Skip to main content

Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation

  • Chapter
New Physical Trends in Experimental Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 264))

Abstract

As it is indicated in the preface to the book, the major problem of contemporary experimental research in mechanics is the growth of discrepancies or even contradictions between the theory and technique of producing, collecting and processing of information-carrying signals, and the typical theoretical bases for methods used in Experimental Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brillouin, L., Scientific Uncertainty, and Information, Academic Press, New York 1964.

    MATH  Google Scholar 

  2. Popper, K.R., The Logic of Scientific Discovery, Harper and Row, London and New York, 1959, (1968).

    MATH  Google Scholar 

  3. Krajewski, W., Correspondence Principle and Growth of Science, D. Reidel Publishing Company, Dordrecht-Holland, Boston, U.S.A., 1977.

    Book  Google Scholar 

  4. Kuhn, T.S., The Structure of Scientific Revolution, University of Chicago Press, Chicago, Illinois, 1962, 1970.

    Google Scholar 

  5. Wade, N. and Kuhn, T.S., Revolutionary Theorist of Science, Science, 197, 143–145, 1977.

    Article  ADS  Google Scholar 

  6. Sedov, L.I., Introduction to the Mechanics of a Continuous Medium, (translated from the Russian edition, Moscow, 1962), Addison-Wesley Publishing Co., 1965.

    MATH  Google Scholar 

  7. Sedov, L.I., On Prospective Trends and Problems in Mechanics of Continuous Media, (in Russian), Prikladnaya Matematika i Meklhanika, 40, 963–980, 1976. English translation, Pergamon Press Ltd., 1977.

    MathSciNet  Google Scholar 

  8. Tiller, A.W., Materials Science and Applied Science, Science, 16, 469–475, 1969.

    Article  ADS  Google Scholar 

  9. Kac, M., Some Mathematical Models in Science, Science, 166, 695–699, 1969.

    Article  ADS  Google Scholar 

  10. Pindera, J.T., Contemporary Trends in Experimental Mechanics: Foundations, Methods, Applications, in Experimental Mechanics in Research and Devslopment, Pindera, J.T., Leipholz, H.H.E., Rimrott, F.P.J, and Grierson, D.E., Eds., SM Study No. 9, University of Waterloo Press, Ontario, Canada, 1973.

    Google Scholar 

  11. Olszak, W., Mechanics Today: Lights and Shadows, Lecture given at Canadian Congress of Applied Mechanics, Fredericton, May 26–80, 1975.

    Google Scholar 

  12. Sedov, L.I., Theoretical Constructions of Selection of Actual Events from the Virtual Ones, in manuscript; courtesy of the author, 1979.

    Google Scholar 

  13. Pindera, J.T., How General can be Teaching of Experimental Stress Analysis, Proc. of the Fourth Int. Conf. on Experimental Stress Analysis, Cambridge, April 6–10, 1970, Institution of Mechanical Engineering, London, 54 2–545, 1971.

    Google Scholar 

  14. Pindera, J.T., Problems of Reliability of Common Models of Basic Responses of Materials and Systems, Proc. of the VIII Symposium on Experimental Research in Mechanics of Solids, September 4–6, 1978. Warsaw, Poland.

    Google Scholar 

  15. Ilussey, M., Modellino I and II, The Open University Press, Walton Mall, Rlechley Buckinghamshire, 1972.

    Google Scholar 

  16. Naughton, J., Scientific Method and System Modelling, The Open University Press, Walton Hall, Milton Keynes, 1975.

    Google Scholar 

  17. Pindera, J.T., Leipholz, H.H.E., Rimrott, R.P.J, and Grierson, D.E., Eds., Experimental Mechanics in Research and Development, Proc. of the Int. Sym. held at the University of Waterloo, June 12–16, 1972, University of Waterloo Press, Solid Mechanics Division, Waterloo, Ontario, Canada, 1973.

    MATH  Google Scholar 

  18. Axelrad, D.R., Random Theory of Deformation of Structured Media and Axelrad, D.R. and Provan, J.W., Thermodynamics of Deformation in Structured Media, International Centre for Mechanical Sciences, Udine, Italy, Springer-Verlag, New York, 1972.

    MATH  Google Scholar 

  19. Doeblin, E.O., Measurement Systems: Application and Design, McGraw-Hill, 1975.

    Google Scholar 

  20. Soodak, H. and Iberall, A., Homeokinetics: A Physical Science for Complex Systems, Science, 201, 579–582, 1978.

    Article  ADS  Google Scholar 

  21. Alexrad, D.R., Micromechanics of Solids, Elsevier Scientific Publishing Co., Amsterdam and New York, 1978.

    Google Scholar 

  22. Reiner, M., Rheology, in Encyclopedia of Physics, S. Flügge, Ed., VI, 434–510, Springer-Verlag, Berlin, 1958.

    Google Scholar 

  23. Leipholz, H.H.E., Analytical Foundations of Experimental Mechanics. Trends in Analytical Mechanics, in Experimental Mechanics in Research and Development, Pindera, J.T. et al, Eds., Solid Mechanics Division, University of Waterloo Press, Ontario, Canada, 1973.

    Google Scholar 

  24. Van Geen, R., Dispersion chromatique de l’effet photoelastique, Proc. 2nd Int. Conf. on Experimental Stress Analysis, Paris, France, April 10–14, 1962.

    Google Scholar 

  25. Pindera, J.T. and Cloud, G.L., On Dispersion of Birefringence of Photoelastic Materials, Experimental Mechanics, 6, 470–480, 1966.

    Article  Google Scholar 

  26. Cloud, G.L. and Pindera, J.T., Techniques in Infrared Photoelasticity, Experimental Mechanics, 8, 193–201, 1968.

    Article  Google Scholar 

  27. Cloud, G.L., Mechanical Optical Properties of Polycarbonate Resin and Some Relations with Material Structure, Experimental Mechanics, 9, 489–499, 1969.

    Article  Google Scholar 

  28. Pindera, J.T. and Straka, P., On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency, Rheologica Acta, 13, 338–351, 1974.

    Article  Google Scholar 

  29. Pindera, J.T. and Sinha, N.K., On the Studies of Residual Stresses in Glass Plates, Experimental Mechanics, 11, 113–120, 1971.

    Article  Google Scholar 

  30. Pindera, J.T., Alpay, S.A. and Krishnamurthy, A.R., New Developments in Model Studies of Liquid Flow by Means of Flow Birefringence, Trans, of the CSME, 3, 95–102, 1975.

    Google Scholar 

  31. Kestin, J.A., Course in Therrnodynamics, Vol. I and II, Publishing Co., Toronto, 1966, 1968.

    Google Scholar 

  32. Sciammarella, C.A., Basic Optical Law in the Interpretation of Moiré Patterns Applied to the Analysis of Strains — Part 1, Experimental Mechanics, 5, 154–160, 1965.

    Article  Google Scholar 

  33. Pindera, J.T., On the Transfer Properties of Photoelastic Systems, in Proc. of the Seventh All-Union Conf. on Photo elasticity, Tallinn, November 23–26, 48–63, 1971.

    Google Scholar 

  34. Pindera, J.T. and Straka, P., Response of Integrated Polariscope, Journal of Strain Analysis, 8, 65–76, 1973.

    Article  Google Scholar 

  35. Pindera, J.T., Response of Photoelastic Systems, Trans, of the CSME, 2, 21–30, 1973–74.

    Google Scholar 

  36. Mayer, N. and Rohrbach, C., Handbook for Fluidic Measurements, (in German), VDI-Verlag, Düsseldorf, 1977.

    Google Scholar 

  37. Stein, P.K., Measurement Engineering, Vol. I: Basic Principles, 6th Edition, Stein Engineering Services, Inc., Phoenix, Arizona, 1970.

    Google Scholar 

  38. Lewicki, B. and Pindera, J.T., Photoelastic Models of Reinforced Structures, (in Polish), Archiwum Inzynierii Ladowej, 2, 381–418, 1956.

    Google Scholar 

  39. Pindera, J.T. and Sze, Y., Studies of Physical and Mathematical Models of Some Flanged Connections, in Proc. of the Fourth Int. Conf. on Experimental Stress Analysis, April 6–10, 1970, Cambridge, England, Institution of Mechanical Engineering, Westminster, London, 395–408, 1971.

    Google Scholar 

  40. Pindera, J.T. and Sze, Y., Response to Loads of Flat-Faced Flanged Connections and Reliability of Some Design Methods, Trans, of the CSME, 1, 37–44, 1972.

    Google Scholar 

  41. Pindera, J.T. and Sze, Y., Characteristic Parameters of Response of Plates in Contact, in: Proc. of the 2nd Int. Conf. on Structural Mechanics in Reactor Technology, Berlin, September 10–14, 1973, Paper M5/8, 1–12.

    Google Scholar 

  42. Pindera, J.T. and Sze, Y., Influence of the Bolt System on the Response of the Face-to-Face Flanged Connection, in: Proc. of the 2nd Int. Conf. on Structural Mechanics in Reactor Technology, Berlin, September 10–14, 1973, Paper G2/6, 1–13.

    Google Scholar 

  43. Pindera, J.T., Experimental Study of Some Problems Related to Responses of Thick Plates, (in German), in: Experimentelle Spannungs-und Dehnungsanalyse, Laermann, K.-H., Ed., Verner-Verlag, Düsseldorf, 25–49, 1977.

    Google Scholar 

  44. Laermann, K.-H., Experimental Investigations of Plates. Theoretical Foundations, (in German), Verner-Verlag, Düsseldorf, 1977.

    Google Scholar 

  45. Stuart, H.A., Physics of High Polymers, (in German), 4, Springer-Verlag, Berlin, 1956.

    Google Scholar 

  46. Jira, T., Mechanical and Photoelastic Behaviour of Celluloid at Biaxial Load, (in German), Konstruktion, 9, 438–449, 1957.

    Google Scholar 

  47. Hiltscher, R., Theorie and Application of Photoelasticity in Elastic-Plastic Range, (in German), VDI Zeitschrift, 97, 49–58, 1955.

    Google Scholar 

  48. Loreck, R., Investigation of Suitability of Polyester Resin “Leguval” and Some Other Polymers as Materials for Photoelastic Models, (in German), Kunststoffe, 52, 139–143,1962.

    Google Scholar 

  49. Pindera, J.T., Some Research Work in Photoelasticity Carried Out in the Polish Academy of Sciences, (in Russian), in: Polarization-noopticheski metod issledovania napriazheni Trudy Konferentsi, February 13–21, 1958, Izd. Leningradskogo Universiteta, 32–44, 1960.

    Google Scholar 

  50. Pindera, J.T., Rheological Properties of Some Polyester Resins, Part I, II and III, (in Polish), Rozprawy Inzynierskie, 3, 361–411, 481–540, 1959.

    Google Scholar 

  51. Pindera, J.T., Some Rheological Problems at Photoelastic Investigations, in Proc. Int. Spannungsoptisches Sym., Berlin, April 10–15, 1961, Akademie-Verlag, Berlin, 155–172, 1962.

    Google Scholar 

  52. Read, B.E., Dynamic Birefringence of Amorphous Polymers, Journal of Polymer Science, Part C., 87–100, 1964.

    Google Scholar 

  53. Ward, I.M. and Pinnock, P.R., The Mechanical Properties of Solid Polymers, British Journal of Applied Physics, 17, 3–32, 1966.

    Article  ADS  Google Scholar 

  54. Pindera, J.T., Remarks on Properties of Photoviscoelastic Model Materials, Experimental Mechanics, 6, 375–380, 1966.

    Article  Google Scholar 

  55. Pindera, J.T. and Kiesling, E.W., On the Linear Range of Behaviour of Photoelastic and Model Materials, Proc. Third Int. Conf. on Experimental Stress Analysis, Berlin, 1966, VDI-Berichte, No. 102, VDI-Verlag, Düsseldorf, 89–94, 1966.

    Google Scholar 

  56. Pindera, J.T., On Physical Basis of Modern Photoelasticity Techniques, Bertrage zur Spannungs-und Dehnungsanalyse, Vol. V, Academie-Verlag, Berlin 103–130, 1968.

    Google Scholar 

  57. Kiesling, E.W. and Pindera, J.T., Linear Limit Stresses of Some Photoelastic and Mechanical Models Materials, Experimental Mechanics, 9, 337–347, 1969.

    Article  Google Scholar 

  58. Pindera, J.T. and Straka, P., On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency, Rheologica Acta, 13, 338–351, 1974.

    Article  Google Scholar 

  59. Pindera, J.T., Straka, P. and Krishnamurthy, A.R., Rheological -Responses of Materials Used in Model Mechanics, in: Proc. of the Fifth Int. Conf. on Experimental Stress Analysis, held in Udine, Italy, May 27–31, 1974, CISM, Udine, 2.85–2.98, 1974.

    Google Scholar 

  60. Pindera, J.T., Straka, P. and Tschinke, M.R., Actural Thermoelastic Response of Some Engineering Materials and its Applicability in Investigations of Dynamic Response of Structures”, VDI-BERICHTE, 313, 579–584, 1978.

    Google Scholar 

  61. Andrews, R.D. and Hammack, T.J., Temperature Dependence of Orientation Birefringence of Polymers in the Glassy and Rubbery States, Journal of Polymer Science, Part C., Polymer Symposia, Stein, R.S., Ed., No. 5, Interscience Publishers, 101–112, 1964.

    Google Scholar 

  62. Maxwell, J.C., Double Refraction of Viscous Fluids in Motion, Roy. Soc. Proc, 22, 46, 1873–74.

    Article  Google Scholar 

  63. Kundt, A., On the Birefringence of Light in Moving Viscous Liquids, (in German), Wiedmann’s Annalen, XIII, 110, 1881.

    Google Scholar 

  64. Natanson, M.L., O pewnej wlaściwości podwojnego załamania światła w cieczach odkształcanych mogacej posłużyć do wyznaczania ich czasu zluźniania, (Sur une particularité de la double rèfraction accidentelle dans les liquides pouvant servir à la détermination de leur temps de relaxation), Bull. Acad. Sci., Cracovie, 1–22, 1904.

    Google Scholar 

  65. Zaremba, S., Note sur la double refraction accidentelle de la lumière dans les liquides, J. de Phys., 3, 606–611, 1904 and 4, 514–516, 1905.

    MATH  Google Scholar 

  66. Zakrzewski, K., O polożeniu osi optycznych w cieczach odkształcalnych (Sur la position des axes optiques dans les liguides déformés), Bull. Acad. Sci., Cracovie, 50–56, 1904.

    Google Scholar 

  67. Wiener, O., Laminai Birefringence, (Lamellare Doppelbrechung), Physikalische Zeitschrift, 5, 332, 1904.

    MATH  Google Scholar 

  68. Roman, C.V. and Krishan, K.S., A Theory of the Birefringence Induced by Flow in Liquids, Phil. Mag., 5, 769–783, 1928.

    Google Scholar 

  69. Peterlin, A. and Stuart, H.A., Über den Einfluss der Rotationsbehinderung und der Anisotropie des inneren Feldes aug die Polarisation von Flüssigkeiten, Z. Phys., 113, 663–696, 1939.

    Article  MATH  Google Scholar 

  70. Philipoff, W., Flow Birefringence and Stress, J. Appl. Physics, 27, 984–989, 1956.

    Article  ADS  Google Scholar 

  71. Pindera, J.T. and Krishnamurthy, A.R., Characteristic Relations of Flow Birefringence, Part 1: Relations in Transmitted Radiation, Experimental Mechanics, 18, 1–10, 1978, Part 2: Relations in Scattered Radiation, Experimental Mechanics, 18, 41–48, 1978.

    Article  Google Scholar 

  72. Jerrard, H.G., Theories of Streaming Double Refraction, Chem. Rev., 59, 345, 1959.

    Article  Google Scholar 

  73. Wayland, M., Streaming Birefringence of Rigid Macromolecules in General Two-Dimensional Laminar Flow, J. Chem. Phys., 33, 769, 1960.

    Article  ADS  Google Scholar 

  74. Mindlin, R.D., A Mathematical Theory of Photo-Viscoelasticity, J. Appl. Phys., 20, 206–216, 1949.

    Article  ADS  MATH  Google Scholar 

  75. Jira, T., Mechanical and Photoelastic Behaviour of Celluloid at Biaxial Load, (in German), Konstruktion, 9, 438–449, 1957.

    Google Scholar 

  76. Hiltscher, R., Theorie and Application of Photoelasticity in Elastic-Plastic Range, (in German), VDI Zeitschrift, 97, 49–58, 1955.

    Google Scholar 

  77. Loreck, R., Investigation of Suitability of Polyester Resin “Leguval” and Some Other Polymers as Materials for Photoelastic Models, (in German), Kunststoffe, 52, 139–143, 1962.

    Google Scholar 

  78. Pindera, J.T., Some Research Work in Photoelasticity Carried Out in the Polish Academy of Sciences, (in Russian), in: Polarization-noopticheski metod issledovania napriazheni Trudy Konferentsi, February 13–21, 1958, Izd. Leningradskogo Universiteta, 32–44, 1960.

    Google Scholar 

  79. Pindera, J.T., Rheological Properties of Some Polyester Resins, Part I, II and III, (in Polish), Rozprawy Inzynierskie, 3, 361–411, 481–540, 1959.

    Google Scholar 

  80. Pindera, J.T., Some Rheological Problems at Photoelastic Investigations, in Proc. Int. Spannungsoptisches Sym., Berlin, April 10–15, 1961, Akademic-Verlag, Berlin, 155–172, 1962.

    Google Scholar 

  81. Read, B.E., Dynamic Birefringence of Amorphous Polymers, Journal of Polymer Science, Part C., 87–100, 1964.

    Google Scholar 

  82. Ward, I.M. and Pinnock, P.R., The Mechanical Properties of Solid Polymers, British Journal of Applied Physics, 17, 3–32, 1966.

    Article  ADS  Google Scholar 

  83. Pindera, J.T., Remarks on Properties of Photoviscoelastic Model Materials, Experimeyital Mechanics, 6, 375–380, 1966.

    Article  Google Scholar 

  84. Pindera, J.T. and Kiesling, E.W., On the Linear Range of Behaviour of Photoelastic and Model Materials, Proc. Third Int. Conf. on Experimental Stress Analysis, Berlin, 1966, VDI-Berichte, No. 102, VDI-Verlag, Düsseldorf, 89–94, 1966.

    Google Scholar 

  85. Pindera, J.T., On Physical Basis of Modern Photoelasticity Techniques, Bertrdge zur Spannungs-und Dehnungsanalyse, Vol. V, Academie-Verlag, Berlin 103–130, 1968.

    Google Scholar 

  86. Kiesling, E.W. and Pindera, J.T., Linear Limit Stresses of Some Photoelastic and Mechanical Models Materials, Experimental Mechanics, 9, 337–347, 1969.

    Article  Google Scholar 

  87. Pindera, J.T. and Straka, P., On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency, Rheologica Acta, 13, 338–351, 1974.

    Article  Google Scholar 

  88. Pindera, J.T., Straka, P. and Krishnamurthy, A.R., Rheological Responses of Materials Used in Model Mechanics, in: Proc. of the Fifth Int. Conf. on Experimental Stress Analysis, held in Udine, Italy, May 27–31, 1974, CISM, Udine, 2.85–2.98, 1974.

    Google Scholar 

  89. Green, A.E., Rivlin, R.S. and Spencer, A.J.M., The Mechanics of Non-Linear Materials with Memory, Part I, II and III, Archiv Rational Mechanics Anal., 1, 1–21, 1957; 3, 82–90,.1959 and 4, 387–404, 1960.

    Article  ADS  MATH  Google Scholar 

  90. Coleman, B.D., Dill, E.H. and Toupin, R.A., A Phenomenological Theory of Streaming Birefringence, Arch. Rational Mech. Anal., 39, 358–399, 1971.

    ADS  MathSciNet  Google Scholar 

  91. Theocaris, P., Phenomenological Analysis of Mechanical and Optical Behaviour of Rheo-Optically Simple Materials, in: The Photoelastic Effect and its Applications, Kestens, J., Ed., Springer-Verlag, 1975.

    Google Scholar 

  92. Mushelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, P. N.ordhoff, Groningen-Holland, 324–328, 1953.

    Google Scholar 

  93. Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill Book Company, Toronto, 283–287, 1956.

    Google Scholar 

  94. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, McGraw-Hill Book Company, Toronto, 122–127, 1970.

    MATH  Google Scholar 

  95. Frocht, M.M., Photoelasticity, Vol. II, John Wiley, New York, 121–129, 1948.

    Google Scholar 

  96. Pindera, J.T., Outline of Photoelasticity, (in Polish), P.W.T., Warszawa, 1953.

    Google Scholar 

  97. Pindera, J.T., Technique of Photoelastic Studies of Plane Stress States, (in Polish), Rozprawy Inzynierskie, Polish Academy of Sciences, 3, 109–176, 1955.

    Google Scholar 

  98. Pindera, J.T., Contemporary Methods of Photoelasticity, (in Polish), Panstwowe Wydawnictwa Techniczne, Warszawa, 1960.

    Google Scholar 

  99. Hondros, G., The Evaluation of Poisson’s Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazillian Test, Australian J. of Appl. Science, 10, 243–268, 1959.

    Google Scholar 

  100. Pindera, J.T., Mazurkiewicz, S.B. and Khattab, M.A., Stress Field in Circular Disk Loaded Along Diameter: Discrepancies Between Analytical and Experimental Results, presented at the SESA Spring Meeting, Wichita, Kansas, May, 1978, Paper No. CR-10.

    Google Scholar 

  101. Chong, Ken P., Finite Element and Other Analyses of Split Disks, in manuscript, 1978.

    Google Scholar 

  102. Bokshtein, M.F., On Resolving Power of Photoelastic System for Stress Analysis, (in Russian), J. Tekhn. Fiziki, XIX, 1103–1106, 1949.

    Google Scholar 

  103. Acloque, P. and Guillemet, G., Method for the Photoelastic Measurement of Stresses “In Equilibrium in the Thickness” of a Plate, (Particular Cases of Toughened Glass and Bent Glass), Selected papers on Stress Analysis presented at the Institute of Physics, Stress Analysis Group Conference, Delft, 1959.

    Google Scholar 

  104. Manogg, P., The Light Deflection in an Elastically Deformed Plate and the Shadow Patterns of Circular Notches and Cracks, (in German), Glastechnische Berichte, 39, 323–329, 1966.

    Google Scholar 

  105. Born, M. and Wolf, E., Principles of Optics, 5th Edition, Pergamon Press, Oxford, New York, 1975.

    Google Scholar 

  106. Hecker, F.W. and Pindera, J.T., Influence of Stress Gradient on Direction of Light Propagation in Photoelastic Specimens, VDI-BERICHTE, 313, 745–754, 1978.

    Google Scholar 

  107. Hecker, F.W., Kepich, T. Y. and Pindera, J.T., Neglected Factor in Photoelasticity: Non-linear Light Propagation in Stressed Bodies and Its Significance, Proc. of The 8th All-Union Conf. on Photoelasticity, Tallinn, September 25–28, 1979, Akademia Nauk Estonskoy SSR, Institut Kibernetiki, Tallin, 1, 117–123, 1979.

    Google Scholar 

  108. Hecker, F.W., Kepich, T.Y. and Pindera, J.T., Non-Rectilinear Optical Effects in Photoelasticigy Caused by Stress Gradients, in: Proc. IUTAM Sym. on Optical Methods in Mechanics of Solids, Poitiers, September 10–14, 1979.

    Google Scholar 

  109. Pindera, J.T., Hecker, F.W. and Krasnowski, B.R., A New Experimental Method: Gradient Photoelasticity, to be published.

    Google Scholar 

  110. Pindera, J.T. and Mazurkiewicz, S.B., Photoelastic Isodynes: A New Type of Stress Modulated Light Intensity Distribution, Mech. Res. Comm., 4, 247–252, 1977.

    Article  Google Scholar 

  111. Mazurkiewicz, S.B. and Pindera, J.T., Integrated-Plane Photoelastic Method-Application of Photoelastic Isodynes, Experimental Mechanics, 19, 225–234, 1979.

    Article  Google Scholar 

  112. Pindera, J.T., Elements of More Rigorous Theory and Technique of Isodyne Method and Their Applications to Other Optical Methods, in: Proc. IUTAM Sym. on Optical Methods in Mechanics of Solids, Poitiers, September 10–14, 1979.

    Google Scholar 

  113. Pindera, J.T. and Mazurkiewicz, S.B., Optimization of Photoelastic Stress Analysis using Isodyne Method, in: Proc. of The 8th All-Union Conf. on Photoelasticity, Tallinn, September 25–28, 1979, Akademia Nauk Estonskoy SSR, Institut Kibernetiki, Tallinn, I, 145–150, 1979.

    Google Scholar 

  114. Hartung, H.F., Burns, D.J. and Pindera, J.T., Ultrasonic Monitoring of Growth of Part-Through Thickness Defects at 290°C, Trans. ASME, Journal of Engineering for Power, 101, 471–476, 1979.

    Article  Google Scholar 

  115. Kino, Gordon S., Nondestructive Evaluation, Science, 206, 173–180, 1979.

    Article  ADS  Google Scholar 

  116. Roe, P.H., Soulis, G.N., Handa, V.K., The Discipline of Design, Printed in Canada at the University of Waterloo, 1969.

    Google Scholar 

  117. Dixon, J.R., Design Engineering, McGraw-Hill, New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Wien

About this chapter

Cite this chapter

Pindera, J.T. (1981). Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation. In: Pindera, J.T. (eds) New Physical Trends in Experimental Mechanics. CISM International Centre for Mechanical Sciences, vol 264. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4344-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4344-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81630-1

  • Online ISBN: 978-3-7091-4344-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics