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See also chapters 5 and 10 of Photonic Crystals: Molding the Flow of Light



2d periodicity, ε=12:1
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2d periodicity, ε=12:1
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2d periodicity, ε=12:1
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What a difference
a boundary condition makes…

ε1 ε2

E1,|| = E2,||

ε1E1,⊥ = ε2E2,⊥

E|| is continuous:
energy density ε|E|2

more in larger ε

εE⊥ is continuous:
energy density |εE|2/ε

more in smaller ε

To get strong confinement & gaps,
want E mostly parallel to interfaces

TM: || TE: ⊥



2d photonic crystal: TE gap, ε=12:1
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“Complete” (TE+TM) gap in 2d

Spots: big enough for lowest TM bands
to concentrate (gap with 3rd band)

Veins: lowest TE band circles around holes



3d photonic crystal: complete gap , ε=12:1
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[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]

gap for n > ~2:1



Intentional “defects” are good

3D Photonic C rysta l with Defects

microcavities waveguides (“wires”)



420 nm

[ Notomi et al. (2005). ]

Resonance
an oscillating mode trapped for a long time in some volume

(of light, sound, …)
frequency ω0

lifetime τ >> 2π/ω0
quality factor Q = ω0τ/2

energy ~ e–ω0t/Q

modal
volume V

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]

[ C.-W. Wong,
APL 84, 1242 (2004). ]



Why Resonance?
an oscillating mode trapped for a long time in some volume

• long time = narrow bandwidth … filters (WDM, etc.)
— 1/Q = fractional bandwidth

• resonant processes allow one to �impedance match�
hard-to-couple inputs/outputs

• long time, small V … enhanced wave/matter interaction
— lasers, nonlinear optics, opto-mechanical coupling, 

sensors, LEDs, thermal sources, … 



How Resonance?
need mechanism to trap light for long time

[ llnl.gov ]

metallic cavities:
good for microwave,
dissipative for infrared

ring/disc/sphere resonators:
a waveguide bent in circle,
bending loss ~ exp(–radius)

[ Xu & Lipson
(2005) ]

10µm

[ Akahane, Nature 425, 944 (2003) ]

photonic bandgaps
(complete or partial

+ index-guiding)

VCSEL
[fotonik.dtu.dk]

(planar Si slab)



Why do defects in crystals
trap resonant modes?

What do the modes look like?



Single-Mode Cavity
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A point defect
can push up

a single mode
from the band edge

(k not conserved)
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“Single”-Mode Cavity
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Bulk Crystal Band Diagram

A point defect
can pull down

a �single� mode

(k not conserved)
X

…here, doubly-degenerate
(two states at same ω)



Tunable Cavity Modes

Ez:
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Tunable Cavity Modes

Ez:

band #1 at M band #2 at X�s

m
ultiply by

exponential decay

monopole dipole



More defect modes (4 out of 5 C4v irreps here)



Intentional “defects” are good

3D Photonic C rysta l with Defects

microcavities waveguides (�wires�)



Projected Band Diagrams

conserved k!

1d periodicity
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So, plot ω vs. kx only…project Brillouin zone onto Γ–X:

gives continuum of bulk states + discrete guided band(s)



Air-waveguide Band Diagram

any state in the gap cannot couple to bulk crystal ⇒ localized

continuum of
bulk-crystal modes



(Waveguides don�t really need a complete gap)

Fabry-Perot waveguide:

This is exploited e.g. for photonic-crystal fibers…



Guiding Light in Air!
mechanism is gap only vs. standard optical fiber:

�total internal reflection�
— requires higher-index core

no hollow core!

hollow = lower absorption, lower nonlinearities, higher power



Review: Why no scattering?

forbidden by gap
(except for finite-crystal tunneling)

forbidden by Bloch
(k conserved)



Benefits of a complete gap…

broken symmetry –> reflections only

effectively one-dimensional



Band diagrams: Poor tool to understand 
refraction/reflection at interfaces

[ M. Notomi, PRB 62, 10696 (2000). ]
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At an interface, only ω and surface-parallel k are conserved.
— we need all the solutions at a given ω, not the different ω’s at a given k.



�1d�Waveguides + Cavities = Devices
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Refraction and wavevector diagrams

ω contours
in (kx,ky) space

[ Luo et al, PRB 65, 2001104 (2002). ]

k|| is conserved



Negative-refractive
all-dielectric photonic crystals

[ M. Notomi, PRB 62, 10696 (2000). ]

negative refraction focussing

(2d rods in air, TE)

not metamaterials: wavelength ~ a,
no homogeneous material can reproduce all behaviors



“Superlensing” with Photonic Crystals
[ Luo et al, PRB 68, 045115 (2003). ]

2/3 diffraction limit



Supercollimation

A Gaussian (etc.) beam propagating in the x direction consists of many ky components at the 
same ω.  In a homogeneous medium, each ky component travels in a different direction (group 
velocity). The beam therefore spreads (diffracts).

In a photonic crystal, the ω contour can be very “flat” so beam spreading is minimized: all the 
ky components travel in almost the same direction. Supercollimation!



Supercollimation on the computer:

the light forms one or more coherent “Bloch beams”
that propagate without scattering

… and almost without diffraction (supercollimation) 



Experimental supercollimation

Rakich et al., “Achieving 
centimetre-scale 
supercollimation in a large-
area two-dimensional 
photonic crystal,” Nature 
Materials 5, 93–96 (2006).



Experimental supercollimation at λ≈1.5µm
Rakich et al., “Achieving centimetre-scale supercollimation in a large-area two-
dimensional photonic crystal,” Nature Materials 5, 93–96 (2006).

Theory:

Experiment
(measured
vertical scattering
from disorder)

Theory, including
disorder:


