/s10143-020-01337-9. Epub ahead of print. PMID: 32607869

  57. Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26(8):1338–1345

    Article  PubMed  Google Scholar 

  58. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  CAS  PubMed  Google Scholar 

  59. Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L et al (2013) Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J Neurosurg 118(6):1157–1168

    Article  PubMed  Google Scholar 

  60. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    Article  PubMed  Google Scholar 

  61. Pujol J, Torres L, Deus J, Cardoner N, Pifarre J, Capdevila A et al (1999) Functional magnetic resonance imaging study of frontal lobe activation during word generation in obsessive-compulsive disorder. Biol Psychiatry 45(7):891–897

    Article  CAS  PubMed  Google Scholar 

  62. Bittar RG, Olivier A, Sadikot AF, Andermann F, Pike GB, Reutens DC (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921

    Article  CAS  PubMed  Google Scholar 

  63. Wilkinson ID, Romanowski CA, Jellinek DA, Morris J, Griffiths PD (2003) Motor functional MRI for pre-operative and intraoperative neurosurgical guidance. Br J Radiol 76(902):98–103

    Article  CAS  PubMed  Google Scholar 

  64. Petrella JR, Shah LM, Harris KM, Friedman AH, George TM, Sampson JH et al (2006) Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 240(3):793–802

    Article  PubMed  Google Scholar 

  65. Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76(8):1152–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Foesleitner O, Sigl B, Schmidbauer V, Nenning KH, Pataraia E, Bartha-Doering L et al (2020) Language network reorganization before and after temporal lobe epilepsy surgery. J Neurosurg 1–9. https://doi.org/10.3171/2020.4.JNS193401. Epub ahead of print. PMID: 32619977

  67. Krings T, Topper R, Willmes K, Reinges MH, Gilsbach JM, Thron A (2002) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58(3):381–390

    Article  CAS  PubMed  Google Scholar 

  68. Holodny AI, Schulder M, Liu WC, Maldjian JA, Kalnin AJ (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20(4):609–612

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Roux FE, Boulanouar K, Ibarrola D, Tremoulet M, Chollet F, Berry I (2000) Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry 69(4):453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krings T, Reinges MH, Erberich S, Kemeny S, Rohde V, Spetzger U et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ludemann L, Forschler A, Grieger W, Zimmer C (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443

    Article  PubMed  Google Scholar 

  72. Hou BL, Bradbury M, Peck KK, Petrovich NM, Gutin PH, Holodny AI (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. NeuroImage 32(2):489–497

    Article  PubMed  Google Scholar 

  73. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  74. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254

    Article  CAS  PubMed  Google Scholar 

  75. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  CAS  PubMed  Google Scholar 

  76. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539

    Article  CAS  PubMed  Google Scholar 

  77. Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31(4):394–400

    Article  CAS  PubMed  Google Scholar 

  78. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29(4):632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455

    Article  PubMed  Google Scholar 

  80. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219

    Article  CAS  PubMed  Google Scholar 

  81. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906

    Article  CAS  PubMed  Google Scholar 

  82. Ulug AM, van Zijl PC (1999) Orientation-independent diffusion imaging without tensor diagonalization: anisotropy definitions based on physical attributes of the diffusion ellipsoid. J Magn Reson Imaging 9(6):804–813

    Article  CAS  PubMed  Google Scholar 

  83. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  84. Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260

    Article  PubMed  Google Scholar 

  85. Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42(3):526–540

    Article  CAS  PubMed  Google Scholar 

  86. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230(1):77–87

    Article  PubMed  Google Scholar 

  87. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15(7–8):468–480

    Article  PubMed  Google Scholar 

  88. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 25(3):356–369

    PubMed  PubMed Central  Google Scholar 

  89. Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D et al (2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. NeuroImage 12(2):184–195

    Article  CAS  PubMed  Google Scholar 

  90. Lori NF, Akbudak E, Shimony JS, Cull TS, Snyder AZ, Guillory RK et al (2002) Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results. NMR Biomed 15(7–8):494–515

    Article  CAS  PubMed  Google Scholar 

  91. Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG et al (1997) Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 42(6):951–962

    Article  CAS  PubMed  Google Scholar 

  92. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47(2):215–223

    Article  PubMed  Google Scholar 

  93. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(Pt 3):630–653

    Article  PubMed  Google Scholar 

  94. Jones DK, Simmons A, Williams SC, Horsfield MA (1999) Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 42(1):37–41

    Article  CAS  PubMed  Google Scholar 

  95. Stieltjes B, Kaufmann WE, van Zijl PC, Fredericksen K, Pearlson GD, Solaiyappan M et al (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage 14(3):723–735

    Article  CAS  PubMed  Google Scholar 

  96. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36(3):630–644

    Article  PubMed  Google Scholar 

  97. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  CAS  PubMed  Google Scholar 

  98. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96(18):10422–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2):524–532

    Article  PubMed  Google Scholar 

  100. Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18(2):242–254

    Article  PubMed  Google Scholar 

  101. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17(1):77–94

    Article  PubMed  Google Scholar 

  102. Ulmer JL, Klein AP, Mueller WM, DeYoe EA, Mark LP (2014) Preoperative diffusion tensor imaging: improving neurosurgical outcomes in brain tumor patients. Neuroimaging Clin N Am 24(4):599–617

    Article  PubMed  Google Scholar 

  103. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15(7–8):456–467

    Article  PubMed  Google Scholar 

  104. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257(3):102–109

    Article  CAS  PubMed  Google Scholar 

  105. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088

    Article  CAS  PubMed  Google Scholar 

  106. Hess CP, Mukherjee P (2007) Visualizing white matter pathways in the living human brain: diffusion tensor imaging and beyond. Neuroimaging Clin N Am 17(4):407–426, vii

    Article  PubMed  Google Scholar 

  107. Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 46(6):1174–1188

    Article  CAS  PubMed  Google Scholar 

  108. Han BS, Hong JH, Hong C, Yeo SS, Lee D, Cho HK et al (2010) Location of the corticospinal tract at the corona radiata in human brain. Brain Res 1326:75–80

    Article  CAS  PubMed  Google Scholar 

  109. Berman J (2009) Diffusion MR tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am 17(2):205–214

    Article  PubMed  Google Scholar 

  110. Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E et al (2008) Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage 39(1):369–382

    Article  PubMed  Google Scholar 

  111. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG (2007) Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107(3):488–494

    Article  PubMed  Google Scholar 

  112. Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122(2):250–261

    Article  PubMed  Google Scholar 

  113. Kim CH, Chung CK, Koo BB, Lee JM, Kim JS, Lee SK (2011) Changes in language pathways in patients with temporal lobe epilepsy: diffusion tensor imaging analysis of the uncinate and arcuate fasciculi. World Neurosurg 75(3–4):509–516

    Article  PubMed  Google Scholar 

  114. Garcia-Pallero MA, Hodaie M, Zhong J, Manzanares-Soler R, Navas M, Pastor J et al (2019) Prediction of laterality in temporal lobe epilepsy using white matter diffusion metrics. World Neurosurg 128:e700–e7e8

    Article  PubMed  Google Scholar 

  115. Garcia-Pallero MA, Torres CV, Manzanares-Soler R, Camara E, Sola RG (2016) The role of diffusion tensor imaging in the pre-surgical study of temporal lobe epilepsy. Rev Neurol 63(12):537–542

    CAS  PubMed  Google Scholar 

  116. Ellmore TM, Beauchamp MS, Breier JI, Slater JD, Kalamangalam GP, O’Neill TJ et al (2010) Temporal lobe white matter asymmetry and language laterality in epilepsy patients. NeuroImage 49(3):2033–2044

    Article  PubMed  Google Scholar 

  117. Loddenkemper T, Morris HH, Moddel G (2008) Complications during the Wada test. Epilepsy Behav 13(3):551–553

    Article  PubMed  Google Scholar 

  118. Silva G, Citterio A (2017) Hemispheric asymmetries in dorsal language pathway white-matter tracts: a magnetic resonance imaging tractography and functional magnetic resonance imaging study. Neuroradiol J 30(5):470–476

    Article  PubMed  PubMed Central  Google Scholar 

  119. Vassal F, Schneider F, Boutet C, Jean B, Sontheimer A, Lemaire JJ (2016) Combined DTI tractography and functional MRI study of the language connectome in healthy volunteers: extensive mapping of white matter fascicles and cortical activations. PLoS One 11(3):e0152614

    Article  PubMed  PubMed Central  Google Scholar 

  120. Delgado-Fernandez J, Garcia-Pallero MA, Manzanares-Soler R, Martin-Plasencia P, Blasco G, Frade-Porto N et al (2020) Language hemispheric dominance analyzed with magnetic resonance DTI: correlation with the Wada test. J Neurosurg 1–8. https://doi.org/10.3171/2020.4.JNS20456. Epub ahead of print. PMID: 32707542

  121. Matsumoto R, Okada T, Mikuni N, Mitsueda-Ono T, Taki J, Sawamoto N et al (2008) Hemispheric asymmetry of the arcuate fasciculus: a preliminary diffusion tensor tractography study in patients with unilateral language dominance defined by Wada test. J Neurol 255(11):1703–1711

    Article  CAS  PubMed  Google Scholar 

  122. Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47(6):1083–1099

    Article  PubMed  Google Scholar 

  123. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386

    Article  PubMed  Google Scholar 

  124. Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M et al (2010) Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 112(3):503–511

    Article  PubMed  Google Scholar 

  125. Wu EX, Cheung MM (2010) MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed 23(7):836–848

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurang Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, G. (2021). Functional MRI and Diffusion Tensor Imaging. In: Moritani, T., Capizzano, A.A. (eds) Diffusion-Weighted MR Imaging of the Brain, Head and Neck, and Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-62120-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62120-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62119-3

  • Online ISBN: 978-3-030-62120-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics