
Verkle Trees

John Kuszmaul

Abstract

We present Verkle Trees, a bandwidth-efficient alternative to Merkle Trees. Merkle Trees

are currently employed in a variety of applications in which membership proofs are sent

across a network, including consensus protocols, public-key directories, cryptocurrencies such

as Bitcoin, and Secure File Systems. A Merkle Tree with n leaves has O(log2 n)-sized proofs.

In large trees, sending the proofs can dominate bandwidth consumption. Vector Com-

mitments (VCs) pose a potential alternative to Merkle Trees, with constant-sized proofs.

Unfortunately, VC construction time is O(n2), which is too large for many applications.

We present Verkle Trees, which are constructed similarly to Merkle Trees, but using Vector

Commitments rather than cryptographic hash functions. In a Merkle Tree, a parent node

is the hash of its children. In a Verkle Tree, a parent node is the Vector Commitment of

its children. A Verkle Tree with branching factor k achieves O(kn) construction time and

O(logk n) membership proof-size. This means that the branching factor, k, offers a tradeoff

between computational power and bandwidth. The bandwidth reduction is independent of

the depth of the tree; it depends only on the branching factor. We find experimentally that

with a branching factor of k = 1024, which provides a factor of 10 reduction in bandwidth,

it takes 110.1 milliseconds on average per leaf to construct a Verkle Tree with 214 leaves.

A branching factor of k = 32, which provides a bandwidth reduction factor of 5, yields a

construction time of 8.4 milliseconds on average per leaf for a tree with 214 leaves. (The

performance on a tree with 214 leaves is representative of larger trees because the asymp-

totics already dominate the computation costs.) My role in this research project has been

proving the time complexities of Verkle Trees, implementing Verkle Trees, and testing and

benchmarking the implementation.



1 Introduction

Suppose that Alice has some files, F0, F1, ... , Fn, which she wants to store remotely, for

example, at a company called Dropbox.

One way for Alice to do this would be to send her files across the network to Dropbox.

Then Alice can query Dropbox for individual files Fi. Unfortunately, Alice has no way to

verify that the file Dropbox responds with, Di, is the same as the file Fi and has not been

maliciously modified.

In light of this, Alice would like to be able to verify the integrity of the files she receives

back from Dropbox. To achieve this generally, Alice will first generate a digest d over her

files. She will store d on her local device and only then send her files to Dropbox. When

querying Dropbox for individual files Fi, Alice will receive a file Di, but also a membership

proof, πi for the file with respect to the digest d. Finally, Alice will verify the proof πi against

the digest d, which she has stored locally, to ensure that the file she received from Dropbox,

Di, is the same as the file she initially sent to Dropbox, Fi.

There are well-known data structures that Alice can use to do this. Merkle Trees and

Vector Commitment Schemes would both work, but Merkle Trees could have membership

proofs that are too large, which would result in costly bandwidth overheads as Dropbox sends

membership proofs to Alice, and Vector Commitment Schemes can be computationally ex-

pensive to compute. We introduce Verkle Trees which offer a tradeoff between computational

power and bandwidth.

Verkle Trees have the potential to reduce the proof size, and thus the bandwidth, in

applications including consensus protocols, public-key directories, cryptocurrencies such as

Bitcoin [1], encrypted web applications, and secure file systems. These are all applications

in which Merkle Trees are currently employed.

In Section 2, we will discuss the background of our work, including Cryptographic Hash

Functions, Merkle Hash Trees, and Vector Commitment Schemes. In Section 3, we discuss

our system including its design and time complexities. In Section 4, we discuss our im-

plementation of Verkle Trees. In Section 5 we present and analyze our results. Section 6

contains our conclusions and future work, and Section 7 is our acknowledgements.

1



2 Background

2.1 Hash Functions: A Simple Scheme

To see how Alice can verify the integrity of her files on Dropbox in practice, we must first

discuss Cryptographic Hash Functions [2]. A Cryptographic Hash Function H takes an

input of arbitrary length, and returns its hash, a short fixed-length binary string. SHA-256,

for example, gives a 256-bit output. The most important property of Cryptographic Hash

Functions, for our work, is their strong collision resistance. For a strongly collision resistant

hash function [2], it is computationally infeasible to find two distinct inputs, m and m′,

which have the same output, i.e., H(m) = H(m′). It should be noted that given there are

an infinite number of possible inputs to a Cryptographic Hash function such as SHA-256,

and only a finite number of outputs, there do exist two distinct inputs that yield the same

hash by the pigeonhole principle, but for a strongly collision resistant hash function, it is

computationally infeasible to find two such inputs.

Using Cryptographic Hash Functions, we can quickly construct a scheme that will allow

Alice to verify the integrity of the files she receives back from Dropbox. Alice will first hash

each file and store these O(n) hashes, h0 = H(F0), h1 = H(F1), ..., hn = H(Fn), locally on

her computer as the digest d. Only then will she send her files to Dropbox. When Alice

queries Dropbox for an individual file Fi, Dropbox will respond with a file Di (note that in

this scheme, the membership proof is empty, and thus Dropbox responds with the file alone).

Alice verifies that the file she receives, Di, is the same as the file she sent to Dropbox, Fi,

by checking that H(Di) = hi. Dropbox cannot respond with a distinct file Di 6= Fi that

will satisfy H(Di) = hi = H(Fi) without breaking the strong collision resistance of the

Cryptographic Hash function.

The problem with this scheme is that it requires Alice to store n digests on her local

device. This is impractical, and we would like a scheme that allows Alice to store a constant-

sized digest locally regardless of how many files she is storing on Dropbox. The well-known

solution to this problem is the Merkle Tree [3], discovered by Ralph Merkle in the 1970s.

2.2 Merkle Trees

To construct a Merkle Tree, Alice will first hash each of her files. She will then continue

hashing upwards as shown in Figure 1. To compute a given node in the Merkle Tree, Alice

looks at its two children nodes, each of which contains a hash. Alice concatenates these two

hashes and hashes again to compute the given node.

The root of the Merkle tree, R, serves as the digest; Alice will store it locally on her

2



Figure 1: A Binary Merkle Tree

device. When Alice queries Dropbox for individual files Fi, Dropbox will respond with a file

Di, and the membership proof πi, the Merkle proof for Di. The Merkle proof of a leaf in

a Merkle tree consists of the siblings of each of the nodes in the path from the leaf to the

Merkle root (see Figure 2).

Alice can then verify Di with respect to the digest, R, which she stores locally on her

device, with the Merkle proof she receives from Dropbox (see Figure 2). Alice hashes up the

tree along the path from the leaf D3 up to the Merkle root using only the nodes that she

received from Dropbox in the Merkle proof. Once Alice computes a new Merkle Root DR,

she checks that DR = R. If it does, she can rest assured that Di = Fi, because in order to

forge a Merkle proof for a modified file Di 6= Fi, Dropbox would have to break the strong

collision resistance of the Cryptographic Hash function [3].

Merkle Trees are computationally fast, and a Merkle Tree over n files can be constructed

in O(n) time (See Figure 5).

Unfortunately, a Merkle Tree that contains many small files can have Merkle proofs that

are then prohibitively large. Suppose Alice has 230 ≈ 109 files. The depth of the tree will then

be approximately 30, and since the Merkle Proof consists of one node (which is a hash) at

each level in the tree (besides the first), the Merkle Proof will work out to be approximately

one kilobyte (using a 256-bit hash such as SHA-256). Dropbox has to send both the file

and a Merkle Proof across the network to Alice when queried for an individual file, so for

3



Figure 2: The Merkle Proof (in yellow)

small files, the Merkle Proof itself could create a large and expensive bandwidth overhead

on Dropbox.

2.3 k-ary Merkle Trees

One possible solution is to use a k-ary Merkle Tree. In a binary Merkle Tree, the proof

consists of one node at each level, so to reduce the size of the proof, a natural instinct is to

reduce the height of the tree by giving it a branching factor of k > 2. Giving our Merkle tree

a branching factor of k reduces the height of the tree from log2 n to logk n, a log2 k factor

decrease in height. Unfortunately, the Merkle proof actually grows larger, from O(log2 n) to

O(k logk n). This is because in a k-ary Merkle Tree, the Merkle proof actually consists of

(k− 1) nodes at each level (besides the first); Alice needs to receive the other k− 1 children

of a node in order to concatenate together all k children and hash to compute the parent

node.

Our work, Verkle Trees, reduce the proof size from O(log2 n) to O(logk n) for a branching

factor of k. This results in a factor of log2 k less bandwidth. So if we set k = 1024, the

Verkle Proof will be 10 times smaller than the Merkle Tree. This comes at a cost of k times

more computation when constructing and updating the tree. This is remarkable because

it allows us to reduce the bandwidth by an order of magnitude at the cost of a reasonable

4



Figure 3: A 3-ary Merkle Tree: The Merkle Proof, in yellow, is larger!

increase in computational power. Note that bandwidth is typically much more expensive

than computational power in the applications for which Merkle Trees are typically used.

Verkle Trees use Vector Commitment (VC) schemes.

2.4 Vector Commitment Schemes

Vector Commitment schemes [4] are an alternative scheme that Alice could use to verify the

integrity of her files on Dropbox. A commitment C is computed over the F0, F1, ..., Fn along

with membership proofs π0, π1, ..., πn for each file F0, F1, ...Fn respectively with respect to

the commitment C. Thus C is the digest of the VC. Significantly, each membership proof is

constant-sized, regardless of how many files are contained in the VC. The VC Scheme we use

is by Catalano and Fiore and is constructed using billinear groups and the Computational

Diffie-Hellman assumption. The background of the scheme itself is beyond the scope of this

paper. It is remarkable that the proofs are constant-sized, thus reducing the bandwidth

required to send a proof to a constant. Unfortunately, it takes O(n2) time to construct a VC

along with each of its O(n) membership proofs.

5



3 System

At their heart, Verkle Trees combine techniques used in Merkle Tree as well as Vector

Commitment Schemes to provide a tradeoff between bandwidth and computational power.

3.1 Goal

Our goal is to create a new data structure, Verkle Trees, which reduce the bandwidth required

for Merkle Trees. We will do so by reducing the membership proof size. This will come at

the cost of increasing the computational power required to compute and update a Verkle

Tree relative to that required to compute and update a Merkle Tree. The Verkle Tree is a

k-ary tree, i.e., k is the branching factor of the tree. As we will see, the branching factor,

k, determines the exact tradeoff between computational power and bandwidth that a k-ary

Verkle Tree provides.

3.2 Verkle Tree Design

The key insight of the Verkle Tree is that we can construct a Merkle Tree, but replace

Cryptographic Hash functions with Vector Commitments. Before computing a Verkle Tree

over some files F0, F1, ... , Fn, we first select the branching factor of the tree, k. We then

group our files into subsets of k files and compute a Vector Commitment, C, over each of

the subsets of files. We also compute each VC membership proofs πi for each file Fi in the

subset with respect to C. We then continue computing Vector Commitments up the tree

over previously computed commitments until we compute the root commitment. In Figure 4,

we began with 9 files and branching factor of 3. After dividing the files into subsets of size

k = 3, a Vector Commitment is computed over each subset along with the corresponding

membership proofs. This leaves us with the commitments C1, C2, and C3. We compute the

Vector Commitment C4 over these three commitment along with the membership proofs π9,

π10, and π11 for the commitments C1, C2, and C3 respectively with respect to the commitment

C4. The digest of the Verkle Tree is the root commitment, which is C4 in this case.

6



Figure 4: A Verkle Tree with k = 3

3.3 Time Complexities and Comparison

Scheme/Op. Construct Update File Proof Size

Merkle Tree O(n) O(log2 n) O(log2 n)

k-ary Merkle Tree O(n) O(k logk n) O(k logk n)

Vector Commitment O(n2) O(n) O(1)

k-ary Verkle Tree O(kn) O(k logk n) O(logk n)

Figure 5: Time Complexities

We began by looking at Merkle Trees, which are exceptionally fast and can be computed

in O(n) time. Unfortunately, their proof size of O(log2 n) is quite large and can be costly

in terms of bandwidth. We then briefly turned to k-ary trees, but their proofs are actually

even larger than Merkle Trees, O(k logk n). Vector Commitment Schemes reduce the proof

size down to a constant, O(1), but this comes at the cost of O(n2) computation to construct

the Vector Commitment, which is very expensive.

The k-ary Verkle Tree, on the other hand, takes only O(kn) time to construct. Fur-

thermore, its proof size is only O(logkn), a factor of O(log2k times smaller than the Merkle

Tree’s memberhsip proofs. We believe that this is a satisfactory tradeoff, because it allows

7



the reduction of bandwidth at an unreasonable increase in computational power. Generally,

bandwidth is cheaper than computational power.

If we set k = 1024, we achieve a 10 times reduction in proof size, and thus bandwidth, at

the cost of a 1024 increase in computational power. If less computational power is desired,

k can be lowered. The exact value of k may vary from application to application depending

on the environment-specific optimization between computational power and bandwidth.

4 Implementation

Our implementation of Verkle Trees was written in C++ and uses the RELIC [5] library

as well as the SHA-256 cryptographic hash function. We began by implementing a Vector

Commitment scheme by Catalano and Fiore [4]. We then proceeded to implement a Verkle

Tree as a prefix tree [6]. In a prefix tree, a leaf is represented by a key-value pair. The prefix

of the leaf (which determines its location in the prefix tree), is determined by the hash of

the leaf’s key. This ensures that two distinct leaves will have distinct prefixes due to the

collision resistant nature of SHA-256.

As far as we know, we are the first to implement the Vector Commitment scheme of

Catalano and Fiore. We are also, to the best of our knowledge, the first to implement Verkle

Trees.

5 Results

We have benchmarked our implementation of Verkle Trees. In particular, we measured the

amount of time it took to construct the Verkle Tree by updating a prefix Verkle Tree one

node at a time, starting with an empty tree. It would be faster to construct the entire Verkle

Tree at once, but our benchmark represents a simulation in which a server is continuously

receiving new leaves and then updating its prefix Verkle Tree to contain them.

Our graphs, which have logarithmic axes, demonstrate the adaptability of the Verkle

Tree. Figure 6 demonstrates the time required to construct a Verkle Tree with branching

factor k = 1024. While it is approximately linear, the Verkle Tree is actually relatively slow,

taking 110.1 milliseconds per leaf to construct the largest tree shown with 214 leaves. Recall,

however, that this comes with an associated factor of 10 reduction in proof size relative to

Merkle Trees.

If however, this is too computationally expensive, the branching factor k can be varied,

as shown in Figure 7. The branching factor could be, for example, reduced from k = 1024

8



28 29 210 211 212 213 214
22

24

26

28

210

Number of Leaves

S
ec

on
d
s

E
la

p
se

d

Figure 6: Tree Construction Time for k = 1024

21 22 23 24 25 26 27 28 29 210

26

28

210

Branching Factor k

S
ec

on
d
s

E
la

p
se

d

Figure 7: Tree construction time for 214 leaves

9



to k = 32, which would result in only a factor of 5 reduction in proof size relative to Merkle

Trees. This would greatly decrease the computational power required for the Verkle Tree,

however, to only 8.4 milliseconds per leaf, which is approximately 13 times faster.

Thus applications which receive frequent updates to their tree may wish to choose a

lower branching factor, whereas more static Verkle Trees can be maintained with a higher

branching factor, thus saving bandwidth and reducing the size of membership proofs.

6 Conclusion and Future Work

We conclude from our preliminary benchmarks that Verkle Trees are a potential replacement

of Merkle Trees for many applications. Verkle Trees have the advantage that the branching

factor, k, is variable and can be adapted to satisfy different criteria.

In the future, we would like to further optimize our implementation of Verkle Trees

by implementing it in parallel. Other optimizations we are considering include batching

updates.

7 Acknowledgements

I would like to thank my mentor, Alin Tomescu, for his invaluable guidance. He provided

the idea for this project.

I would also like to thank MIT PRIMES, Dr. Slava Gerovitch, and Dr. Srini Devadas for

giving me this research opportunity.

10



References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
https://bitcoin.org/bitcoin.pdf, 2008, Accessed: 2017-03-08.

[2] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics: Definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and collision
resistance,” 2004, Accessed: 2017-9-16.

[3] R. C. Merkle, “A digital signature based on a conventional encryption function,” in
Conference on the Theory and Application of Cryptographic Techniques. Springer, 1987,
pp. 369–378.

[4] D. Catalano and D. Fiore, “Vector commitments and their applications,” in Public-Key
Cryptography–PKC 2013. Springer, 2013, pp. 55–72.

[5] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary for Cryptography,”
https://github.com/relic-toolkit/relic.

[6] S. Ramabhadran, J. Hellerstein, S. Ratnasamy, and S. Shenker, “Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies,”
http://static.usenix.org/event/sec09/tech/full papers/crosby.pdf, Accessed: 2017-5-
15.


