We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Zusammenfassung

Zu den konventionellen Lithografieverfahren gehören die Foto-, EUV-, Röntgen-, Elektronenstrahl-und Ionenstrahllithografie. Foto-, EUV-, Röntgenlithografie und die Elektronenstrahlschattenwurfmetode sind parallele Verfahren, d. h., es können größere Substratflächen gleichzeitig belichtet werden. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. S. Büttgenbach, Mikromechanik, Stuttgart, Teubner (1994)

    Google Scholar 

  2. Harry J. Levinson: Principles of Lithography. 3. Auflage. SPIE Press, 2011, ISBN 978-0-8194-8324-9, S. 51.

    Google Scholar 

  3. Daniel P. Sanders: Advances in Patterning Materials for 193 nm Immersion Lithography. In: Chemical Reviews. Band 110, Nr. 1, 2010, S. 321–360, https://doi.org/10.1021/cr900244n.

  4. Terasawa, T., N. Hasegawa, T. Tamaka, T. Somichi, K.: Improved resolution of an i-line Stepper using a phase-shifting mask. J. Vac. Sience Technology B8 (6) Nov./Dec. 1990

    Google Scholar 

  5. IBM Forschung zeigt Weg zur verlängerten Nutzung aktueller Chipherstellungsverfahren. IBM-Pressemitteilung, vom 20. Februar 2006.

    Google Scholar 

  6. Intel schließt 32nm-Prozessentwicklung erfolgreich ab. (Pressebereich) (Nicht mehr online verfügbar.) Intel, 10. Dezember 2008, archiviert vom Original am 10. Januar 2010; abgerufen am 11. Dezember 2008.

    Google Scholar 

  7. Grauton-Lithografie mit Fotolacken. (PDF; 219 kB) Microchemicals, abgerufen am 11. November 2009.

    Google Scholar 

  8. Harry J. Levinson: Principles of Lithography. 3. Auflage. SPIE Press, 2011, ISBN 978-0-8194-8324-9

    Google Scholar 

  9. Th. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys., 72:545–591, 2000.

    Google Scholar 

  10. A.H. Zewail. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture). Angew. Chem. Int. Ed., 39:2586, 2000.

    Google Scholar 

  11. F. Krausz and M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81:163, 2009.

    Google Scholar 

  12. M. Anand, P. Gibbon, and M. Krishnamurthy. Hot electrons produced from long scale-length laser-produced droplet plasmas. Laser Physics, 17:408–414, 2007.

    Google Scholar 

  13. L. Di Lucchio, A.A. Andreev, and P. Gibbon. Ion acceleration by intense, few-cycle laser pulses with nanodroplets. Phys. Plas., 22:053114, 2015.

    Google Scholar 

  14. L. Di Lucchio, A.A. Andreev, and P. Gibbon. Ion acceleration by intense, few-cycle laser pulses with nanodroplets. Phys. Plas., 22:053114, 2015.

    Google Scholar 

  15. L. Di Lucchio, A.A. Andreev, and P. Gibbon. Ion acceleration by intense, few-cycle laser pulses with nanodroplets. Phys. Plas., 22:053114, 2015.

    Google Scholar 

  16. T.P. Yu, L.X. Hu, Y. Yin, F.Q. Shao, H.B. Zhuo, Y.Y. Ma, X.H Yang, W. Luo, and A. Pukhov. Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets. Appl. Phys. Lett., 105:114101, 2014.

    Google Scholar 

  17. Y.E. Geints, A.M. Kabanov, G.G. Matvienko, V.K. Oshlakov, A.A. Zemlyanov, S.S. Golik, and O.A. Bukin. Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation. Opt. Lett., 35:2717–2719, 2010.

    Google Scholar 

  18. T. Sizyuk and A. Hassanein. Extending the path for efficient extreme ultraviolet sources for advanced nanolithography. Phys. Plas., 22:093101, 2015.

    Google Scholar 

  19. K. Takenoshita, C.S. Koay, S. Teerawattansook, M. Richardson, and V. Bakshi. Debris characterization and mitigation from microscopic laser-plasma tin-doped droplet EUV sources. Proc. SPIE, 5751:563--571, 2005.

    Google Scholar 

  20. S. Toleikis, T. Bornath, T. Döppner, S. Düsterer, R.R. Fäustlin, E. Förster, C. Fortmann, S.H. Glenzer, S. Göde, G. Gregori, R. Irsig, T. Laarmann, H.J. Lee, B. Li, K.H. Meiwes-Broer, J. Mithen, B. Nagler, A. Przystawik, P. Radcliffe, H. Redlin, R. Redmer, H. Reinholz, G. Röpke, F. Tavella, R. Thiele, J. Tiggesbäumker, I. Uschmann, S.M. Vinko, T. Whitcher, U. Zastrau, B. Ziaja, and T. Tschentscher. Probing near-solid density plasmas using soft x-ray scattering. J. Phys. B: At. Mol. Opt. Phys., 43:194017, 2010.

    Google Scholar 

  21. P. Gibbon. Short pulse laser interactions with matter. World Scientific, 2004.

    Google Scholar 

  22. M.V. Ammosov, N.B. Delone, and V.P. Krainov. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP, 64:1191, 1986.

    Google Scholar 

  23. V.S. Popov. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Physics-Uspekhi, 47:855, 2004

    Google Scholar 

  24. D. Batani, C.J. Joachain, S. Martellucci, and A.N. Chester. Atoms, Solids and Plasmas in Super-Intense Laser Fields. Springer, 2001.

    Google Scholar 

  25. C. Kittel. Einführung in die Festkörperphysik. Oldenbourg, Vierzehnte Auflage, 2005.

    Google Scholar 

  26. M.B. Smirnov and W. Becker. X-ray generation in laser-heated cluster beams. Phys. Rev. A, 74:013201, 2006.

    Google Scholar 

  27. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, Ph. Martin, P. Audebert, J.C. Gauthier, J.P. Geindre, and T. Wittmann. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E, 69:026402, 2004.

    Google Scholar 

  28. P. Sperling, T. Liseykina, D. Bauer, and R. Redmer. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas. New J. Phys., 15:025041, 2013.

    Google Scholar 

  29. T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, and M.D. Perry. Interaction of intense laser pulses with atomic clusters. Phys. Rev. A, 53:3379, 1996.

    Google Scholar 

  30. M. Arbeiter and Th. Fennel. Rare-gas clusters in intense VUV, XUV and soft x-ray pulses: signatures of the transition from nanoplasma-driven cluster expansion to Coulomb explosion in ion and electron spectra. New J. Phys., 13:053022, 2011.

    Google Scholar 

  31. J. Zweiback, T. Ditmire, and M.D. Perry. Femtosecond time-resolved studies of the dynamics of noble-gas cluster explosions. Phys. Rev. A, 59:R3166–R3169, 1999.

    Google Scholar 

  32. P.V. Bulat, K.N. Volkovb, and E.Y. Ilyinaa. Model of Interaction of Laser Radiation with a Drop of Liquid. Int. Electr. J. Math. Ed., 11:3009--3020, 2016.

    Google Scholar 

  33. Gupta, T.M. Antonsen, T. Taguchi, and J. Palastro. Effect of pulse duration on resonant heating of laser-irradiated argon and deuterium clusters. Phys. Rev. E, 74:046408, 2006.

    Google Scholar 

  34. Prigent, C. Deiss, E. Lamour, J.P. Rozet, D. Vernhet, and J. Burgdörfer. Effect of pulse duration on the x-ray emission from Ar clusters in intense laser fields. Phys. Rev. A, 78:053201, 2008.

    Google Scholar 

  35. Y. Liu, Q. Dong, X. Peng, Z. Jin, and J. Zhang. Soft x-ray emission, angular distribution of hot electrons, and absorption studies of argon clusters in intense laser pulses. Phys. Plas., 16:043301, 2009.

    Google Scholar 

  36. D. Attwood. Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, 2007.

    Google Scholar 

  37. H. Haken und H.C. Wolf. Atom- und Quantenphysik: Einführung in die experimentellen und theoretischen Grundlagen. Siebte Auflage. Springer, 2000.

    Google Scholar 

  38. H.R. Griem. Principles of Plasma Spectroscopy. Cambridge University Press, 1997.

    Google Scholar 

  39. D. Meschede. Optik, Licht und Laser. Teubner, 1999.

    Google Scholar 

  40. J.-C. Diels and W. Rudolph. Ultrashort Laser Pulse Phenomena, Second Edition. Elsevier, 2006.

    Google Scholar 

  41. Monmayrant, S. Weber, and B. Chatel. A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B: At. Mol. Opt. Phys., 43:103001, 2010.

    Google Scholar 

  42. N.X. Truong, J. Tiggesbäumker, and K.H. Meiwes-Broer. Intense colored pulse trains: generation, characterization, and applications. J. Opt., 12:115201, 2010.

    Google Scholar 

  43. D. Kaplan and P. Tournois. Acousto-Optic Spectral Filtering of Femtosecond Laser Pulses, volume 4. Springer, 2004.

    Google Scholar 

  44. P. Debye and F.W Sears. On the Scattering of Light by Supersonic Waves. Proc. Natl. Acad. Sci., 18:409–414, 1932.

    Google Scholar 

  45. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. Van Stryland. Handbook of Optics, Volume V: Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optic. McGraw-Hill, 2010

    Google Scholar 

  46. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping. Opt. Lett., 25:575, 2000.

    Google Scholar 

  47. R.A. Costa Fraga, A. Kalinin, M. Kühnel, D.C. Hochhaus, A. Schottelius, J. Polz, M.C. Kaluza, P. Neumayer, and R.E. Grisenti. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation. Rev. Sci. Instr., 83:025102, 2012.

    Google Scholar 

  48. B.A.M. Hansson, M. Berglund, O. Hemberg, and H.M. Hertz. Stabilization of liquified-inert-gas jets for laser-plasma generation. J. Appl. Phys., 95:4432–4437, 2004.

    Google Scholar 

  49. J.P. Toennies. Helium clusters and droplets: microscopic superfluidity and other quantum effects. Mol. Phys., 111:1879–1891, 2013.

    Google Scholar 

  50. H. Wolter: Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. In: Annalen der Physik. 10 (1952), S. 94–114.

    Google Scholar 

  51. Paul Anton Letnes: Wave propagation in layered structures – Lecture. Abgerufen am 11. Mai 2017 (englisch).

    Google Scholar 

  52. C. J. R. Sheppard: Approximate calculation of the reflection coefficient from a stratified medium. In: Pure and Applied Optics: Journal of the European Optical Society Part A. 4, Nr. 5, 1995, S. 665. bibcode:1995PApOp...4..665S. https://doi.org/10.1088/0963-9659/4/5/018.

  53. H. A. Macleod: Thin-Film Optical Filters. 3. Auflage. Institute of Physics Publishing, Bristol/Philadelphia 2001, ISBN 0-7503-0688-2 (Erstausgabe: 1986).

    Google Scholar 

  54. Wolfgang Menz, Jürgen Mohr, Oliver Paul: Mikrosystemtechnik für Ingenieure. John Wiley & Sons, 2005, ISBN 978-3-527-30536-0, S. 232–240.

    Google Scholar 

  55. Dietrich Widmann, Hermann Mader, Hans Friedrich: Technologie Hochintegrierter Schaltungen. Springer, 1996, ISBN 3-540-59357-8, S. 143–153.

    Google Scholar 

  56. W. Duane, F. L. Hunt: On X-Ray Wave-Lengths. In: Physical Review. Band 6, Nr. 2, 1915, S. 166–172, https://doi.org/10.1103/PhysRev.6.166.

  57. Brüche, E. A. Recknagel: Elektronengeräte. Berlin: Springer-Verlag 1941

    Google Scholar 

  58. W. H. Bennett: Radiofrequency Mass Spectrometer. In: Journal of Applied Physics. Band 21, 1950, S. 143, https://doi.org/10.1063/1.1699613 (englisch)

  59. Mathuthu, M., Zengeni, T., Gholap, A. V. The Three Phase Theory for Plasma Focus Devices. IEEE Transactions on Plasma Science. Dezember 1997, Bd. 25, 6.

    Google Scholar 

  60. Dahlbacka, G. et. a.: Dynamics, Stability and possible X-Ray lasing of Imploded Plasmas. 4th International Topical Conference on High-Power Electron- and Ion-Beam Research and Technology. June 29th – July 3rd, 1981, Ecole Polytechnique – Palaiseau (France)

    Google Scholar 

  61. Rapp, H. Experimentelle Untersuchung der Betriebscharakteristik eines Plasmafokus. Institut für Plasmaforschung (Universität Stuttgart). Stuttgart : s.n., 1974. IPF-74–1.

    Google Scholar 

  62. Kalaiselvi, S.M.P., et al., Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A potenzial source for soft X-ray lithography. Physics Letters A, 2013. 377(18): p. 1290–1296.

    Google Scholar 

  63. Helm, H.: Z. Naturforsch. 27a, 1812 (1972)

    Google Scholar 

  64. Bittner, G.J, J. Chistiansen, W. Dümmler, N. Lieser, R. Seeböck und W. Steudtner: In: Symp. On Atomic an Surface Physics 84, Maria Slm, Salzburg, Jan 29 – Febr. 4, 1984

    Google Scholar 

  65. Informationsmaterial des Fraunhofer Institut für Mikrostrukturtechnik (IMT) Berlin, und der Leybold-Heraeus GmbH, Hanau

    Google Scholar 

  66. Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006, ISBN 3-540-25421-8.

    Google Scholar 

  67. Glavatskikh, V. S. Kortov, H.-J. Fitting: Self-consistent electrical charging of insulating layers and metal-insulator-semiconductor structures. In: Journal of Applied Physics. Band 89, Nr. 1, 2001, S. 440–448, https://doi.org/10.1063/1.1330242.

  68. J. Bourdillon, C. B. Boothryd, G. P. Williams, Y. Vladimirsky: Near-field x-ray lithography to 15 nm. In: Proc. SPIE Microlithography. Band 5374, 2004, S. 546–557, https://doi.org/10.1117/12.529642.

  69. AWAKE successfully accelerates electrons. 29. August 2018, abgerufen am 24. Februar 2019.

    Google Scholar 

  70. link.springer.com/content/pdf/10.1007%2F3-540-27379-4.

    Google Scholar 

  71. R. A. Levy: Microelectronic Materials and Processes. Springer, 1989, ISBN 978-0-7923-0154-7, Chapter 9.4. X-Ray Lithography, S. 414–418.

    Google Scholar 

  72. Antony Bourdillon, Yuli Vladimirsky: X-ray Lithography on the Sweet Spot. In: UHRL. San Jose 2006, ISBN 978-0-9789839-0-1 (Online).

    Google Scholar 

  73. H. C. Pfeiffer et al., J. Vac. Sci. Technol. B 17(6), 2840 Nov/Dec (1999)

    Google Scholar 

  74. N. Broers, A. C. F. Hoole, J. M. Ryan: Electron beam lithography – Resolution limits. In: Microelectronic Engineering. Band 32, Nr. 1–4, 1996, S. 131–142, https://doi.org/10.1016/0167-9317(95)00368-1.

  75. H. Bohlen, U. Behringer, J. Keyser, P. Nehmitz, W. Zapka, W. Kulke: High Throughput Submicron Lithography with Electron Proximity Printing, Solid State of Technology, Sept. 1984

    Google Scholar 

  76. P.E. Malmberg, T.W. O’Keeffe, M.M. Sopira and M.W. Levi: LSI patterns using generation and replication by electron beams , J. Vac. Sci. Technol. 10, No, 6, 1025, 1973

    Google Scholar 

  77. U. Behringer, W. Haug, K. Meissner, W. Ziemlich, H. Bohlen, T.Bayer, H. Rotheinzen, G. Sasso, P. Vettinger; The Electron Beam Proximity Printing Lithography a Candidate fort he 0,35 M an 0,25 µmmicron Chip Generations, Microcircuit Engineering Conference 1990, Leuven, Belgium

    Google Scholar 

  78. Hans Weinerth: Lexikon Elektronik und Mikroelektronik. Springer, 1993, ISBN 978-3-540-62131-7, S. 245.

    Google Scholar 

  79. R. H. Fowler und L. Nordheim, „Electron emission in intense electric fields“, Proc. Roy. Soc. London A 119, 173 (1928).

    Google Scholar 

  80. D. K. Stewart, J. D. Casey in: Handbook of Microlithography, Micromachining and Microfabrication, Vol. 2, ed. von P. Rai-Choudhury, Bellingham Wash., SPIE Optical Engineering Press (1997)

    Google Scholar 

  81. G. Stengl, Kaitna, R., Loschner, h., Wolf, P., and Sacher, R. (1979) J. Vac. Sci. Technol. 16, 1883

    Google Scholar 

  82. D.P. Rensch, R.I. Seliger,, G. Csonsky, Olnex, R.D. and Stover, H.I.: (1979) J. Vac. Sci. Tecjnol. 16, 1897

    Google Scholar 

  83. Brodie, J.J. Maray, The Physics of Micofabrication, Plenum Press, New York (1982)

    Google Scholar 

  84. G.R. Hanson and B.M. Siegel, J.Vac.Sci.Technol. 16,1875 (1979)

    Google Scholar 

  85. G.I. Taylor,Disintegration of water drops in an electrical field, Proc. R. Soc. London 280A, 383 (1964)

    Google Scholar 

  86. Wagner, A., Barr. E. Venkatesan, T., Crane, W.S., Lamberti, V.E., Tai, K.l. and Vadimsky, R. G. (1981) J. Vac. Sci, Technol, 19, 1363

    Google Scholar 

  87. L. R. Harriott, J. Vac. Sci. Technol. B 15(6), 2130 Nov/Dec (1997)

    Google Scholar 

  88. G. Gross, R. Kaesmaier, H. Löschner, und G. Stengl, J. Vac. Sci. Technol. B16(6), 3150 Nov/Dec (1998)

    Google Scholar 

  89. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, undK. K. Berggren, Phys. Rev. Lett. 69, 1636 (1992)

    Google Scholar 

  90. U. Drodofsky, J. Stuhler, B. Brezger, Th. Schulze, M. Drewsen, T. Pfau, und J. Mlynek, Microelectronic Engineering 35, 285 (1997)

    Google Scholar 

  91. H. J. Metcalf, und P. van der Straten: Laser cooling and trapping, New York, Springer (1999)

    Google Scholar 

  92. K. Sengstock und W. Ertmer: Laser manipulation of atoms in: Advances inAtomic, Molecular, and Optical Physics, Vol 35, Academic Pres,, 1995

    Google Scholar 

  93. M. Schiffer, M. Rauner, S. Kuppens, M. Zinner, K. Sengstock, und W. Ertmer, Appl. Phys B 67, 705 (1998)

    Google Scholar 

  94. R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, und S. J. Buckman, J. Opt. B 1, 396 (1999)

    Google Scholar 

  95. H. Wallis, Physics Reports 255, 203 (1995)

    Google Scholar 

  96. W. Ertmer, R. Blatt, J. L. Hall, und M. Zhu, Phys. Rev. Lett. 54, 996 (1985)

    Google Scholar 

  97. W. Phillips und H. Metcalf, Phys. Rev. Lett. 48, 596 (1982)

    Google Scholar 

  98. K. Sengstock und W. Ertmer: Laser manipulation of atoms in: Advances in Atomic, Molecular, and Optical Physics, Vol 35, Academic Pres,, 1995

    Google Scholar 

  99. J. Dalibard, und C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985)

    Google Scholar 

  100. M. O. Scully und M. S. Zubairy, Quantum Optics, Cambridge, Cambridge University Press (1997)

    Google Scholar 

  101. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, und M. Prentiss, Science 280, 1583 (1998)

    Google Scholar 

  102. J. Nellessen, J. Werner, und W. Ertmer, Optics Comm. 78, 300 (1990)

    Google Scholar 

  103. J. H. Thywissen, PhD thesis, Harvard (2000)

    Google Scholar 

  104. M. Morinaga, M. Yasuda, T. Kishimoto, und F. Shimizu, Phys. Rev. Lett. 77, 802 (1996)

    Google Scholar 

  105. X. Zhao, Y. Xia, und G. M. Whitesides, J. Mater. Chem. 7(7), 1069 (1997)

    Google Scholar 

  106. Nanoimprint lithography SY Chou US Patent 5,772,905

    Google Scholar 

  107. F. Schreiber, A. Eberhardt, T. Y. B. Leung, P. Schwartz, S. M. Wetterer, D. J. Lavrich, L. Berman, P. Fenter, P. Eisenberger, und G. Scoles, Phys. Rev. B 57, 12476 (1998)

    Google Scholar 

  108. Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. (1996). „Imprint Lithography with 25-Nanometer Resolution“. Science. 272 (5258): 85–7. Bibcode:1996Sci...272...85C.

    Google Scholar 

  109. https://global.canon/en/technology/frontier07.html

  110. S.-J. Chung, H. Hein, J. Schulz: Strukturprofilsimulation dicker Schichten in der optischen Lithografie mit DNQ-Novolak-basierenden Photoresist, Wissenschaftliche Berichte, FZKA 6111, Forschungszentrum Karlsruhe (1998)

    Google Scholar 

  111. B. Hoppe: Mikroelektronik 2, Herstellungsprozesse für integrierte Schaltungen, Fachbuch-Kamprath-Reihe, Vogel Buchverlag, ISBN 3–8023–1588-X (1998)

    Google Scholar 

  112. Dill, F,H. A.R. Neureuter, J. A. Tuttle and E. J. Walker, Modeling projection printing of positive Photoresists, IEEE Trans. lectron Devices ED-22, Nov. No. 7m 456 (July 1975)

    Google Scholar 

  113. J.R. Sheats, B.W. Smith: Microlithography-Science and Technologie, Marcel Denker, Inc, ISBN 0-8247-9953-4 (1998)

    Google Scholar 

  114. Dill, F,H., W.P. Hornberger, P.S. Haage, and J.M. Shaw. Characterization of positive photoresist, IEEE Trans. Electron Devices ED-22, No. 7, 455 (July 1975)

    Google Scholar 

  115. J.S. Greeneich, Developer characteristics of poly-(methyl methacrylate) electron resist, J. Electrochem. Soc. 122, No. 7, 970 (July 1975)

    Google Scholar 

  116. T. E. Everhart, P.H. Hoff. Determination of kilovolt electron energy dissipation vs. Penetration distance in solid materials, J. Appl. Phys. 42, No.13, 5837 (Dez. 1971)

    Google Scholar 

  117. L. F.Thompson, J.P. Ballantyne and E. D. Feit. Molecular parameters and lithographie performance of poly(glycidylmethanacrylate-co-ethyl acrylate). A negative electron eam. J. Vac. Sci. Technol 12, No.6 1280 (Nov-December 1975)

    Google Scholar 

  118. R.D. Heidenreich, L.F. Thompson, E.D. Feist and C.M. Melliar-Smith, Fundamental aspects of electron beam lithography, I. Depth-dose response of polymeric elektron beam resists. J. Appl. Phys 44, No. 9, 4039

    Google Scholar 

  119. Venkatesan, T, Taylor, G.N. Wagner A., Wilkens, B,. and Barr, D. (1981) J. Vac. Sc. Technol. 19, 1379

    Google Scholar 

  120. Chen, C.h., and Tai, K.I., (1989) Appl. Phys. Lett. 37, 605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Frey .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, H., Westkämper, E., Hintze, B. (2023). Strukturierungsmethoden. In: Handbuch energiesparende Halbleiterbauelemente – Hochintegrierte Chips. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-39346-5_6

Download citation

Publish with us

Policies and ethics