Skip to main content

Vibratory Sensing and Communication in Caterpillars

  • Chapter
  • First Online:
Biotremology: Physiology, Ecology, and Evolution

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 8))

Abstract

Over the past few decades, scientists have discovered that insects live in complex vibratory environments that they both create and exploit for their survival. Yet, this growing body of literature is focused predominantly on adults, leaving a significant knowledge gap on vibratory sensing and communication in juveniles. There is burgeoning yet scattered evidence indicating that juveniles use vibrations in a wide range of contexts. In this chapter, we endeavored to synthesize the literature on vibratory sensing and communication in caterpillars (larval Lepidoptera). Caterpillars are obligate substrate-bound insects that are exposed to a wide range of vibrations generated by biotic and abiotic sources. This chapter shows that caterpillars across diverse taxonomic groups use vibrations in a variety of contexts, including predator detection and risk assessment, detection of abiotic events such as wind and rain, recruitment and spacing, territorial defense, and maintaining relationships with ants. While it is clear that many caterpillars are capable of detecting and discriminating between vibration sources, vibration receptors have not yet been identified in caterpillars, or any other holometabolous insect larvae. We discuss potential vibration receptors in larvae based on our knowledge of adult receptors and larval morphology and physiology. The vibratory landscapes of juvenile insects, including eggs, larvae, nymphs, and pupae, remain poorly understood. Yet, most juveniles are substrate-bound, and therefore, it is likely that vibrations play an important role in their survival. We recommend further investigations on vibratory sensing and communication in juveniles, from documenting the species using vibrations to discovering the sensory organs involved in detecting and processing vibratory information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca M, Boege K, Zaldívar-Riverón A (2014) Shelter-building behavior and natural history of two pyralid caterpillars feeding on Piper stipulaceum. J Insect Sci 14:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Barth FG (1997) Vibratory communication in spiders: adaptation and compromise at many levels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhauser Verlag, Basel (Switzerland), pp 247–272

    Chapter  Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer handbook of auditory research, vol 10. Springer, New York, pp 228–278

    Chapter  Google Scholar 

  • Barth FG (2002) A Spider’s world: senses and behavior. Springer Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  • Baurecht D, Barth FG (1992) Vibratory communication in spiders. J Comp Physiol A 171:231–243

    Article  Google Scholar 

  • Berenbaum MR, Green ES, Zangerl AR (1993) Web costs and web defense in the parsnip webworm (Lepidoptera: Oecophoridae). Environ Entomol 22:791–795

    Article  Google Scholar 

  • Bowen JL, Mahony SJ, Mason AC, Yack JE (2008) Vibration-mediated territoriality in the warty birch caterpillar Drepana bilineata. Physiol Entomol 33:238–250

    Article  Google Scholar 

  • Broad GR, Quicke DLJ (2000) The adaptive significance of host location by vibrational sounding in parasitoid wasps. P Roy Soc Lond B 267:2403–2409

    Article  CAS  Google Scholar 

  • Caldwell MS (2014) Interactions between airborne sound and substrate vibration in animal communication. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Animal signals and communication, vol 3. Springer, Berlin, Heidelberg, pp 65–92

    Google Scholar 

  • Casacci LP, Bonelli S, Balletto E, Barbero F (2019) Multimodal signaling in myrmecophilous butterflies. Front Ecol Evol 7:454

    Article  Google Scholar 

  • Casas J, Magal C (2006) Mutual eavesdropping through vibrations in a host parasitoid interaction: from plant biomechanics to behavioural ecology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology, and evolution. Taylor and Francis Group, Boca Raton, FL, pp 263–271

    Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461–469

    Article  Google Scholar 

  • Castellanos I, Barbosa P, Zuria I, Tammaru T, Christman MC (2011) Contact with caterpillar hairs triggers predator-specific defensive responses. Behav Ecol 22:1020–1025

    Article  Google Scholar 

  • Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu Rev Entomol 30:297–317

    Article  Google Scholar 

  • Cocroft RB (1999) Offspring-parent communication in a subsocial treehopper (Hemiptera: Membracidae: Umbonia crassicornis). Behaviour 136:1–21

    Article  Google Scholar 

  • Cocroft RB (2001) Vibrational communication and the ecology of group-living, herbivorous insects. Am Zool 41:1215–1221

    Google Scholar 

  • Cocroft RB, Hamel JA (2010) Vibrational communication in the “other insect societies”: a diversity of ecology, signals and signal functions. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Kerala, pp 47–68

    Google Scholar 

  • Cocroft RB, McNett GD (2006) Vibratory communication in treehoppers (Hemiptera: Membracidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology, and evolution. Taylor and Francis Group, Boca Raton, FL, pp 305–318

    Google Scholar 

  • Cocroft RB, Rodriguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M (2009) Vibrational communication. In: Resh VH, Carde RT (eds) Encyclopedia of insects. Elsevier/Academic Press, Amsterdam, pp 1034–1038

    Chapter  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Costa JT (2006) The other insect societies. The Belknap Press of Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Costa JT (2010) Social evolution in ‘other’ insects and arachnids. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic Press, Cambridge, MA, pp 231–241

    Chapter  Google Scholar 

  • Costa JT, Pierce NE (1997) Social evolution in the Lepidoptera: ecological context and communication in larval societies. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 407–422

    Chapter  Google Scholar 

  • de Boer G (2006) The role of the antennae and maxillary palps in mediating food preference by larvae of the tobacco hornworm, Manduca sexta. Entomol Exp Appl 119:29–38

    Article  Google Scholar 

  • Despland E (2019) Caterpillars cooperate to overcome plant glandular trichome defenses. Front Ecol Evol 7:199

    Article  Google Scholar 

  • Despland E, Le Huu A (2007) Pros and cons of group living in the forest tent caterpillar: separating the roles of silk and of grouping. Entomol Exp Appl 122:181–189

    Article  Google Scholar 

  • Dethier VG (1941) The function of the antennal receptors in lepidopterous larvae. Biol Bull 80:403–414

    Article  Google Scholar 

  • Devetak D (1998) Detection of substrate vibration in Neuropteroidea: a review. Acta Zool Fennica 209:87–94

    Google Scholar 

  • DeVries PJ (1990) Enhancement of symbioses between butterfly caterpillars and ants by vibrational communication. Science 248:1104–1106

    Article  CAS  PubMed  Google Scholar 

  • DeVries PJ (1991) Call production by myrmecophilous riodinid and lycaenid butterfly caterpillars (Lepidoptera): morphological, acoustical, functional, and evolutionary patterns. Am Mus Novit 3025:1–23

    Google Scholar 

  • Djemai I, Casas J, Magal C (2001) Matching host reactions to parasitoid wasp vibrations. P Roy Soc B 268:2403–2408. https://doi.org/10.1098/rsbp.2001.1811

    Article  CAS  Google Scholar 

  • Eberhard MJ, Eberhard SH (2013) Evolution and diversity of vibrational signals in Mantophasmatodea (Insecta). J Insect Behav 26:352–370. https://doi.org/10.1007/s10905-012-9352-6

    Article  Google Scholar 

  • Eberhard MJB, Picker MD (2019) Vibrational communication in heelwalkers (Mantophasmatodea). In: PSM H, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer Nature Switzerland, Cham, pp 293–307

    Chapter  Google Scholar 

  • Elias DO, Mason AC (2010) Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, pp 25–46

    Google Scholar 

  • Endo J, Takanashi T, Mukai H, Numata H (2019) Egg-cracking vibration as a cue for stink bug siblings to synchronize hatching. Curr Biol 29:143–148. https://doi.org/10.1016/j.cub.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  • Eubanks MD, Nesci KA, Petersen MK, Liu ZW, Sanchez HB (1997) The exploitation of an ant-defended host plant by a shelter building herbivore. Oecologia 109:454–460

    Article  PubMed  Google Scholar 

  • Fiedler K (1991) Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoologische Monographien 31:1–210

    Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–228

    Article  Google Scholar 

  • Fitzgerald TD (2003) Role of trail pheromone in foraging and processionary behavior of pine processionary caterpillars Thaumetopoea pityocampa. J Chem Ecol 29:513–532

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald TD, Costa JT (1999) Collective behavior in social caterpillars. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhäuser, Basel, pp 379–400

    Chapter  Google Scholar 

  • Fitzgerald TD, Peterson SC (1988) Cooperative foraging and communication in caterpillars. Bioscience 38:20–25

    Article  Google Scholar 

  • Fletcher LE (2007) Vibrational signals in a gregarious sawfly larva (Perga affinis): group coordination or competitive signalling? Behav Ecol Sociobiol 61:1809–1821

    Article  Google Scholar 

  • Fletcher LE (2008) Cooperative signaling as a potential mechanism for cohesion in a gregarious sawfly larva, Perga affinis. Behav Ecol Sociobiol 62:1127–1138

    Article  Google Scholar 

  • Fletcher LE, Yack JE, Fitzgerald TD, Hoy RR (2006) Vibrational communication in the cherry leaf roller caterpillar Caloptilia serotinella. J Insect Behav 19:1–18. https://doi.org/10.1007/s10905-005-9007-y

    Article  Google Scholar 

  • Fukui A (2001) Indirect interactions mediated by leaf shelters in animal-plant communities. Popul Ecol 43:31–40

    Article  Google Scholar 

  • Gish M, Dafni A, Inbar M (2012) Young aphids avoid erroneous dropping when evading mammalian herbivores by combining input from two sensory modalities. PLoS One 7(4):e32706. https://doi.org/10.1371/journal.pone.0032706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogala M (1985) Vibrational communication in insects (biophysical and behavioural aspects). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin, pp 117–126

    Google Scholar 

  • Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31. https://doi.org/10.1007/BF00610155

    Article  Google Scholar 

  • Greeney HF, Dyer LA, Smilanich AM (2012) Feeding by lepidopteran larvae is dangerous : a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr Surviv J 9:7–34

    Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, New York

    Google Scholar 

  • Grof-Tisza P, Holyoak M, Antell E, Karban R (2015) Predation and associational refuge drive ontogenetic niche shifts in an arctiid caterpillar. Ecology 96:80–89

    Article  PubMed  Google Scholar 

  • Guedes RNC, Matheson SM, Frei B, Smith ML, Yack JE (2012) Vibration detection and discrimination in the masked birch caterpillar (Drepana arcuata). J Comp Physiol A 198:325–335

    Article  CAS  Google Scholar 

  • Hager FA, Krausa K, Kirchner WH (2019) Vibrational behavior in termites (Isoptera). In: PSM H, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer Nature Switzerland, Cham, pp 309–327

    Chapter  Google Scholar 

  • Hagstrum DW, Subramanyam B (2010) Immature insects: ecological roles of mobility. Am Entomol 56:230–241

    Article  Google Scholar 

  • Hamel JA, Cocroft RB (2012) Negative feedback from maternal signals reduces false alarms by collectively signalling offspring. P Roy Soc B 279:3820–3826

    Google Scholar 

  • Hasenfuss I (1992) Morphology, evolution, and taxonomic importance of supposed web- vibration receptors in the larvae of butterflies (Lepidoptera: Pyraloidea and Gelechioidea). Entomologica Generalis 18:43–54

    Article  Google Scholar 

  • Heinrich B (1993) How avian predators constrain caterpillar foraging. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 224–247

    Google Scholar 

  • Henaut A (1990) Study of the sound produced by Pimpla instigator (Hymenoptera: Ichneumonidae) during host selection. Entomophaga 35:127–139

    Article  Google Scholar 

  • Hess WN (1917) The chordotonal organs and pleural discs of cerambycid larvae. Ann Entomol Soc Am 10:63–74

    Article  Google Scholar 

  • Hill CJ (1993) The myrmecophilous organs of Arhopala madytus Fruhstorfer (Lepidoptera: Lycaenidae). J Aust Entomol Soc 32:283–288

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge, MA, London

    Book  Google Scholar 

  • Hill PSM (2014) Stretching the paradigm or building a new? Development of a cohesive language for vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 13–30

    Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R181–R191. https://doi.org/10.1016/j.cub.2016.01.054

    Article  CAS  Google Scholar 

  • Hinton HE (1951) Myrmecophilous lycaenidae and other Lepidoptera--a summary. Proc Trans South Lond Ent Nat History Soc 1949–1950:111–175

    Google Scholar 

  • Hograefe T (1984) Subtrat-stridulation bei den koloniebildended Blattwespenlarven von Hemichroa crocea (Geoff.) (Hymenoptera: Tenthredinidae). Zool Anz 213:234–241

    Google Scholar 

  • Hunter MD (1987) Sound production in larvae of Diurnea fagella (Lepidoptera: Oecophoridae). Ecol Entomol 12:355–357

    Article  Google Scholar 

  • Hunter MD, Willmer PG (1989) The potential for interspecific competition between two abundant defoliators on oak: leaf damage and habitat quality. Ecol Entomol 14:267–277

    Article  Google Scholar 

  • Ishay J, Motro A, Gitter S, Brown MB (1974) Rhythms in acoustical communication by the oriental hornet, Vespa orientalis. Anim Behav 22:741–744

    Article  Google Scholar 

  • Jennings DT, Crawford HR Jr, Hunter ML Jr (1991) Predation by amphibians and small mammals on spruce budworm (Lepidoptera: Tortricidae). Great Lakes Entomologist 24:69–74

    Google Scholar 

  • Keil TA (1997) Functional morphology in insect mechanoreceptors. Microsc Res Tech 39:506–531

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Ishikawa Y, Takanashi T (2012) Pupal vibratory signals of a group-living beetle that deter larvae: are they mimics of predator cues? Commun Integr Biol 5:262–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: response characteristics of single receptor units. J Insect Physiol 28:155–163

    Article  Google Scholar 

  • Lakes-Harlan R, Strauss J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication, Animal signals and communication, vol 3. Springer, Berlin, Heidelberg, pp 277–302

    Google Scholar 

  • Lederhouse RC (1990) Avoiding the hunt: primary defenses of lepidopteran caterpillars. In: Evans D, Schmidt J (eds) Insect Defenses. State University of New York Press, Albany NY, pp 175–189

    Google Scholar 

  • Lill JT, Marquis RJ (2004) Leaf ties as colonization sites for forest arthropods: an experimental study. Ecol Entomol 29:300–308

    Article  Google Scholar 

  • Lill JT, Marquis RJ (2007) Microhabitat manipulation: ecosystem engineering by shelter-building insects. In: Cuddington KMD, Byers JE, Hastings A, Wilson WG (eds) Ecosystem engineers: concepts, theory, and applications in ecology. Elsevier Press, San Diego, CA, pp 107–138

    Google Scholar 

  • Low C (2008) Seismic behaviours of a leafminer, Antispila nysaefoliella (Lepidoptera: Heliozelidae). Fla Entomol 91:604–609

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and Behavioural physiology: roots and growing points. Springer-Verlag, Heidelberg, pp 332–353

    Chapter  Google Scholar 

  • Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J Comp Physiol 99:79–87

    Article  Google Scholar 

  • Matthews RW, Matthews JR (2009) Chemical communication. In: Matthews RW, Matthews JR (eds) Insect behavior. Springer, Dordrecht, pp 217–259

    Chapter  Google Scholar 

  • McIver S, Beech M (1986) Prey finding behavior and mechanosensilla of larval Toxorhynchites brevipalpis Theobald (Diptera: Culicidae). Int J Insect Morphol Embryol 15:213–225

    Article  Google Scholar 

  • Meyhöfer R, Casas J, Dorn S (1997) Vibration-mediated interactions in a host-parasitoid system. P Roy Soc Lond B 264:261–266

    Article  Google Scholar 

  • Montgomery SL (1983) Carnivorous caterpillars: the behavior, biogeography and conservation of Eupitheoia (Lepidoptera: Geometridae) in the Hawaiian islands. GeoJournal 76:549–556

    Google Scholar 

  • Montllor CB, Bernays EA (1993) Invertebrate predators and caterpillar foraging. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 170–202

    Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2014) Maternal vibration: an important cue for embryo hatching in a subsocial shield bug. PLoS One 9(1):e87932. https://doi.org/10.1371/journal.pone.0087932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishide Y, Tanaka S (2016) Desert locust, Schistocerca gregaria, eggs hatch in synchrony in a mass but not when separated. Behav Ecol Sociobiol 70:1507–1515. https://doi.org/10.1007/s00265-016-2159-2

    Article  Google Scholar 

  • Oberst S, Bann G, Lai JC, Evans TA (2017) Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 20:212–221. https://doi.org/10.1111/ele.12727

    Article  PubMed  Google Scholar 

  • Pescador-Rubio A, Stanford-Camargo SG, Páez-Gerardo LE, Ramírez-Reyes AJ, Ibarra-Jiménez RA, Fitzgerald TD (2011) Trail marking by caterpillars of the silverspot butterfly Dione juno huascuma. J Insect Sci 11(1):55

    PubMed  PubMed Central  Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771. https://doi.org/10.1146/annurev.ento.47.091201.145257

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Rochat D, van der Pers J, Marion-Poll F (2009) Pulsed odors from maize or spinach elicit orientation in European corn borer neonate larvae. J Chem Ecol 35:1032–1042

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Rochat D, Delaney KJ, Marion-Poll F (2013) Orientation of European corn borer first instar larvae to synthetic green leaf volatiles. J Appl Entomol 137:234–240

    Article  CAS  Google Scholar 

  • Prokopy RJ, Roitberg BD (2001) Joining and avoidance behavior in nonsocial insects. Annu Rev Entomol 46:631–635

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy K, Cocroft RB (2009) Collective signals in treehopper broods provide predator localization cues to the defending mother. Anim Behav 78:697–704

    Article  Google Scholar 

  • Randall JA (2014) Vibrational communication: spiders to kangaroo rats. In: Witzany G (ed) Biocommunication of animals. Springer, Dordrecht, pp 103–133

    Chapter  Google Scholar 

  • Reader T, Hochuli DF (2003) Understanding gregariousness in a larval lepidopteran: the roles of host plant, predation, and microclimate. Ecol Entomol 28:729–737

    Article  Google Scholar 

  • Rieske LK, Townsend LH (2005) Orientation and dispersal patterns of the eastern tent caterpillar, Malacosoma americanum F. (Lepidoptera: Lasiocampidae). J Insect Behav 18:193–208

    Article  Google Scholar 

  • Riva F, Barbero F, Bonelli S, Balletto E, Casacci LP (2016) The acoustic repertoire of lycaenid butterfly larvae. Bioacoustics 26:77–90. https://doi.org/10.1080/09524622.2016.1197151

    Article  Google Scholar 

  • Rodríguez RL (2019) Copulatory courtship with vibratory signals. In: PSM H, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer Nature Switzerland, Cham, pp 79–89

    Chapter  Google Scholar 

  • Roessingh P (1989) The trail following behaviour of Yponomeuta cagnagellus. Entomol Exp Appl 51:49–57

    Article  Google Scholar 

  • Roessingh P, Xu S, Menken SB (2007) Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity. J Comp Physiol A 193:635–647

    Article  CAS  Google Scholar 

  • Rosi-Denadai C (2018) How do caterpillars detect vibration? Proleg sensory hairs as vibration receptors in Drepana arcuata (Drepanidae) and Trichoplusia ni (Noctuidae). Carleton University, Dissertation. Available from: https://curve.carleton.ca/8de0920f-b83f-40d8-aa81-e8b2f44e9cda

    Book  Google Scholar 

  • Russ K (1969) Beiträge zum Territorialverhalten der Raupen des Springwurmwicklers, Sparganothis pilleriana Schiff (Lepidoptera: Tortricidae). Pflanzenschutzberichte 40:1–9

    Google Scholar 

  • Sagers CL (1992) Manipulation of host plant quality herbivores keep leaves in the dark. Funct Ecol 6:741–743

    Article  Google Scholar 

  • Sala M, Casacci LP, Balletto E, Bonelli S, Barbero F (2014) Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS One 9(4):e94341. https://doi.org/10.1371/journal.pone.0094341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba LJ (1972) Gallery orientation of cerambycid larvae. The Entomologist 105:300–304

    Google Scholar 

  • Schönrogge K, Barbero F, Casacci LP, Settele J, Thomas JA (2017) Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim Behav 134:249–256. https://doi.org/10.1016/j.anbehav.2016.10.031

    Article  Google Scholar 

  • Schoonhoven LM (1987) What makes a caterpillar eat? The sensory code underlying feeding behavior. In: Chapman RE, Bernays EA, Stoffolano JG (eds) Perspectives in chemoreception and behavior. Springer Verlag, New York, pp 69–97

    Chapter  Google Scholar 

  • Schoonhoven LM, Dethier VG (1966) Sensory aspects of host-plant discrimination by lepidopterous larvae. Arch Néerl Zool 16:497–530

    Google Scholar 

  • Schoonhoven LM, van Loon JJA (2002) An inventory of taste in caterpillars: each species its own key. Acta Zool Acad Sci Hung 48:215–263

    Google Scholar 

  • Schurian KG, Fiedler K (1991) Einfache Methoden zur Schallwahrnehmung bei Bläulings-larven (Lepidoptera: Lycaenidae). Entomol Z 101:393–412

    Google Scholar 

  • Scott JL, Yack JE (2012) Vibratory territorial signals in caterpillars of the poplar lutestring, Tethea or (Lepidoptera: Drepanidae). Eur J Entomol 109:411–417

    Article  Google Scholar 

  • Scott JL, Kawahara AY, Skevington JH, Yen S-H, Sami A, Smith ML, Yack JE (2010) The evolutionary origins of ritualized acoustic signals in caterpillars. Nat Commun 1:1–9

    Article  CAS  Google Scholar 

  • Shestakov LS (2015) A comparative analysis of vibrational signals in 16 sympatric species (Pentatomidae, Heteroptera). Entomol Rev 95:310–325

    Article  Google Scholar 

  • Shields VDC, Martin TLC (2012) The structure and function of taste organs in caterpillars. In: Lynch EJ, Petrov AP (eds) The sense of taste. Nova Science, New York, pp 147–166

    Google Scholar 

  • Sigmon E (2015) Interspecific variation in aggressive fighting behavior of shelter-building caterpillars. J Insect Behav 28:403–416

    Article  Google Scholar 

  • Starnecker G (1996) Color preference for pupation sites of the butterfly larvae Inachis io and the significance of the pupal melanization reducing factor. Naturwissenschaften 83:474–476

    CAS  Google Scholar 

  • Stehr FW (1987) Order lepidoptera. In: Stehr FW (ed) Immature insects, vol 1. Kendall/Hunt Publishing Company, Dubuque, IA, pp 288–596

    Google Scholar 

  • Stewart KW (1997) Vibrational communication in insects. Epitome in the language of stoneflies? Am Entomol Summer 1997:81–91

    Article  Google Scholar 

  • Strauss J, Stritih-Peljhan N, Lakes-Harlan R (2019) Determining vibroreceptor sensitivity in insects: the influence of experimental parameters and recording techniques. In: PSM H, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer Nature Switzerland, Cham, pp 209–233

    Chapter  Google Scholar 

  • Takanashi T, Fukaya M, Nakamuta K, Skals N, Nishino H (2016) Substrate vibrations mediate behavioral responses via femoral chordotonal organs in a cerambycid beetle. Zool Lett 2:18

    Article  Google Scholar 

  • Tanaka S, Sakamoto H, Hata T, Sugahara R (2018) Hatching synchrony is controlled by a two-step mechanism in the migratory locust Locusta migratoria (Acrididae: Orthoptera): roles of vibrational stimuli. J Insect Physiol 107:125–135

    Article  CAS  PubMed  Google Scholar 

  • Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I. Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31

    Article  Google Scholar 

  • Tautz J (1978) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). II. Response characteristics of the sensory cell. J Comp Physiol 125:67–77

    Article  Google Scholar 

  • Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4:101–110

    Article  Google Scholar 

  • Taylor CJ, Yack JE (2019) Hearing in caterpillars of the monarch butterfly (Danaus plexippus). J Exp Biol 222:jeb211862. https://doi.org/10.1242/jeb.211862

    Article  PubMed  Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signaling in a lycaenid butterfly ant mutualism. Anim Behav 60:13–26

    Article  CAS  PubMed  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R (2019) Predator-prey interactions and eavesdropping in vibrational communication networks. Front Ecol Evol 7:203. https://doi.org/10.3389/fevo.2019.00203

    Article  Google Scholar 

  • Wagner D (2005) Caterpillars of eastern North America: a guide to identification and natural history. Princeton University Press, Princeton NJ

    Google Scholar 

  • Warrant EJ, Kelber A, Kristensen NP (2003) Eyes and vision. In: Kristensen NP (ed) Handbook of zoology, part 36, Lepidoptera, moths and butterflies, vol 2: morphology, physiology and development, vol IV. Walter de Gruyter, Berlin, New York, pp 325–359

    Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337

    Article  PubMed  Google Scholar 

  • Yack JE (2016) Vibrational signaling. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing. Springer Verlag, Berlin, pp 99–123

    Chapter  Google Scholar 

  • Yack JE, Smith ML, Weatherhead PJ (2001) Caterpillar talk: acoustically mediated territoriality in larval Lepidoptera. P Nat Acad Sci USA 98:11371–11375

    Article  CAS  Google Scholar 

  • Yack JE, Gill S, Drummond-Main C, Sherratt TN (2014) Residency duration and shelter quality influence vibratory signalling displays in a territorial caterpillar. Ethology 120:354–364

    Article  Google Scholar 

  • Yadav C, Yack JE (2018) Immature stages of the masked birch caterpillar, Drepana arcuata (Lepidoptera: Drepanidae) with comments on feeding and shelter building. J Insect Sci 18(1):18

    Article  PubMed Central  Google Scholar 

  • Yadav C, Guedes RNC, Matheson SM, Timbers TA, Yack JE (2017) Invitation by vibration: recruitment to feeding shelters by vibrating caterpillars. Behav Ecol Sociobiol 71:51

    Article  Google Scholar 

  • Zalucki M, Clarke AR, Malcolm SB (2002) Ecology and behaviour of first-instar larval Lepidoptera. Annu Rev Entomol 47:361–393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Christian Nathan and Conrado Rosi-Denadai for help in reviewing literature for parts of the paper, to Kaylen Brzezinski for the line drawings (Figs. 19.1 and 19.2), and to Francesca Barbero and Michele Zaccagno for contributing a photo and recording of M. alcom (Fig. 19.3). This research was funded by the Natural Science and Engineering Council of Canada (2014-05947), the Canadian Foundation for Innovation (9555), and an Early Researcher Award (ERO7-04-1-44) to JEY, and Ontario Graduate Scholarship to CY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne E. Yack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yack, J.E., Yadav, C. (2022). Vibratory Sensing and Communication in Caterpillars. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_19

Download citation

Publish with us

Policies and ethics