Skip to main content

Reaktoren für Fluid-Feststoff-Reaktionen: Wirbelschichtreaktoren

  • Chapter
  • First Online:
Handbuch Chemische Reaktoren

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 7965 Accesses

Zusammenfassung

Das Kapitel über die Wirbelschichtreaktoren beschreibt die Phänomene, die bei der Fluidisierung von Feststoffpartikeln in aufsteigenden Gasströmen auftreten, und wie diese Phänomene von der Gasgeschwindigkeit, den Betriebsbedingungen und den Partikeleigenschaften abhängen. Vor- und Nachteile von Wirbelschichtreaktoren und wichtige Anwendungen von zirkulierenden und blasenbildenden Wirbelschichten werden dargestellt. Weitere Themen sind die Hochskalierung und die Modellbildung bei Wirbelschichtreaktoren und einige typische Korrelationen zur mathematischen Beschreibung der auftretenden Phänomene. Abschließend werden noch die Besonderheiten beim Einsatz von Wärmetauscherrohren in blasenbildenden Wirbelschichten für exo- und endotherme Reaktionen diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 339.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Babu, S.P., Shah, B., Talwalkar, A.: Fluidization correlations for coal gasification materials: minimum fluidization velocity and fluidized bed expansion ratio. AlChE Symp. Ser. 74, 176–186 (1978)

    Google Scholar 

  • Baeyens, J., Geldart, D.: An investigation into slugging fluidized beds. Chem. Eng. Sci. 29, 255–265 (1974)

    CAS  Google Scholar 

  • Bakshi, A., Altantzis, C., Bates, R.B., Ghoniem, A.F.: Multiphase-flow Statistics using 3D Detection and Tracking Algorithm (MS3DATA): methodology and application to large-scale fluidized beds. Chem. Eng. J. 293, 355–364 (2016). https://doi.org/10.1016/j.cej.2016.02.058

    Article  CAS  Google Scholar 

  • Bartels, M.: Agglomeration in fluidized beds: detection and counteraction. Dissertation, TU Delft (2008)

    Google Scholar 

  • Brouwer, G.C., Wagner, E.C., van Ommen, J.R., Mudde, R.F.: Effects of pressure and fines content on bubble diameter in a fluidized bed studied using fast X-ray tomography. Chem. Eng. J. 207–208, 711–717 (2012). https://doi.org/10.1016/j.cej.2012.07.040

    Article  CAS  Google Scholar 

  • Cai, P., Schiavetti, M., De Michele, G., Grazzini, G.C., Miccio, M.: Quantitative estimation of bubble size in PFBC. Powder Technol. 80, 99–109 (1994)

    CAS  Google Scholar 

  • Chan, I.H., Sishtla, C., Knowlton, T. M.: The effect of pressure on bubble parameters in gas-fluidized beds. Powder Technol. 53, 217–235 (1987)

    Google Scholar 

  • Chitester, D.C., Kornosky, R.M., Fan, L.-S., Danko, J.P.: Characteristics of fluidization at high pressure. Chem. Eng. Sci. 39, 253–261 (1984)

    Google Scholar 

  • Choi, J.-H., Son, J.-E., Kim, S.-D.: Generalized model for bubble size and frequency in gas-fluidized beds. Ind. Eng. Chem. Res. 37, 2559–2564 (1998). https://doi.org/10.1021/ie970915v

    Article  CAS  Google Scholar 

  • Corella, J., Toledo, J.M., Molina, G.: A review on dual fluidized-bed biomass gasifiers. Ind. Eng. Chem. Res. 46, 6831–6839 (2007)

    CAS  Google Scholar 

  • Cranfield, R.R., Geldart, D.: Large particle fluidisation. Chem. Eng. Sci. 29, 935–947 (1974)

    CAS  Google Scholar 

  • Czekaj, I., Loviat, F., Raimondi, F., Wambach, J., Biollaz, S., Wokaun, A.: Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl. Catal. A. 329, 68–78 (2007)

    CAS  Google Scholar 

  • Darton, R.C., LaNauze, R.D., Davidson, J.F., Harrison, D.: Bubble growth due to coalescence in fluidized beds. Chem. Eng. Res. Des. 55a, 274–280 (1977)

    Google Scholar 

  • Davidson, J.F., Harrison, D.: Fluidized Particles. Cambridge University Press, Cambridge/New York (1963)

    Google Scholar 

  • Davidson, J.F., Harrison, D.: Fluidization. Academic, London/New York (1971)

    Google Scholar 

  • Deemter, J.J. van: Mixing and contacting in gas-solid fluidized beds. Chem. Eng. Sci. 13, 143–154 (1961). https://doi.org/10.1016/0009-2509(61)80005-5

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    CAS  Google Scholar 

  • Feiler, P.: Die Wirbelschicht – Ein neuer Aggregatzustand. Schriftenr. Firmenarch. Badischen Anilin Soda-Fabr. AG (1972)

    Google Scholar 

  • Friedrichs, G., Proplesch, P., Wismann, G., Lommerzheim, W.: Methanisierung von Kohlenvergasungsgasen im Wirbelbett Pilot Entwicklungsstufe, Technologische Forschung und Entwicklung – Nichtnukleare Energietechnik. Thyssengas GmbH, für Bundesministerium fuer Forschung und Technologie (1985)

    Google Scholar 

  • Gaya: http://www.projetgaya.com/en/. Zugegriffen am 02.04.2017 (2017)

  • Geldart, D.: Types of gas fluidization. Powder Technol. 7, 285–292 (1973). https://doi.org/10.1016/0032-5910(73)80037-3

    Article  CAS  Google Scholar 

  • Geldart, D.: Gas Fluidization Technology. Wiley, New York (1986)

    Google Scholar 

  • Geldart, D., Kapoor, D.S.: Bubble sizes in a fluidized bed at elevated temperatures. Chem. Eng. Sci. 31, 842–843 (1976)

    CAS  Google Scholar 

  • Geldart, D., Harnby, N., Wong, A.C.: Fluidization of cohesive powders. Powder Technol. 37, 25–37 (1984). https://doi.org/10.1016/0032-5910(84)80003-0

    Article  CAS  Google Scholar 

  • Gibilaro, L.G.: Fluidization-Dynamics. Butterworth-Heinemann, Oxford, UK (2001)

    Google Scholar 

  • Glicksman, L.R.: Scaling relationships for fluidized beds. Chem. Eng. Sci. 39, 1373–1379 (1984). https://doi.org/10.1016/0009-2509(84)80070-6

    Article  CAS  Google Scholar 

  • Glicksman, L.R., McAndrews, G.: The effect of bed width on the hydrodynamics of large particle fluidized beds. Powder Technol. 42, 159–167 (1985)

    Google Scholar 

  • Glicksman, L.R., Hyre, M., Woloshun, K.: Simplified scaling relationships for fluidized beds. Powder Technol. 77, 177–199 (1993). https://doi.org/10.1016/0032-5910(93)80055-F

    Article  CAS  Google Scholar 

  • Gogolek, P.E.G., Grace, J.R.: Fundamental hydrodynamics related to pressurized fluidized bed combustion. Prog. Energy Combust. Sci. 21, 419–451 (1995)

    CAS  Google Scholar 

  • Goossens, W.R.A.: Classification of fluidized particles by Archimedes number. Powder Technol. 98, 48–53 (1998)

    CAS  Google Scholar 

  • Goransson, K., Soderlind, U., He, J., Zhang, W.N.: Review of syngas production via biomass DFBGs. Renew. Sust. Energ. Rev. 15, 482–492 (2011)

    Google Scholar 

  • Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R., Kolb, T.: Renewable power-to-gas: a technological and economic review. Renew. Energy. 85, 1371–1390 (2016)

    Google Scholar 

  • Goulas, A., van Ommen, J.R.: Scalable production of nanostructured particles using atomic layer deposition. KONA Powder Part. J. 31, 234–246 (2014). https://doi.org/10.14356/kona.2014013

    Article  Google Scholar 

  • Grace, J.R.: Fluidized bed hydrodynamics. In: Hestroni, G. (Hrsg.) Handbook of Multiphase Systems. Hemisphere Publishing Corporation, Washington, DC (1982)

    Google Scholar 

  • Grace, J.R.: Contacting modes and behaviour classification of gas-solid and other two-phase suspensions. Can. J. Chem. Eng. 64, 353–363 (1986)

    CAS  Google Scholar 

  • Grace, J.R., Clift, R.: Continuous bubbling and slugging. In: Davidson, J.F., Clift, R., Harrison, D. (Hrsg.) Fluidization, S. 73–132. Academic, New York (1985)

    Google Scholar 

  • Grace, J.R., Knowlton, T.M., Avidan, A.A. (Hrsg.): Circulating Fluidized Beds. Springer (1997)

    Google Scholar 

  • Gupta, C.K., Sathiyamoorthy, D.: Fluid Bed Technology in Materials Processing. CRC Press LLC, Boca Raton (1999)

    Google Scholar 

  • Harrison, D., Leung, L.S.: The rate of rise of bubbles in fluidised beds. Trans. Inst. Chem. Eng. 40, 146–151 (1962)

    CAS  Google Scholar 

  • Hartman, M., Trnka, O., Svoboda, K.: Use of pressure fluctuations to determine online the regime of gas-solids suspensions from incipient fluidization to transport. Ind. Eng. Chem. Res. 48, 6830–6835 (2009). https://doi.org/10.1021/ie900055x

    Article  CAS  Google Scholar 

  • Hedden, K., Anderlohr, A., Becker, J., Zeeb, H.P., Cheng, Y.H.: Gleichzeitige Konvertierung und Methanisierung von CO-reichen Gasen. Universität Karlsruhe: DVGW-Forschungsstelle Engler-Bunte-Institut, Universität Karlsruhe für Bundesministerium für Forschung und Technologie, Forschungsbericht T 86-044 (1986)

    Google Scholar 

  • Held, J.: The GoBiGas project. In: Schildhauer, T.J., Biollaz, S.M.A. (Hrsg.) Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications. Wiley, New York (2016)

    Google Scholar 

  • Heyne, S., Seemann, M., Schildhauer, T.J.: Coal and biomass gasification for SNG production. In: Schildhauer, T.J., Biollaz, S.M.A. (Hrsg.) Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications, S. 5–40. Wiley, New York (2016)

    Google Scholar 

  • Hilligardt, K., Werther, J.: Lokaler Blasengas-Holdup und Expansionsverhalten von Gas/Feststoff-Wirbelschichten. Chem. Ing. Tech. 57, 622–623 (1985). https://doi.org/10.1002/cite.330570713

    Article  CAS  Google Scholar 

  • Hilligardt, K., Werther, J.: Local bubble gas hold-up and expansion of gas/solid fluidized beds. Ger. Chem. Eng. 9, 215–221 (1986)

    Google Scholar 

  • Hilligardt, K., Werther, J.: Influence of temperature and properties of solids on the size and growth of bubbles in gas fluidized beds. Chem. Eng. Technol. 10, 272–280 (1987). https://doi.org/10.1002/ceat.270100133

    Article  Google Scholar 

  • Hoffmann A.C., Yates, J.G.: Experimental observations of fluidized beds at elevated pressure. Chem. Eng. Commun. 41, 133–149 (1985)

    Google Scholar 

  • Horio, M., Nonaka, A.: A generalized bubble diameter correlation for gas-solid fluidized beds. AIChE J. 33, 1865–1872 (1987). https://doi.org/10.1002/aic.690331113

    Article  CAS  Google Scholar 

  • Karl, J., Pröll, T.: Steam gasification of biomass in dual fluidized bed gasifiers: a review. Renew. Sustain. Energy Rev. 98, 64–78 (2018)

    CAS  Google Scholar 

  • Kawabata, J., Yumiyama, M., Tazaki, Y., Honma, S., Chiba, T., Sumiya, T., Endo, K.: Characteristics of gas fluidized beds under pressure. J. Chem. Eng. Jpn. 14, 85–89 (1981)

    Google Scholar 

  • Kehoe, P.W.K., Davidson, J.F.: Continuously slugging fluidised beds. In: Chemeca’70, S. 97–116. Chemeca’70, Melbourne/Sydney (1970)

    Google Scholar 

  • Koppatz, S., Pfeifer, C., Rauch, R., Hofbauer, H., Marquard-Moellenstedt, T., Specht, M.: H-2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Process. Technol. 90, 914–921 (2009)

    CAS  Google Scholar 

  • Kopyscinski, J., Schildhauer, T.J., Biollaz, S.M.A.: Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel. 89(8), 1763–1783 (2010)

    CAS  Google Scholar 

  • Kopyscinski, J., Seemann, M.C., Moergeli, R., Biollaz, S.M.A., Schildhauer, T.J.: Synthetic natural gas from wood: reactions of ethylene in fluidised bed methanation. Appl. Catal. A. 462–463, 150–156 (2013)

    Google Scholar 

  • Kunii, D., Levenspiel, O.: Fluidization Engineering. Wiley, New York (1969)

    Google Scholar 

  • Kunii, D., Levenspiel, O.: Fluidization Engineering. Butterworth-Heinemann, Boston (1991)

    Google Scholar 

  • Lanneau, K.P.: Gas-solids contacting in fluidized beds. Chem. Eng. Res. Des. 38, 125–143 (1960)

    CAS  Google Scholar 

  • Liu, Y., Hinrichsen, O.: CFD simulation of hydrodynamics and methanation reactions in a fluidized-bed reactor for the production of synthetic natural gas. Ind. Eng. Chem. Res. 53, 9348–9356 (2014)

    CAS  Google Scholar 

  • Liu, J., Cui, D., Yao, C., Yu, J., Su, F., Xu, G.: Syngas methanation in fluidized bed for an advanced two-stage process of SNG production. Fuel Process. Technol. 141, 130–137 (2016)

    CAS  Google Scholar 

  • Lockett, M.J., Davidson, J.F., Harrison, D.: On the two-phase theory of fluidisation. Chem. Eng. Sci. 22, 1059–1066 (1967)

    CAS  Google Scholar 

  • Matsen, J.M.: Evidence of maximum bubble size in a fluidized bed. AIChE. Symp. Ser. 69, 30–33 (1973)

    CAS  Google Scholar 

  • Maurer, S.: Hydrodynamic characterization and scale-up of bubbling fluidized beds for catalytic conversion. Dissertation, ETH Zürich (2015)

    Google Scholar 

  • Maurer, S., Schildhauer, T.J., van Ommen, J.R., Biollaz, S.M.A., Wokaun, A.: Scale-up of fluidized beds with vertical internals: studying the sectoral approach by means of optical probes. Chem. Eng. J. 252, 131–140 (2014)

    CAS  Google Scholar 

  • Maurer, S., Wagner, E.C., van Ommen, J.R., Schildhauer, T.J., Teske, S.L., Biollaz, S.M.A., Wokaun, A., Mudde, R.F.: The influence of vertical internals on a bubbling fluidized bed characterized by X-ray tomography. Int. J. Multiphase Flow. 75, 237–249 (2015a)

    CAS  Google Scholar 

  • Maurer, S., Wagner, E.C., Schildhauer, T.J., van Ommen, J.R., Biollaz, S.M.A., Mudde, R.F.: X-ray measurements of bubble hold-up in fluidized beds with and without vertical internals. Int. J. Multiphase Flow. 74, 118–124 (2015b)

    CAS  Google Scholar 

  • Maurer, S., Durán, S.R., Künstle, M., Biollaz, S.M.A.: Influence of interparticle forces on attrition and elutriation in bubbling fluidized beds. Powder Technol. 291, 473–486 (2016a)

    CAS  Google Scholar 

  • Maurer, S., Gschwend, D., Wagner, E.C., Schildhauer, T.J., van Ommen, J.R., Biollaz, S.M.A., Mudde, R.F.: Correlating bubble size and velocity distribution in bubbling fluidized bed based on X-ray tomography. Chem. Eng. J. 298, 17–25 (2016b)

    CAS  Google Scholar 

  • Merry, J.M.D., Davidson, J.F.: Gulf stream circulation in shallow fluidised beds. Chem. Eng. Res. Des. 51, 361–368 (1973)

    Google Scholar 

  • Miwa, K., Mori, S., Kato, T., Muchi, I.: Behavior of bubbles in gaseous fluidized bed. Int. Chem. Eng. 12, 187 (1972)

    Google Scholar 

  • Molerus, O.: Interpretation of Geldart’s type A, B, C and D powders by taking into account interparticle cohesion forces. Powder Technol. 33, 81–87 (1982)

    CAS  Google Scholar 

  • Mori, S., Wen, C.Y.: Estimation of bubble diameter in gaseous fluidized beds. AIChE J. 21, 109–115 (1975)

    CAS  Google Scholar 

  • Nguyen, T.T.M.: Topsoe’s synthesis technology for SNG with focus on methanation in general and bio-SNG in particular. Presentation at the 1st international conference on renewable energy gas technology (REGATEC), Malmö (2014)

    Google Scholar 

  • Nguyen, T.T.M., Wissing, L., Skjoth-Rasmussen, M.S.: High temperature methanation: catalyst considerations. Catal. Today 215, 233–238 (2013)

    CAS  Google Scholar 

  • Olowson, P.A., Almstedt, A.E.: Influence of pressure and fluidization velocity on the bubble behaviour and gas flow distribution in a fluidized bed. Chem. Eng. Sci. 45, 1733–1741 (1990)

    Google Scholar 

  • Olowson, P.A., Almstedt, A.E.: Influence of pressure on the minimum fluidization velocity. Chem. Eng. Sci. 46, 637–640 (1991)

    Google Scholar 

  • Pecho, J., Schildhauer, T.J., Sturzenegger, M., Biollaz, S., Wokaun, A.: Reactive bed materials for improved biomass gasification in a circulating fluidised bed reactor. Chem. Eng. Sci. 63, 2465–2476 (2008)

    CAS  Google Scholar 

  • Pyle, D.L., Harrison, D.: An experimental investigation of the two-phase theory of fluidization. Chem. Eng. Sci. 22, 1199–1207 (1967)

    CAS  Google Scholar 

  • Rauch, R., Hrbek, J., Hofbauer, H.: Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip. Rev. Energy Environ. 3(4), 343–362 (2014)

    CAS  Google Scholar 

  • Reh, L.: Das Wirbeln von körnigem Gut im schlanken Diffusor als Grenzzustand zwischen Wirbelschicht und pneumatischer Förderung. Dissertation, THKarlsruhe (1961)

    Google Scholar 

  • Reh, L.: Fluidized bed processing. Chem. Eng. Prog. 67, 58–64 (1971)

    Google Scholar 

  • Reh, L.: Ulimanns Enzyklopädie der technischen Chemie, Bd. 3, 4. Aufl., S. 433–460. Verlag Chemie GmbH, Weinheim/Bergstraße (1973)

    Google Scholar 

  • Reh, L.: Strömungs- und Austauschverhalten von Wirbelschichten. Chem. Ing. Tech. 46, 180–189 (1974)

    CAS  Google Scholar 

  • Reh, L.: Fluid bed combustion in processing, environmental protection and energy supply. Erdöl Kohle Erdgas Petrochem. 32, 560–566 (1979)

    CAS  Google Scholar 

  • Reh, L.: New and efficient high-temperature processes with CFB-reactors. Chem. Eng. Technol. 18, 75–89 (1995)

    CAS  Google Scholar 

  • Reh, L., Ernst, J., Schmidt, H.W., Rosenthal, K.H.: Erfahrungen bei der Kalzination von Aluminiumhydroxid in einer zirkulierenden Wirbelschicht. Aluminium 47, 681–685 (1971)

    CAS  Google Scholar 

  • Richardson, J.F.: Fluidization, chapter Incipient Fluidization and Particulate Systems. Academic Press, London (1971)

    Google Scholar 

  • Rönsch, S., Schneider, J., Matthischke, S., Schlüter, M., Götz, M., Lefebvre, J., Prabhakaran, P., Bajohr, S.: Review on methanation – from fundamentals to current projects. Fuel 166, 276–296 (2016)

    Google Scholar 

  • Rowe, P.N.: Prediction of bubble size in a gas fluidised bed. Chem. Eng. Sci. 31, 285–288 (1976). https://doi.org/10.1016/0009-2509(76)85073-7

    Article  CAS  Google Scholar 

  • Rowe, P.N., Everett, D.J.: Fluidised bed bubbles viewed by x-rays (Part II) – the transition from two to three dimensions of undisturbed bubbles. Trans. Inst. Chem. Eng. 50, 49–54 (1972a)

    CAS  Google Scholar 

  • Rowe, P.N., Everett, D.J.: Fluidised bed bubbles viewed by x-rays (Part III) – bubble size and number when unrestrained three-dimensional growth occurs. Trans. Inst. Chem. Eng. 50, 55–60 (1972b)

    CAS  Google Scholar 

  • Rowe, P.N., Partridge, B.A., Cheney, A.G., Henwood, G.A., Lyall, E.: The mechanisms of solids mixing in fluidised beds. Chem. Eng. Res. Des. 43, 271–286 (1965)

    Google Scholar 

  • Rüdisüli, M.: Synthetic natural gas by pressurized methanation of producer gas from biomass gasification. Dissertation, ETH Zürich No. 20209 (2012a)

    Google Scholar 

  • Rüdisüli, M.: Characterization of rising gas bubbles in fluidized beds by means of statistical tools. Dissertation, ETH Zürich (2012b)

    Google Scholar 

  • Rüdisüli, M., Schildhauer, T.J., Biollaz, S.M.A., van Ommen, J.R.: Bubble characterization in a fluidized bed with vertical tubes. Ind. Eng. Chem. Res. 51, 4748–4758 (2012a)

    Google Scholar 

  • Rüdisüli, M., Schildhauer, T.J., Biollaz, S.M.A., van Ommen, J.R.: Comparison of bubble growth obtained from pressure fluctuation measurements to optical probing and literature correlations. Chem. Eng. Sci. 74, 266–275 (2012b)

    Google Scholar 

  • Rüdisüli, M., Schildhauer, T.J., Biollaz, S.M.A., van Ommen, J.R.: Evaluation of a sectoral scaling approach for bubbling fluidized beds with vertical internals. Chem. Eng. J. 197, 435–439 (2012c)

    Google Scholar 

  • Ryden, M., Lyngfelt, A., Mattisson, T.: Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers. Energy Fuels 22, 2585–2597 (2008)

    CAS  Google Scholar 

  • Saxena, S.C., Vogel, G.J.: The Measurement of Incipient Fluidization velocities in a Bed of Coarse Dolomite at Temperature and Pressure. Chemical Engineering Research and Design 55a, S. 184–189 (1977)

    Google Scholar 

  • Scala, F. (Hrsg.): Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. Woodhead Publishing (2013)

    Google Scholar 

  • Schildhauer, T.J.: Methanation for SNG production – chemical reaction engineering aspects. In: Schildhauer, T.J., Biollaz, S.M.A. (Hrsg.) Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications, S. 77–159. Wiley, New York (2016)

    Google Scholar 

  • Schildhauer, T.J.: Biosynthetic natural gas (Bio-SNG). In: Encyclopedia of Sustainability Science and Technology. Springer, New York (2018)

    Google Scholar 

  • Schildhauer, T.J., Biollaz, S.M.: Fluidised bed methanation for SNG production – process development at the Paul-Scherrer Institut. In: Schildhauer, T.J., Biollaz, S.M.A. (Hrsg.) Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications, S. 221–229. Wiley, New York (2016)

    Google Scholar 

  • Schillinger, F.: Systematic assessment and application of local, optical and two-dimensional X-ray measurement techniques for hydrodymanic characterization of bubbling fluidized beds, Diss. ETH Zürich, No. 25346 (2018)

    Google Scholar 

  • Schillinger, F., Maurer, S., Wagner, E.C., van Ommen, J.R., Mudde, R.F., Schildhauer, T.J.: Influence of vertical heat exchanger tubes, their arrangement and the column diameter on the hydrodynamics in a gas-solid bubbling fluidized bed. Int. J. Multiphase Flow. 97, 46–59 (2017)

    Google Scholar 

  • Schillinger, F., Schildhauer, T.J., Maurer, S., Wagner, E.C., Mudde, R.F., van Ommen, J.R.: Generation and evaluation of an artificial optical signal based on X-ray measurements for bubble characterization in fluidized beds with vertical internals. Int. J. Multiphase Flow. 107, 16–32 (2018a)

    CAS  Google Scholar 

  • Schillinger, F., Maurer, S., Künstle, M., Schildhauer, T.J., Wokaun, A.: Hydrodynamic investigations by a local optical measurement technique designed for high-temperature applications – first measurements at a fluidized bed immersed by vertical internals at cold conditions. Powder Technol., in print (2018b)

    Google Scholar 

  • Seemann, M.C., Schildhauer, T.J., Biollaz, S.M.A., Stucki, S., Wokaun, A.: The regenerative effect of catalyst fluidization under methanation conditions. Appl. Catal. A Gen. 313, 14–21 (2006). https://doi.org/10.1016/j.apcata.2006.06.048

    Article  CAS  Google Scholar 

  • Seemann, M.C., Schildhauer, T.J., Biollaz, S.M.A.: Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas. Ind. Eng. Chem. Res. 49, 7034–7038 (2010)

    CAS  Google Scholar 

  • Sit, S.P., Grace, J.R.: Effect of bubble interaction on interphase mass transfer in gas fluidized beds. Chem. Eng. Sci. 36, 327–335 (1981). https://doi.org/10.1016/0009-2509(81)85012-9

    Article  CAS  Google Scholar 

  • Steiner, C.P.: Thermische Verwertung von Abfallschlämmen in zirkulierender Wirbelschichtfeuerung unter Berücksichtigung des Einflusses der Aufgabe- und Bettkörnung. Dissertation, ETH Zürich Nr. 11888 (1996)

    Google Scholar 

  • Stubington, J.F., Barrett, D., Lowry, G.: Bubble size measurements and correlation in a fluidised bed at high temperatures. Chem. Eng. Res. Des. 62a, 173–178 (1984)

    Google Scholar 

  • Tone, S., Seko, H., Maruyama, H., Otake, T.: Catalytic cracking of methylcyclohexane over silica alumina catalyst in gas fluidized bed. J. Chem. Eng. Jpn. 7, 44–51 (1974). https://doi.org/10.1252/jcej.7.44

    Article  CAS  Google Scholar 

  • Toomey, R.D., Johnstone, H.F.: Gaseous fluidization of solid particles. Chem. Eng. Prog. 48, 220–226 (1952)

    CAS  Google Scholar 

  • Turner, M.J., Irving, D.: Forces on tubes immersed in a fluidised bed. In: Proceedings of International Conference on Fluidized Bed Combustion, 7, S. 831–839. Philadelphia (1983)

    Google Scholar 

  • Verma, V., Li, T., Dietiker, J.-F., Rogers, W.A.: Hydrodynamics of gas–solids flow in a bubbling fluidized bed with immersed vertical U-tube banks. Chem. Eng. J. 287, 727–743 (2016)

    CAS  Google Scholar 

  • Vogt, E.T.C., Weckhuysen, B.M.: Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, C.Y., Yu, Y.H.: A generalized method for predicting the minimum fluidization velocity. AIChE J. 12(3), 610–612 (1966). https://doi.org/10.1002/aic.690120343

    Article  CAS  Google Scholar 

  • Werther, J.: Effect of gas distributor on the hydrodynamics of gas fluidized beds. Ger. Chem. Eng. 1, 166–173 (1978a)

    Google Scholar 

  • Werther, J.: Scale-up of fluidized bed reactors. Ger. Chem. Eng. 1, 243–251 (1978b)

    Google Scholar 

  • Werther, J.: Measurement techniques in fluidized beds. Powder Technol. 102, 15–36 (1999)

    CAS  Google Scholar 

  • Werther, J., Molerus, O.: The local structure of gas fluidized beds II – the spatial distribution of bubbles. Int. J. Multiphase Flow. 1, 123–138 (1973). https://doi.org/10.1016/0301-9322(73)90008-6

    Article  Google Scholar 

  • Werther, J., Reppenhagen, J.: Catalyst attrition in fluidized-bed systems. AIChE J. 45, 2001–2010 (1999)

    CAS  Google Scholar 

  • Werther, J., Hartge, E.U., Kruse, M.: Radial gas mixing in the upper dilute core of a circulating fluidized bed. Powder Technol. 70, 293–301 (1992)

    CAS  Google Scholar 

  • Willigen, F.K. van, Ommen, J.R. van, Turnhout, J. van, den Bleek, C.M. van: Bubble size reduction in a fluidized bed by electric fields. Int. J. Chem. React. Eng. 1, A21 (2003)

    Google Scholar 

  • Willigen, F.K. van, Christensen, D., van Ommen, J.R., Coppens, M.-O.: Imposing dynamic structures on fluidised beds. Catal. Today 105, 560–568 (2005)

    Google Scholar 

  • Wiman, J., Almstedt, A.E.: Hydrodynamics, erosion and heat transfer in a pressurized fluidized bed: influence of pressure, fluidization velocity, particle size and tube bank geometry. Chem. Eng. Sci. 52, 2677–2695 (1997)

    Google Scholar 

  • Yang, W.C.: Handbook of Fluidization and Fluid-Particle Systems. Marcel Dekker, New York (2003)

    Google Scholar 

  • Yates, J.G., Newton, D.: Fine particle effects in a fluidized-bed reactor. Chem. Eng. Sci. 41, 801–806 (1986)

    CAS  Google Scholar 

  • Zarfl, J.: Entwicklung und Verwendung von DRIFTS Methoden für die Charakterisierung und Verbesserung von Katalysatoren in Wirbelschicht-Reaktoren. Dissertation, ETH Zürich No. 22183 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman J. Schildhauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schildhauer, T.J., Schillinger, F. (2020). Reaktoren für Fluid-Feststoff-Reaktionen: Wirbelschichtreaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56434-9_24

Download citation

Publish with us

Policies and ethics