Skip to main content

Osmo- und Ionenregulation

  • Chapter
  • First Online:
Penzlin - Lehrbuch der Tierphysiologie

Zusammenfassung

Es ist sehr wahrscheinlich, dass die Evolution erster Zellen in der Frühzeit der Erdgeschichte in einem Medium stattfand, das geringe Konzentrationen abiotisch gebildeter, kleiner organischer Moleküle enthielt und reich an Mineralstoffen war. Es ist daher nicht überraschend, dass die ionale Zusammensetzung der Körperflüssigkeiten heute lebender Tiere in vielen Fällen Ähnlichkeiten mit der ionalen Komposition des Meerwassers erkennen lässt. Allerdings sind die Körperflüssigkeiten von Tieren nie exakt mit den jeweiligen Außenmedien identisch. Vielmehr ist die Aufrechterhaltung von Konzentrationsunterschieden (Gradienten) zwischen Körperinnerem und Außenwelt sogar ein wesentliches Merkmal lebender Systeme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    compatior (lat.) = Mitleid haben; kompatibel = verträglich

  2. 2.

    homoios (griech.) = gleich, gleichartig

  3. 3.

    eurys (griech.) = breit; halos (griech.) = Salz

  4. 4.

    stenos (griech.) = eng

  5. 5.

    isos (griech.) = gleich

  6. 6.

    poikilos (griech.) = verschieden, verschiedenartig

  7. 7.

    hyper- (griech.) = über

  8. 8.

    hypo- (griech.) = unter

  9. 9.

    plassein (griech.) = bilden, formen

  10. 10.

    ana- (griech.) = hinauf, aufwärts; dromos (griech.) = Lauf

  11. 11.

    kata (griech.) = hinab

  12. 12.

    smolt (engl.) = Junglachs oder junge Meerforelle auf dem Weg ins Meer

  13. 13.

    sub- (lat.) = unter, unterhalb; lingua (lat.) = Zunge

  14. 14.

    tonos (griech.) = Spannung, Anspannung

  15. 15.

    cavum (lat.) = Höhlung; forma (lat.) = Gestalt

  16. 16.

    konos (griech.) = Kegel

  17. 17.

    dipsa (griech.) = Durst, -genes (griech.) = -erzeugend, -herstellend

Weiterführende Literatur

Allgemeines

  • Alfieri RR, Petronini PG (2007) Hyperosmotic stress response: comparison with other cellular stresses. Pflugers Arch – Eur J Physiol 454:173-185

    Google Scholar 

  • Cloudsley-Thompson JL (1991) Ecophysiology of desert arthropods and reptiles. Springer, Berlin

    Book  Google Scholar 

  • Denton D (1982) The hunger for salt. Springer, Berlin

    Google Scholar 

  • Evans DH (2009) Osmotic and ionic regulation – cells and animals. CRC Press, Boca Raton

    Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    Article  CAS  PubMed  Google Scholar 

  • Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482

    Article  CAS  Google Scholar 

  • Graf J, Guggino WB, Turnheim K (1993) Volume regulation in transporting epithelia. In: Lang F, Häussinger D (Hrsg) Advances in comparative and environmental physiology Vol 14, Springer, Berlin, S 67–117

    Chapter  Google Scholar 

  • Kültz D, Fiol D, Valkova N, Gomez-Jimenez S, Chan SY, Lee J (2007) Functional genomics and proteomics of the cellular osmotic stress response in ‚non-model‘ organisms. J Exp Biol 210:1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Larsen EH (1991) Chloride transport by high-resistance epithelia. Physiol Rev 71:235–283

    Article  CAS  PubMed  Google Scholar 

  • Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, Cambridge

    Google Scholar 

  • Perry SF (1998) Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp Biochem Physiol A Mol Integr Physiol 119:9–16

    Article  CAS  PubMed  Google Scholar 

  • Rankin JC, Davenport J (1981) Animal osmoregulation. Blackie, Glasgow

    Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

Spezielle Aspekte

  • Anger K (2014) Zehnfußkrebse – Pioniere der Evolution. Wie Dekapoden terrestrische und limnische Lebensräume erobern. Biol Zeit 44:34–42

    Google Scholar 

  • Ballantyne JS, Robinson JW (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. J Comp Physiol B 180:475–493

    Article  PubMed  Google Scholar 

  • Clauss WG (2001) Epithelial transport and osmoregulation in annelids. Can J Zool 79192–203

    Google Scholar 

  • Engelund MB, Yu AS, Li J, Madsen SS, Færgeman NJ, Tipsmark CK (2012) Functional characterization and localization of a gill-specific claudin isoform in Atlantic salmon. Am J Phys Regul Integr Comp Phys 302:R300–R311

    CAS  Google Scholar 

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Evans TG (2010) Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. J Fish Biol 76:1903–1925

    Article  CAS  PubMed  Google Scholar 

  • Finn RN, Cerda J (2015) Evolution and functional diversity of aquaporins. Biol Bull 229:6–23

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Forbush B (2000) The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–534

    Article  CAS  PubMed  Google Scholar 

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic Press, San Diego

    Google Scholar 

  • Halberg KA, Larsen KW, Jørgensen A, Ramløv, H, Møbjerg N (2013) Inorganic ion composition in Tardigrada: cryptobionts contain a large fraction of unidentified organic solutes. J Exp Biol 2161235–1243

    Google Scholar 

  • Hildebrandt J-P, Wiesenthal AA, Müller C (2018) Phenotypic plasticity in animals exposed to osmotic stress – is it always adaptive? BioEssays 40 (11):e1800069

    Google Scholar 

  • Hillyard SD (1999) Behavioral, molecular and integrative mechanisms of amphibian osmoregulation. J Exp Zool 283:662–674

    Article  CAS  PubMed  Google Scholar 

  • Hokin LE (1987) The road to the phosphoinositide-generated second messengers. Trends Physiol Sci 8:53–56

    Article  CAS  Google Scholar 

  • Hootman SR, Conte FP (1975) Functional morphology of the neck organ in Artemia salina nauplii. J Morphol 145:371–385

    Article  PubMed  Google Scholar 

  • Jensen LJ, Willumsen NJ, Amstrup J, Larsen EH (2003) Proton pump-driven cutaneous chloride uptake in anuran amphibian. Biochim Biophys Acta Biomembr 1618:120–132

    Article  CAS  Google Scholar 

  • Jonusaite S, Kelly S, Donini A (2011) The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure. J Comp Physiol B 181:343–352

    Article  CAS  PubMed  Google Scholar 

  • Katz U, Rozman A, Zaccone G, Fasulo S, Gabbay S (2000) Mitochondria-rich cells in anuran amphibia: chloride conductance and regional distribution over the body surface. Comp Biochem Physiol A Mol Integr Physiol 125:131–139

    Article  CAS  PubMed  Google Scholar 

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Komnick H (1977) Chloride cells and chloride epithelia of aquatic insects. Int Rev Cytol 49285–329

    Google Scholar 

  • Kültz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914

    Article  PubMed  Google Scholar 

  • Lamitina ST, Morrison R, Moeckel GW, Strange K (2004) Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am J Phys Cell Phys 286:C785–C791

    Article  CAS  Google Scholar 

  • Lillywhite HB, Sheehy CM, Sandfoss MR, Crowe-Riddell J, Grech A (2019) Drinking by sea snakes from oceanic freshwater lenses at first rainfall ending seasonal drought. PLoS One 14:e0212099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    CAS  Google Scholar 

  • Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J Exp Biol 204:979–989

    CAS  PubMed  Google Scholar 

  • Müller C, Hildebrandt J-P (2003) Salt glands – the perfect way to get rid of too much sodium chloride. Biologist 50:255–258

    Google Scholar 

  • Reina RD, Jones TT, Spotila JR (2002). Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. J Exp Biol 205:1853–1860

    PubMed  Google Scholar 

  • Riordan JR, Forbush B, Hanrahan JW (1994) The molecular basis of chloride transport in shark rectal gland. J Exp Biol 196:405–418

    CAS  PubMed  Google Scholar 

  • Rudolph D (1982) Site, process and mechanism of active uptake of water vapour from the atmosphere in the Psocoptera. J Insect Physiol 28:205–212

    Article  Google Scholar 

  • Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D (2013) Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. J Exp Biol 216:4626–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ (1987) Salt gland function in osmoregulation in terrestrial and aquatic environments. In: Dejours P, Bolis L, Taylor CR, Weibel ER (Hrsg) Comparative physiology: life in water and on land. Liviana Press, Padua

    Google Scholar 

  • Skadhauge E (1981) Osmoregulation in birds. Springer, Berlin

    Book  Google Scholar 

  • Smedley SR, Eisner T (1996) Sodium: a male moth’s gift to its offspring. Proc Natl Acad Sci U S A 93:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somero GN (1986) From dogfish to dogs: trimethylamines protect proteins from urea. News Physiol Sci 19–12

    Google Scholar 

  • Taylor GC, Franklin CE, Grigg GC (1995) Salt loading stimulates secretion by the lingual salt glands in unrestrained Crocodylus porosus. J Exp Zool 272:490–495

    Article  Google Scholar 

  • Thorat L, Nath BB (2018) Insects with survival kits for desiccation tolerance under extreme water deficits. Front Physiol 91843

    Google Scholar 

  • Tipsmark CK, Sørensen KJ, Madsen SS (2012) Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J Exp Biol 213:368–379

    Article  CAS  Google Scholar 

  • Velasco J, Gutiérrez-Cánovas C, Botella-Cruz M, Sánchez-Fernández D, Arribas P, Carbonell José A, Millán A, Pallarés S (2019) Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos Trans Rl Soc B Biol Sci 374:20180011

    Article  CAS  Google Scholar 

  • Weber W-M, Dannenmaier B, Clauss W (1993) Ion transport across leech integument. J Comp Physiol B 163:153–159

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, McNamara JC, Towle DW, Onken H (2004) Ion-motive ATPases and active, transbranchial NaCl uptake in the red freshwater crab, Dilocarcinus pagei (Decapoda, Trichodactylidae). J Exp Biol 2074623–4631

    Google Scholar 

  • Weihrauch D, O’Donnell MJ (2015) Links between osmoregulation and nitrogen-excretion in insects and crustaceans. Integr Comp Biol 55:816–829

    Article  CAS  PubMed  Google Scholar 

  • Wenning A (1996) Managing high salt loads: from neuron to urine in the leech. Physiol Zool 69:719–745

    Article  CAS  Google Scholar 

  • Wilson RT (1989) Ecophysiology of the Camelidae and desert ruminants. Springer Berlin

    Book  Google Scholar 

  • Yang W-K, Kang C-K, Chen T-Y, Chang W-B, Lee T-H (2011) Salinity-dependent expression of the branchial Na+/K+/2Cl− cotransporter and Na+/K+-ATPase in the sailfin molly correlates with hypoosmoregulatory endurance. J Comp Physiol B 181:953–964

    Article  CAS  PubMed  Google Scholar 

  • Zerbst-Boroffka I, Kamaltynow RM, Harjes S, Kinne-Saffran E, Gross J (2005) TMAO and other organic osmolytes in the muscles of amphipods (Crustacea) from shallow and deep water of Lake Baikal. Comp Biochem Physiol A Mol Integr Physiol 142:58–64

    Article  PubMed  CAS  Google Scholar 

Quellenverzeichnis

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Hanrahan JW, Phillips JE (1983) Cellular mechanisms and control of KCl absorption in insect hindgut. J Exp Biol 106:71–89

    CAS  PubMed  Google Scholar 

  • Hildebrandt J-P (2001) Coping with excess salt: adaptive functions of extrarenal osmoregulatory organs in vertebrates. Zoology 104:209–220, Abb. 1, S 211

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects and the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300

    Article  CAS  PubMed  Google Scholar 

  • Komnick H, Wichard W (1975) Chloride cells of larval Notonecta glauca and Naucoris cimicoides (Hemiptera, Hydrocorisae). Cell Tissue Res 156:539–549, Abb. 5, S 546, verändert

    Article  CAS  PubMed  Google Scholar 

  • Louw GN (1993) Physiological animal ecology. Longman Scientific & Technical, Burnt Hill

    Google Scholar 

  • Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J Exp Biol 204:979–989

    CAS  PubMed  Google Scholar 

  • Müller C, Hildebrandt J-P (2003) Salt glands – the perfect way to get rid of too much sodium chloride. Biologist 50:255–258, Abb. 1, S 232, verändert

    Google Scholar 

  • Neuweiler G (1993) Biologie der Fledermäuse. Thieme, Stuttgart, Abb. 3.17, S 91, und Abb. 4.7a, S 113

    Google Scholar 

  • Potts WTW, Parry G (1964) Osmotic and ionic regulation in animals. Pergamon Press, Oxford

    Google Scholar 

  • Rankin JC, Davenport J (1981) Animal osmoregulation. Blackie, Glasgow, Abb. 3.5, S 41

    Google Scholar 

  • Schmidt-Nielsen K (1964) Desert animals – physiological problems of heat and water. Clarendon Press, Oxford

    Google Scholar 

  • Schmidt-Nielsen K (1999) Physiologie der Tiere. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Schwarzstein M, Hildebrandt J-P (2009) Thermoregulation bei Vertebraten und die evolutive Entstehung der Endothermie. Shaker, Aachen, Abb. 4.19, S 44, verändert

    Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7. Chapman & Hall, London, Abb. 316, S 514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Peter Hildebrandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hildebrandt, JP., Bleckmann, H., Homberg, U. (2021). Osmo- und Ionenregulation. In: Penzlin - Lehrbuch der Tierphysiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61595-9_7

Download citation

Publish with us

Policies and ethics