Skip to main content

Silikate

  • Chapter
  • First Online:
Mineralogie

Zusammenfassung

Die Silikate haben ein gemeinsames Strukturprinzip, nach dem eine relativ einfache Gliederung der zahlreich auftretenden silikatischen Minerale erfolgen kann (Abb. 11.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mit Beiträgen von Hans Ulrich Bambauer und Herbert Kroll (Münster).

  2. 2.

    In wesentlichen Teilen von Herbert Kroll und Hans Ulrich Bambauer (Münster).

Literatur

Allgemein

  • Deer WA, Howie RA, Zussman J (2013) Introduction to the Rock-forming Minerals, 3. Aufl. Geol Soc, London

    Book  Google Scholar 

  • Liebau F (1985) Structural Chemistry of Silicates, Structure, Bonding, and Classification. Springer, Heidelberg

    Book  Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz Mineralogical Tables, 9. Aufl. Schweizerbart, Stuttgart

    Google Scholar 

  • Tröger WE, Bambauer HU, Taborszki E, Trochim HD (1982) Optische Bestimmung der gesteinsbildenden Minerale, Teil I: Bestimmungstabellen, 5. Aufl. Schweizerbart, Stuttgart

    Google Scholar 

Insel-, Gruppen- und Ringsilikate

  • Armbruster T et al (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567

    Article  Google Scholar 

  • Bank H, Henn U, Bank FH, von Platen H, Hofmeister W (1990) Leuchtendblaue Cu-führende Turmaline aus Paraíba, Brasilien. Z Deutsche Gemmol Ges 39:3–11

    Google Scholar 

  • Baxter EF, Caddick MJ, Ague JJ (2013) Garnet. Elements 9:415–457

    Article  Google Scholar 

  • Bohlen SR, Mottana A, Kerrick DM (1991) Precise determinations of equilibria kyanite ↔ sillimanite and kyanite ↔ andalusite and a revised triple point for Al2SiO5 polymorphs. Amer Mineral 76:677–680

    Google Scholar 

  • Clarke DB, Dorais M, Barbarin B et al (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J Petrol 46:441–472

    Article  Google Scholar 

  • Coster D, Hevesy G (1923) On celtium and hafnium. Nature 111:462–463

    Article  Google Scholar 

  • Ertl A, Giester G, Schüssler U et al (2013) Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures, chemistry and correlations. Mineral Petrol 107:265–279

    Article  Google Scholar 

  • Galoisy L (2013) Garnet: from stone to star. Elements 9:453–456

    Article  Google Scholar 

  • Geiger CA (2013) Garnet: a key phase in nature, the laboratory, and technology. Elements 9:447–452

    Article  Google Scholar 

  • Harley SL, Kelly NM (2007) Zircon – tiny but timely. Elements 3:13–18

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (2018) Tourmaline studies through time: contributions to scientific advancement. J Geosci 63:77–98

    Article  Google Scholar 

  • Holdaway MJ, Mukhopadhyay B (1993) A reevalution of the stability relations of andalusite. Thermochemical data and phase diagram of the aluminium silicates. Amer Mineral 78:298–315

    Google Scholar 

  • Nasdala L, Hanchar JM, Whitehouse MJ, Kronz A (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103

    Article  Google Scholar 

  • Nespolo M, Moëlo Y (2019) Structural interpretation of a new twin in staurolite from Coray, Brittany, France. Eur J Mineral 31:785–790

    Article  Google Scholar 

  • Okrusch M, Ertl A, Schüssler U et al (2016) Major and trace element composition of Paraíba-type tourmaline from Brazil, Mozambique and Nigeria. J Gemmol 35:120–139

    Article  Google Scholar 

  • Rickwood PC (1981) The largest crystals. Amer Mineral 66:885–907

    Google Scholar 

  • Rossman GR (2009) The geochemistry of gems and its relevance to gemology: different traces, different prices. Elements 5:159–162

    Article  Google Scholar 

  • Watson EB (2007) Zircon in technology and everyday life. Elements 3:52

    Google Scholar 

  • Weiß S, Jaszak JA, Harrison S et al (2015) Meralani: Tansanit und seltene Sammlermineralien. Lapis 40(7–8):34–63

    Google Scholar 

Kettensilikate

  • Leake BE (chairman) et al (1997) Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Eur J Mineral 9:623–651

    Google Scholar 

  • Liebau F (1959) Über die Kristallstruktur des Pyroxmangits (Mn, Fe, Ca, Mg)SiO3. Acta Cryst 12:177–181

    Article  Google Scholar 

  • McCulloch J (2003) Asbestos mining in South Africa, 1893–2002. Internat J Occup Environ Health 9:230–235

    Article  Google Scholar 

  • Meng F, Yang H-J, Makeyev AB et al (2016) Jadeitite in the Syum-Keu ultramafic complex from Polar Urals, Russia: insights into fluid activity in subduction zones. Eur J Mineral 28:1079–1097

    Article  Google Scholar 

  • Morimoto N (Chairman) et al (1988) Nomenclature of pyroxenes. Subcommittee on pyroxenes, commission on new minerals and mineral names, Int. Mineral Assoc. Amer Mineral 73:1123–1133

    Google Scholar 

  • Tsujimori T, Harlow GE (2012) Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review. Eur J Mineral 24:371–390

    Article  Google Scholar 

  • Veblen DR, Ribbe PH (1982) Amphiboles: petrology and experimental phase relations. Rev Mineral 9B

    Google Scholar 

  • Werner AJ, Hochella MF, Guthry GD Jr et al (1995) Asbestiform riebeckite (crocidolite) dissolution in the presence of Fe chelators: implications for mineral-induced disease. Amer Mineral 80:1093–1103

    Article  Google Scholar 

Schichtsilikate

  • Bayliss P (1975) Nomenclature of trioctahedral chlorites. Canad Mineral 13:178–180

    Google Scholar 

  • Christidis GE, Huff WD (2009) Geological aspects and genesis of bentonites. Elements 5:93–98

    Article  Google Scholar 

  • Cressey BA, Cressey G, Cernik RJ (1994) Structural variations in chrysotile asbestos fibers revealed by synchrotron X-ray diffraction and high-resolution transmission electron microscopy. Canad Mineral 32:257–270

    Google Scholar 

  • Detellier C, Schoonheydt RA (2014) From platy kaolinite to nanorolls. Elements 10:201–206

    Article  Google Scholar 

  • Eisenhour DD, Brown RK (2009) Bentonite and its aspect on modern life. Elements 5:83–88

    Article  Google Scholar 

  • Evans BW, Hattori K, Baronnet A (2013) Serpentinite: what, why, where? Elements 9:99–106

    Article  Google Scholar 

  • Güven N (2009) Bentonites – clays for molecular engineering. Elements 5:89–92

    Article  Google Scholar 

  • Hume LA, Rimstidt JD (1992) The biodurability of chrysotile asbestos in human lungs. Amer Mineral 77:1125–1128

    Google Scholar 

  • Klein C, Hurlbutt CS Jr (1985) Manual of mineralogy (after James D. Dana), 22. Aufl. Wiley, New York

    Google Scholar 

  • Mottana A, Sassi FP, Thompson Jr JB, Guggenheim S (2002) Micas: crystal chemistry and metamorphic petrology. Rev Mineral Geochem 46, 499 S.

    Google Scholar 

  • Schroeder PA, Erickson G (2014) Kaolin: from ancient porcelains to nanocomposites. Elements 10:177–182

    Article  Google Scholar 

  • Searle AB, Grimshaw RW (1959) The chemistry and physics of clays, 3. Aufl. Ernest Benn, London

    Google Scholar 

  • Wicks FJ, O’Hanley DS (1988) Serpentine minerals: structure and petrology. Rev Mineral 19:91–167

    Google Scholar 

  • Williams LB, Hillier S (2014) Kaolins and health: from first grade to first aid. Elements 10:207–211

    Article  Google Scholar 

  • Williams LB, Haydel SE, Ferrell RE Jr (2009) Bentonite, bandaids and borborygmi. Elements 5:99–104

    Article  Google Scholar 

Gerüstsilikate

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. Rev Mineral Geochem 45:1–67

    Article  Google Scholar 

  • Bambauer HU (1961) Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerrklüften der Schweizer Alpen. Schweiz Mineral Petrogr Mitt 41:335–369

    Google Scholar 

  • Bambauer HU (1967) Feldspat-Familie. In: Tröger WE (Hrsg) Optische Bestimmungen der gesteinsbildenden Minerale, Teil 2, Textband. Schweizerbart, Stuttgart

    Google Scholar 

  • Bambauer HU (1988) Feldspäte – Ein Abriß. Neues Jahrb Mineral Abhandl 158:117–138

    Google Scholar 

  • Bambauer HU, Laves F (1960) Zum Adularproblem. Schweiz Min Petr Mitt 40:177–205

    Google Scholar 

  • Bambauer HU, Brunner GO, Laves F (1961) Beobachtungen über Lamellenbau an Bergkristallen. Z Krist 116:173–181

    Article  Google Scholar 

  • Bambauer HU, Brunner GO, Laves F (1962) Wasserstoff-Gehalte in Quarzen aus Zerrklüften der Schweizer Alpen und die Deutung ihrer regionalen Abhängigkeit. Schweiz Mineral Petrogr Mitt 42:121–236

    Google Scholar 

  • Bambauer HU, Krause C, Kroll H (1989) TEM-investigation of the sanidine/microcline transition across metamorphic zones: the K-feldspar varieties. Eur J Mineral 1:47–58, Erratum 1:605

    Google Scholar 

  • Bambauer HU, Bernotat W, Breit U, Kroll H (2005) Perthitic alkali feldspar as indicator mineral in the Central Swiss Alps. Dip and extension of the surface of the microcline/sanidine transition isograd. Eur J Mineral 17:69–80, Erratum 17:944

    Google Scholar 

  • Bish DL, Ming DW (2001) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45, 654 S.

    Google Scholar 

  • Bolton HC, Bursill LA, McLaren AC, Turner RG (1966) On the origin of the colour of labradorite. Phys Stat Sol 18:221–230

    Article  Google Scholar 

  • Carpenter MA (1994) Subsolidus phase relations of the plagioclase feldspar solid solution. In: Parsons I (Hrsg) Feldspars and their reactions. Kluwer, Dordrecht, S 221–269

    Chapter  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

    Article  Google Scholar 

  • Collela C, de’Gennaro M, Aiello R (2001) Use of zeolitic tuff in the building industry. Elements 45:551–587

    Google Scholar 

  • Coombs DS (chairman) et al (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Comission on New Minerals and Mineral Names. Eur J Mineral 10:1037–1081

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1963) Rock-forming minerals, Bd 4, Framework silicates. Longmans, London

    Google Scholar 

  • Dera P, Prewitt CT, Boctor NZ, Hemley RJ (2002) Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. Amer Mineral 87:1018–1023

    Article  Google Scholar 

  • El Goresy A, Dera P, Sharp TG et al (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur J Mineral 20:523–528

    Article  Google Scholar 

  • Flörke OW, Jones JB, Segnit ER (1973) The genesis of hyalite. Neues Jahrb Mineral Monatsh 1973:82–89

    Article  Google Scholar 

  • Flörke OW, Flörke U, Giese U (1984) Moganite – a new microcrystalline silica mineral. Neues Jahrb Mineral Abhandl 149:325–336

    Google Scholar 

  • Flörke OW, Graetsch H, Martin B, Röller K, Wirth R (1991) Nomenclature of micro- and non-crystalline silica minerals based on structure and microstructure. Neues Jahrb Miner Abhandl 63:19–42

    Google Scholar 

  • Friedländer C (1951) Untersuchungen über die Eignung alpiner Quarze für piezoelekttrische Zwecke. Beitr Geol Schweiz, Geotech Ser, Lieferung 29

    Google Scholar 

  • Frondel C (1962) Silica minerals, Bd III, The system of mineralogy. Wiley, New York

    Google Scholar 

  • Gansser A (1963) Quarzkristalle aus den kolumbianischen Anden (Südamerika). Schweiz Mineral-Petrogr Mitt 91:91–107

    Google Scholar 

  • Götze J, Möckel R (Hrsg) (2012) Quartz: deposits, mineralogy and analytics. Springer, Berlin

    Google Scholar 

  • Graetsch H (1994) Structural characteristics of opaline and microcrystalline silica minerals. Rev Mineral 29:209–232

    Google Scholar 

  • Griffen DT (1992) Silicate crystal chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Grocholski B, Shim SH, Prakapenka VB (2013) Stability, metastability and elastic properties of a dense silicate polymorph, seifertite. J Geophy Res 118:4745–4757

    Article  Google Scholar 

  • Guzzo PL, Iwasaki F, Iwasaki H (1997) Al-related centers in relation to γ-irradiation – response in natural quartz. Phys Chem Minerals 24:254–263

    Article  Google Scholar 

  • Hassan IG, Grundy HD (1989) The structure of Nosean, ideally Na8[Al6Si6O24].SO4.H2O. Canad Mineral 27:165–172

    Google Scholar 

  • Heaney PJ, Veblen DR (1991) Observations of the α–β transition in quartz: a review of imaging and diffraction studies and some new results. Amer Mineral 76:1018–1032

    Google Scholar 

  • Henn U, Schultz-Güttler R (2012) Review of some current coloured quartz varieties. J Gemmol 33:29–43

    Article  Google Scholar 

  • Huttenlocher H (1942) Beiträge zur Petrographie des Gesteinszuges Ivrea-Verbano. I. Allgemeines. Die gabbroiden Gesteine von Anzola. Schweiz Mineral-Petrogr Mitt 22:326–366

    Google Scholar 

  • Jin S, Xu H (2017) Study on structure variation of incommensurately modulated labradorite feldspars with different cooling histories. Amer Mineral 102:1328–1339

    Article  Google Scholar 

  • Jung L (1992) High purity natural quartz. Quartz Technology Inc., Liberty Corner

    Google Scholar 

  • King BC, Blackburn WH, Dennen WH (1987) Inferences drawn from clear and smoky quartz in granitic rocks. Neues Jahrb Mineral Abhandl 156:325–341

    Google Scholar 

  • Kroll H (1983) Lattice parameters and determinative methods for plagioclase and ternary feldspars. Rev Mineral 2:101–119

    Google Scholar 

  • Kroll H, Bambauer HU (1981) Diffusive and displacive transformation in plagioclase and ternary feldspar series. Amer Mineral 66:763–769

    Google Scholar 

  • Kroll H, Ribbe PH (1983) Lattice paramters, composition and Al,Si order in alkali feldspars. In: Ribbe PH (Hrsg.) Feldspar Mineralogy. Rev Mineral 2:101–119

    Google Scholar 

  • Kroll H, Ribbe PH (1987) Determing (Al, Si) distribution and strain in alkali feldspars using lattice parameters and diffraction-peak positions: a review. Amer Mineral 72:491–505

    Google Scholar 

  • Kroll H, Bambauer HU, Schirmer U (1980) The high albite–monalbite and analbite–monalbite transitions. Amer Mineral 65:1192–1211

    Google Scholar 

  • Kroll H, Krause C, Voll G (1991) Disordering, reordering and unmixing in alkalifeldspars from contact-metamorphosed quartzites. In: Voll G, Töpel J, Pattison DRM, Seifert F (Hrsg) Equilibrium and kinetics in contact metamorphism: the Ballachulish Igneous complex and its aureole. Springer, Heidelberg, S 267–296

    Chapter  Google Scholar 

  • Kroll H, Bambauer HU, Pentinghaus H (2020) Na-feldspar: temperature, pressure and the state of order. Eur J Mineral 32:427–441

    Article  Google Scholar 

  • Landmesser M (1988) Bau und Bildung der Achate. Lapis 13 9:11–28

    Google Scholar 

  • Landmesser M (1994) Zur Entstehung von Kieselhölzern. extraLapis 7, Versteinertes Holz, ExtraLapis, München, S 49–79

    Google Scholar 

  • Laves F (1960) Al/Si-Verteilungen, Phasen-Transformationen und Namen der Alkalifeldspäte. Z Krist 113:265–296

    Article  Google Scholar 

  • Lehmann G (1978) Farben von Mineralen und ihre Ursachen. Fortschr Mineral 56:172–252

    Google Scholar 

  • Lehmann G, Bambauer HU (1973) Quarzkristalle und ihre Farben. Angew Chem 85:281–289

    Article  Google Scholar 

  • Lehmann G, Moore WJ (1966) Color center in amethyst quartz. Science 152:1061–1062

    Article  Google Scholar 

  • Loewenstein W (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. Amer Mineral 39:92–96

    Google Scholar 

  • Machatschki F (1928) The structure and constitution of feldspars. Centralblatt für Mineralogie Abt. A:97–104

    Google Scholar 

  • McConnell JDC (1971) Electron-optical study of phase transformations. Mineral Mag 38:1–20

    Article  Google Scholar 

  • McConnell JDC (2008) The origin and characteristics of the incommensurate structures in the plagioclase feldspars. Canad Mineral 46:1389–1400

    Article  Google Scholar 

  • Miehe G, Graetsch H (1992) Crystal structure of moganite: a new structure type for silica. Eur J Mineral 4:693–706

    Article  Google Scholar 

  • Morimoto N (Chairman) et al (1988) Nomenclature of pyroxenes. Commission on new minerals and mineral names, international mineralogical association. Am Mineral 73:1123–1133

    Google Scholar 

  • Moxon T, Rios S (2004) Moganite and water content as a function of age in agate: an XRD and thermogravimetric study. Eur J Mineral 16:269–278

    Article  Google Scholar 

  • Parker RL, Bambauer HU (1975) Mineralienkunde: ein Leitpfaden für Sammler. Verlag Ott, Thun

    Google Scholar 

  • Parsons I (2010) Feldspars defined and described: a pair of posters published by the mineralogical society. Sources and supporting information. Mineral Mag 74:529–551

    Article  Google Scholar 

  • Parsons I, Lee MR (2009) Mutual replacement reactions in alkali feldspars I: microtextures and mechanisms. Contrib Mineral Petrol 157:641–661

    Article  Google Scholar 

  • Poty B (1969) La croisance des cristeaux de quartz dans les filons sur l'example du filon de la Gardette (Bourg d'Oisances) et le filons du massif du Mont Blanc. Thèse Univ. Nancy. Sci de la Terre Mem 17, Nancy, France

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Article  Google Scholar 

  • Raz U, Girsperger S, Thompson AB (2003) Direct observations of a double phase transition during the low to high transformation in quartz single crystals to 700 °C and 0.6 GPa. Schweiz Mineral-Petrogr Mitt 83:173–182

    Google Scholar 

  • Ribbe PH (1983a) The chemistry, structure and nomenclature of feldspars. Rev Mineral 2:1–20

    Google Scholar 

  • Ribbe PH (1983b) Exsolution textures in ternary and plagioclase feldspars; interference colors. Rev Mineral 2:241–270

    Google Scholar 

  • Rinne F, Kolb R (1910) Optisches zur Modifikationsänderung von α- in β-Quarz sowie von α- in β-Leucit. Neues Jahrb Mineral Geol Paläont II:138–158

    Google Scholar 

  • Rossman GR (1994) Colored varieties of the silica minerals. Rev Mineral 29:433–467

    Google Scholar 

  • Rykart R (1989) Quarz-Monographie. Ott, Thun

    Google Scholar 

  • Schreyer W (1976) Hochdruckforschung in der modernen Gesteinskunde. Rhein Westf Akad, Westdeutscher Verlag, Opladen (Vorträge N259)

    Book  Google Scholar 

  • Schultz-Güttler R, Henn U, Milisenda CC (2008) Grüne Quarze – Farbursachen und Behandlung. Z Dt Gemmol Ges 57:61–72

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals, Bd 1, 2. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Swamy V, Saxena SK, Sundmann B, Zhang J (1994) A thermodynamic assessment of silica phase diagram. J Geophys Res 99:11787–11794

    Article  Google Scholar 

  • Tajcmanova L, Abart R, Wirth R et al (2012) Intracrystalline microstructures in alkali feldspars from fluid-deficient felsic granulites: a mineral chemical and TEM study. Contrib Mineral Petrol 164:715–729

    Article  Google Scholar 

  • Taylor WH (1933) The structure of sanidine and and other feldspars. Z Krist 85:425–442

    Google Scholar 

  • U.S. Geological Survey (2021) Mineral commodity summaries 2021: U.S. Geological Survey, S 200. https://doi.org/10.3133/mcs20201

  • von Steinwehr HE (1938) Umwandlung α-β-Quarz. Z Krist 99:292–313

    Google Scholar 

  • Walger E, Mattheß G, von Seckendorff V, Liebau F (2009) The formation of agate structures: models for silica transport, agate layer accretion, and for flow patterns and flow regimes in infiltration channels. Neues Jahrb Mineral Abhandl 186:113–152

    Google Scholar 

  • Weil MR (1931) Quelques observations concernant la structure du quartz. Compt Rend Inst d’optiques 1:2–11

    Google Scholar 

  • Wenk E, Schwander H, Wenk H-R (1991) Microprobe analyses of plagioclase from metamorphic carbonate rocks of the Central Alps. Eur J Mineral 3:181–191

    Article  Google Scholar 

  • Wenk H-R (1979) An albite–anorthite assemblage in low-grade amphibolite facies rocks. Amer Mineral 64:1294–1299

    Google Scholar 

  • Yagi T, Akimoto S (1976) Direct determination of coesite-stishovite transition by in situ X-ray measurements. Tectonophysics 35:259–270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okrusch, M., Frimmel, H.E. (2022). Silikate. In: Mineralogie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64064-7_11

Download citation

Publish with us

Policies and ethics