Skip to main content

Bioströmungsmechanik

  • Chapter
  • First Online:
Prandtl - Führer durch die Strömungslehre

Part of the book series: Springer Reference Technik ((SRT))

  • 12k Accesses

Zusammenfassung

Das Kapitel Bioströmungsmechanik befasst sich im Gegensatz zu den vorangegangenen Kapiteln mit Strömungen die von flexiblen biologischen Oberflächen aufgeprägt werden und ist Teil des Lehrbuches und Nachschlagewerkes H. Oertel jr. (Hrsg.) Prandtl-Führer durch die Strömungslehre. Von der Vielzahl der biologischen Strömungen werden in diesem Kapitel exemplarisch die Grundlagen des Fliegens und Schwimmens der Tiere sowie die pulsierende Strömung im menschlichen Herzen behandelt. Die Bioströmungsmechanik ist mathematisch dadurch gekennzeichnet, dass die Grundgleichungen der Strukturmechanik biologischer Materialien mit den Grundgleichungen der Strömungsmechanik verknüpft und Modelle der Strömung-Struktur Kopplung zur Strömungssimulation entwickelt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Weiterführende Literatur

  • Bechert, D.W., Bruse, M., Hage, W., Meyer, R.: Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87, 157–171 (2000)

    Article  Google Scholar 

  • Brown, R.H.J.: The flight of birds: II. Wing function in relation to flight speed. J. Exp. Biol. 30, 90–103 (1953)

    Google Scholar 

  • Bushnell, D.M.: Drag reduction in nature. Ann. Rev. Fluid Mech. 23, 65–79 (1991)

    Article  Google Scholar 

  • Caro, C.G., Pedley, T.J., Seed, W.A.: The Mechanism of the Circulation. Oxford University Press, Oxford (1978)

    MATH  Google Scholar 

  • Conroy, R.T.W.L., Mills, J.N.: Human Circadian Rhythms. Churchill, London (1970)

    Google Scholar 

  • Doenst, T., Spiegel, K., Reik, M., Markl, M., Henning, J., Nitzsche, S., Beyersdorf, F., Oertel, H. jr.: Fluid dynamics modelling of the left ventricle prototypical evaluation of the effect of ischemic remodelling and surgical ventricle reconstruction. Ann. Thorac. Surg. 87, 1187–1195 (2009)

    Google Scholar 

  • Friedman, M.H., Bargeron, C.B., Duncan, D.D., Hutchins, G.M., Mark, F.F.: Effects of arterial compliance and Non-Newtonian rheology on correlations between internal thickness and wall shear. J. Biomech. Eng. 114, 317–320 (1992)

    Article  Google Scholar 

  • Fung, Y.C.: Biomechanics – Motion, Flow, Stress and Growth. Springer, New York/Berlin/ Heidelberg (1990)

    Book  MATH  Google Scholar 

  • Fung, Y.C.: Biomechanics – Mechanical Properties of Living Tissues. Springer, Berlin/Heidelberg/ New York (1993)

    Google Scholar 

  • Fung, Y.C.: Biomechanics: Circulation. Springer, Berlin/Heidelberg/New York (1997)

    Book  Google Scholar 

  • Glass, L., Hunter, P.J., McCulloch, A.D. (Hrsg.): Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function. Springer, Berlin/Heidelberg/New York (1991)

    Google Scholar 

  • Gray, J.: Animal Locomotion. Weidenfeld & Nicolson, London (1968)

    Google Scholar 

  • Handke, M., Schäfer, D.M., Müller, G., Schöchlin, A., Magosaki, E., Geibel, A.: Dynamic changes of atrial septal defect area: new insights by three-dimensional volume-rendered echocardiography with high temporal resolution. Eur. J. Echocardiogr. 2, 46–51 (2001)

    Article  Google Scholar 

  • Hayashi, K., Yanai, Y., Naiki, T.: A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation. J. Biomech. Eng. 118, 273–279 (1996)

    Article  Google Scholar 

  • Hirt, F.: Cardiac Valves in a model circulatory system. Sulzer Tech. Rev. 2, 36–40 (1994)

    Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2008)

    Google Scholar 

  • Humphrey, J.D., Delange, S.L.: An Introduction to Biomechanics. Springer, New York/Berlin/ Heidelberg (2004)

    Google Scholar 

  • Hunter, P.J., Smaill, B.H.: Electromechanics of the Heart Based on Anatomical Models. In: Zipes, D.P., Jalife, J. (Hrsg.) Cardiac Electrophysiology from Cell to Bedside, S. 277–283. Saunders, Philadelphia (2000)

    Google Scholar 

  • Hunter, P.J., Nash, M.P., Sands, G.B.: Computational electromechanics of the heart. In: Panfilov, A.V., Holden, A.V. (Hrsg.) Computational Biology of the Heart, Bd. 4, S. 345–407. Wiley, Chichester (1997)

    Google Scholar 

  • Hunter, P.J., Nielsen, P.M.F., Smaill, B.H., LeGrice, I.J., Hunter, I.W.: An anatomical heart model with applications to myocardial activation and ventricular mechanics. In: Pilkington, T.C., Loftis, B., Thompson, J.F., Woo, S.L.-Y., Palmer, T.C., Budinger, T.F. (Hrsg.) High-Performance Computation in Biomedical Research, Bd. 1, S. 3–26. CRC Press, Chichester (1993)

    Google Scholar 

  • Jung, B.A., Kreher, B.W., Markl, M., Hennig, J.: Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures. Eur. J. Cardio-Thoradic Surg. 29, 158–164 (2006)

    Article  Google Scholar 

  • Keener, J.P., Panfilov, A.V.: The effects of geometry and fibre orientation on propagation and extracular potentials in myocardium. In: Panfilov, A.V., Holden, A.V. (Hrsg.) Computational Biology of the Heart. Wiley, Chichester (1997)

    Google Scholar 

  • Krittian, S., Janoske, U., Böhlke, T., Oertel, H. jr.: Partitioned fluid-solid coupling for cardiovascular blood flow – left ventricular fluid mechanics. Ann. Biomed. Eng. 38, 1426–1441 (2010)

    Google Scholar 

  • Liepsch, D.: Flow in tubes and arteries – a comparison. Biorheology 23, 395–433 (1986)

    Google Scholar 

  • Liepsch, D., Weigand, C.: Comparison of laser doppler anemometry and pulsed color doppler velocity measurements in an elastic replica of a carotid artery bifurcation. J. Vasc. Investig. 2 (3), 103–113 (1996)

    Google Scholar 

  • Lighthill, M.J.: Note on the swimming of slender Fish. J. Fluid Mech. 9, 305–317 (1960)

    Article  MathSciNet  Google Scholar 

  • Lighthill, M.J.: Mathematical Biofluidmechanics. Society for Industrial and Applied Mathematics, Philadelphia (1975)

    Book  Google Scholar 

  • Malmivuo, J., Plonsey, R.: Bioelectromagnetism. Oxford University Press, New York (1995)

    Google Scholar 

  • Mazumdar, J.N.: Biofluid Mechanics. World Scientific, Singapore, London (1992)

    Book  MATH  Google Scholar 

  • Nachtigall, W.: Technische Biologie von Umströmungsvorgängen und Aspekte ihrer bionischen übertragbarkeit. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse / Akademie der Wissenschaften und der Literatur. Steiner, Stuttgart (2001)

    Google Scholar 

  • Nachtigall, W.: Bionik. Springer, Berlin (2002)

    Book  Google Scholar 

  • Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elast. 61, 113–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Naujokat, E., Kienke, U.: Neuronal and hormonal cardiac control processes in a model of the human circulatory system. J. Bioelectromagn. 2 (2), 1–7 (2000)

    Google Scholar 

  • Oertel, H. jr.: Biofluid mechanics. In: Prandtl-Essentials of Fluid Mechanics. Springer, New York (2010)

    Google Scholar 

  • Oertel, H. jr.: Modelling the Human Cardiac Fluid Mechanics. Universitäts-Verlag, Karlsruhe (2005)

    Google Scholar 

  • Oertel, H. jr., Ruck, S.: Bioströmungsmechanik. Springer Vieweg, Wiesbaden (2015)

    Google Scholar 

  • Oertel, H. jr., Spiegel, K., Donisi, S.: Modelling the Human Cardiac Fluid Mechanics, 2. Aufl. Universitäts-Verlag, Karlsruhe (2006)

    Google Scholar 

  • Oertel, H. jr., Krittian, S.B.S., Spiegel, K.: Modelling the Human Cardiac Fluid Mechanics, 3. Aufl. Universitäts-Verlag, Karlsruhe (2009)

    Google Scholar 

  • Oertel, H. jr., Krittian, S.B.S.: Modelling the Human Cardiac Fluid Mechanics, 4. Aufl. KIT Scientific Publishing, Karlsruhe (2011)

    Google Scholar 

  • Ottesen, J.T., Olufsen, M.S., Larsen, J.K.: Applied Mathematical Models in Human Physiology. Society for Industrial Mathematics, Philadelphia (2004)

    Book  MATH  Google Scholar 

  • Panfilov, A.V., Holden, A.V.: Computational Biology of the Heart. Wiley, Chichester (1997)

    MATH  Google Scholar 

  • Patel, D.J., Vaishnav, R.N.: Basic Hemodynamics and its Role in Disease Processes. University Park Press, Baltimore (1980)

    Google Scholar 

  • Perktold, K., Resch, M., Florian, H.: Pulsatile Non-Newtonian flow characteristics in a three-dimensional human catroid bifurcation model. J. Biomech. Eng. 113, 464–475 (1991)

    Article  Google Scholar 

  • Peskin, C.S., McQueen, D.M.: Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am. J. Physiol. 266, H319–28 (1994)

    Google Scholar 

  • Peskin, C.S., McQueen, D.M.: Fluid Dynamics of the Heart and its Valves. Mathematical Modelling, Ecology, Physiology and Cell Biology. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  • Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically Modelling the Electrical Activity of the Heart. World Scientific, Upper Saddle River/London (2005)

    Book  MATH  Google Scholar 

  • Ruck, S., Oertel, H. jr.: Modelling the Bird Flight. KIT Scientific Publishing, Karlsruhe (2011)

    Google Scholar 

  • Schauf, L., Moffet, D.F., Moffet, S.B.: Medizinische Physiologie. Walter de Gruyter, Berlin/New York (1993)

    Google Scholar 

  • Schubert, E. (Hrsg.): Medizinische Physiologie. Walter de Gruyter, Berlin/New York (1993)

    Google Scholar 

  • Skalak, R., Ozkaya, N., Skalak, T.C.: Biofluid Mechanics. Ann. Rev. Fluid Mech. 21, 167–204 (1989)

    Article  MathSciNet  Google Scholar 

  • Sugawara, M., Kajiya, F., Kitabatake, A., Matino, H.: Blood Flow in the Heart and Large Vessels. Springer, Tokyo/Berlin/Heidelberg (1989)

    Book  Google Scholar 

  • Torrent-Guasp, F., et al.: Seminars in Thoracic and Cardiovascular Surgery 13 (4), 301–319 (2001)

    Google Scholar 

  • Werner, C.D., Sachse, F.B., Baltes, C., Dössel, O.: The visible man dataset in medical education: electrophysiologie of the human heart. In: Proceedings of the Third Users Conference of the National Library of Medcine’s Visible Human Project, S. 1–81 (2000)

    Google Scholar 

  • Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Oertel Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Oertel, H. (2017). Bioströmungsmechanik. In: Oertel jr., H. (eds) Prandtl - Führer durch die Strömungslehre. Springer Reference Technik . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-08627-5_13

Download citation

Publish with us

Policies and ethics