
remote sensing  

Article

Laser Scanner–Based Deformation Analysis Using
Approximating B-Spline Surfaces

Corinna Harmening *, Christoph Hobmaier and Hans Neuner

����������
�������

Citation: Harmening, C.; Hobmaier,

C.; Neuner, H. Laser Scanner–Based

Deformation Analysis Using

Approximating B-Spline Surfaces.

Remote Sens. 2021, 13, 3551. https://

doi.org/10.3390/rs13183551

Academic Editor: Alex Hay-Man Ng

Received: 13 July 2021

Accepted: 25 August 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstr. 8/E120, 1040 Vienna, Austria;
c.hobmaier@gmx.net (C.H.); hans.neuner@geo.tuwien.ac.at (H.N.)
* Correspondence: corinna.harmening@tuwien.ac.at

Abstract: Due to the increased use of areal measurement techniques, such as laser scanning in
geodetic monitoring tasks, areal analysis strategies have considerably gained in importance over
the last decade. Although a variety of approaches that quasi-continuously model deformations are
already proposed in the literature, there are still a multitude of challenges to solve. One of the major
interests of engineering geodesy within monitoring tasks is the detection of absolute distortions with
respect to a stable reference frame. Determining distortions and simultaneously establishing the
joint geodetic datum can be realised by modelling the differences between point clouds acquired in
different measuring epochs by means of a rigid body movement that is superimposed by distortions.
In a previous study, we discussed the possibility of estimating these rigid body movements from the
control points of B-spline surfaces approximating the acquired point clouds. Alternatively, we focus
on estimating them by means of constructed points on B-spline surfaces in this study. This strategy
has the advantage of larger redundancy compared to the control point–based strategy. Furthermore,
the strategy introduced allows for the detection of rigid body movements between point clouds of
different epochs and for the simultaneous localisation of areas in which the rigid body movement is
superimposed by distortions. The developed approach is based on B-spline models of epoch-wise
acquired point clouds, the surface parameters of which define point correspondences on different
B-spline surfaces. Using these point correspondences, a RANSAC-approach is used to robustly
estimate the parameters of the rigid body movement. The resulting consensus set initially defines the
non-distorted areas of the object under investigation, which are extended and statistically verified in
a second step. The developed approach is applied to simulated data sets, revealing that distorted
areas can be reliably detected and that the parameters of the rigid body movement can be precisely
and accurately determined by means of the strategy.

Keywords: B-splines; deformation analysis; hypothesis tests; laser scanning; point clouds

1. Introduction

Geodetic deformation monitoring deals with the measurement, modelling and eval-
uation of geometric object changes caused by external influences, such as temperature
changes, load effects or changes in the groundwater level [1]. Classically, point-based
strategies are used to monitor the behaviour of objects over time: By repeatedly measuring
signalised characteristic points of the object under investigation, displacement vectors can
be derived, representing the object’s deformation [2]. Due to its long tradition in engineer-
ing geodesy, sophisticated strategies to analyse point-wise deformation measurements are
established. However, point-based deformation analysis also has a variety of drawbacks:
In order to represent the behaviour of the entire object of interest by means of single points,
characteristic points have to be carefully chosen, often by including prior knowledge of
the expected deformation. Regardless of a successful discretisation process, the derived
deformation measures are always sparse. Furthermore, the repeated measurement of the
same characteristic points requires a signalisation of these points and, thus, access to the
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object under investigation. Finally, point-based approaches can be very time and labour
intensive, especially when large objects are monitored [3–5].

The terrestrial laser scanner overcomes these drawbacks of point-based measuring
strategies: a laser scanner remotely samples even large objects with a high spatial resolution
in a very short time and directly provides a three-dimensional and quasi-continuous
description of the object under investigation [3,6,7]. However, despite the metrological
strengths of laser scanning, the analysis of the resulting point clouds—especially with
regard to a deformation analysis—poses a variety of challenges. Among other things, the
measuring principle of laser scanners does not usually allow for the direct reproduction
of points in subsequently acquired point clouds [6] and, thus, the direct computation of
displacement vectors between different point clouds is not expedient. Furthermore, the
single point precision within a laser scanning point cloud may be considerably lower than,
for example, the precision of tacheometrically measured signalised points [8]. Nevertheless,
numerous strategies to compare point clouds and, thus, to perform a point cloud–based
deformation analysis are proposed in the literature. These strategies can be categorised
into three classes [6]:

• When performing a point-to-point (P2P) comparison, it is assumed that point cor-
respondences in different point clouds either exist or can be constructed. Based on
these identical points, displacement vectors can be determined. In some situations,
the required point correspondences can be established by an appropriate measure-
ment setup (e.g., [9,10]). Alternatively, they can either be constructed by means of
local models of at least one of the point clouds (e.g., [11,12]) or by means of feature
descriptors (e.g., [13,14]).

• When implementing a point-to-surface (P2S) comparison, one of the point clouds—
usually the point cloud of the first measuring epoch—is approximated by a reference
surface. In order to analyse point clouds acquired in subsequent epochs for deforma-
tions, the distance with respect to the reference surface is determined for each point
of these point clouds. Depending on the type of reference surface chosen, mesh-based
approaches (e.g., [15,16]) and approaches based on analytical surfaces (e.g., [12,17])
can be distinguished.

• When using a surface-to-surface (S2S) comparison, the entirety of the point clouds
is modelled either by means of meshes or by means of analytical surfaces. The
examination for deformations between these models can be performed in two different
ways. The first form of implementation uses the models of the point clouds to generate
identical points in the different epochs, allowing for the computation of displacement
vectors (e.g., [18,19]). The second form of implementation is based solely on analytical
models of the point clouds and compares the estimated parameters of the respective
models (e.g., [10,20]).

Strategies using models of point clouds take advantage of the high redundancy in
the point clouds in order to overcome the challenge of the comparatively low single point
precision within laser scanning point clouds: The theoretical precision of a surface that
is determined on the basis of these points is significantly higher than that of the single
points [8]. However, two more challenges can be defined when using a model-based
analysis approach [21]: Firstly, there is still a lack of interpretable deformation measures
between two surfaces. Although displacement vectors fulfil this property, a prerequisite
for their use is the correct definition of point correspondences on the surfaces. Secondly, in
only a few of the approaches presented in the literature, the deformation’s significance is
confirmed by means of statistical tests.

Freeform surfaces, such as B-splines, allow for the modelling of different kinds of
objects with various geometric properties. Being parametric surfaces, they directly provide
the possibility to define point correspondences on different B-spline surfaces, assuming that
the surface parameters are consistently chosen. Moreover, their property of locality allows
for the simultaneous modelling of distorted regions of an object and its non-distorted parts
by means of one single B-spline surface.
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The aim of the present publication is the development of a B-spline-based strategy
for performing a point cloud–based deformation analysis, using these beneficial proper-
ties of B-splines. Unlike most of the strategies available in the literature, our approach
simultaneously determines rigid body movements and distortions of the object under
investigation. Being designed as an S2S comparison, all acquired point clouds are modelled
by means of consistently parameterised B-spline surfaces, the surface parameters of which
are used to define point correspondences. Based on these point correspondences, rigid
body movements between the point clouds are estimated, using a robust random sample
consensus (RANSAC) approach. The resulting consensus set defines an initial region that
is not subjected to additional distortions. In the final step, these stable regions are extended
and statistically verified, providing the basis for the computation of displacement vectors in
the distorted areas. Both the estimated rigid body movements and the identified distorted
regions are confirmed by means of statistical hypothesis testing. Hence, the developed
approach combines the strength of areal analysis strategies with the sophisticated tools of
the classical point-based deformation analysis.

2. Materials and Methods
2.1. Estimation of Rigid Body Movements and Simultaneous Localisation of Non-Distorted
Regions Using Sampled Approximating B-Spline Surfaces

Commonly, the term ‘deformation’ summarises two types of geometric object changes:
an object underlying rigid body movements is subject exclusively to rotations and transla-
tions, whereas an object underlying distortions changes in shape [1]. The aim of the strategy
introduced in the following subsections is to robustly estimate rigid body movements of
an object and to simultaneously localise the object’s distorted parts, providing the basis for
the determination of displacement vectors.

2.1.1. B-Spline Surfaces for Deformation Analysis

The developed approach is based on approximating B-spline surfaces. The mathemat-
ical definition of a B-spline surface is given by the following [22]:

Ŝ(u, v) =

 Ŝx(u, v)
Ŝy(u, v)
Ŝz(u, v)

 =
n

∑
i=0

m

∑
j=0

Ni,p(u)Nj,q(v)Pij, 0 ≤ u, v ≤ 1. (1)

According to Equation (1), a three-dimensional surface point Ŝ(u, v) in Cartesian
coordinates is computed as the weighted average of (n + 1) · (m + 1) control points Pij.
The B-spline basis functions Ni,p(u) and Ni,q(v) with degree p and q are the corresponding
weights and can be computed recursively (cf. references [23,24]). The basis functions are
functions of the surface parameters u and v, locating a surface point on the surface and
defining the parameter space. Two knot vectors U = [u0, . . . , ur] and V = [v0, . . . , vs]
split the B-splines’ domain into knot spans, leading to the B-splines’ property of ‘locality’,
meaning that the shifting of a single control point changes the surface only locally.

B-spline surfaces allow for the flexible modelling of a variety of objects under in-
vestigation. Hence, they are used in several engineering geodetic applications, either
for geometric state descriptions (cf. references [25–27]) or in the context of monitoring
tasks ([28,29]). In addition to their flexibility, B-spline surfaces have two other properties
that qualify them for use within an areal deformation analysis:

• Firstly, B-spline surfaces are invariant under common geometric transformations,
such as the similarity transform: the application of a transformation to the control
points Pij of a B-spline surface results in the same surface as the application of this
transformation to the surface itself [22]. As proven in [20], the estimated control
points of different B-spline surfaces can be used as corresponding points to estimate
the parameters of a similarity transform, provided that a joint parameterisation is
used when determining the best-fitting B-spline surfaces. However, not only can
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the control points be used for this purpose, but also surface points Ŝ(u, v), with the
surface parameters u and v identifying the point correspondences. This property is
demonstrated in Figure 1, presenting two B-spline surfaces that differ from each other
only by rotations and translations (left surface: epoch 1, right surface: epoch 2). As
can be seen, parameter grids (green quadrangles) of the surface of epoch 1 that are
individually transformed by means of the same transformation parameters as the
surface are congruent with the respective grid quadrangles of the transformed surface.

• Secondly, the locality of the B-spline surfaces directly allows for the modelling and
for the localisation of an object’s distortions. For example, when the rigid body
movement of a B-spline surface is superimposed by distortions, non-distorted areas
can be identified by means of the surface parameter grid as demonstrated in Figure 2.
The figure presents two B-spline surfaces that differ from each other by a rigid body
movement and a superimposed local distortion (left surface: epoch 1, right surface:
epoch 2). The transformation of the four parameter quadrangles (green quadrangles)
of the surface of epoch 1, using the same transformation parameters as those for the
rigid body movement of the surface, highlights that this local distortion only locally
influences the parameter lines: only the red quadrangle in epoch 2—being the only
one of the four example quadrangles located in the distorted area—is not congruent
with the respective grid quadrangles of the surface of epoch 2.

Figure 1. Rigid body movement of a B-spline surface (left surface: epoch 1, right surface: epoch 2): surface parameters
define corresponding points.
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Figure 2. Rigid body movement of a B-spline surface with superimposed distortion (left surface: epoch 1, right surface:
epoch 2): surface parameters in the non-distorted regions are unaffected by the distortion.

These two properties of B-spline surfaces form the cornerstones of the developed
approach that is summarised in the flow chart in Figure 3.

PC(1)

ΣPC(1)

PC(2)

ΣPC(2)

B-spline approximation
& discretization

B-spline approximation
& discretization

Corresponding points X(1)

ΣX(1)X(1)

Corresponding points X(2)

ΣX(2)X(2)

Robust estimation of
rigid body movements and

non-distorted regions

Consensus set &
initial transformation parameters

Localization of
distorted areas

Non-distorted regions &
final transformation parameters

Figure 3. Flow chart of the developed procedure [30].

For the sake of simplicity, only two measuring epochs are considered; the extension
by further epochs is straightforward.
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Starting points are point clouds of an object acquired in two different measuring
epochs (PC(1) and PC(2)), along with their variance covariance matrices (VCM) (ΣPC(1) and
ΣPC(2) ). Between these two epochs, the object may undergo rigid body movements, which
additionally may be superimposed by distortions. It is assumed, however, that only parts
of the object are subject to distortions. The resulting non-distorted regions of the object are
necessary for successful application of the developed approach.

Both point clouds are initially approximated by means of best-fitting B-spline surfaces,
taking into account the stochastic information of the available point clouds (Section 2.1.2).
Due to the use of joint parameterisation during this step, afterwards, the surface parameters
can be used to defined point correspondences on the estimated B-spline surfaces. These cor-
responding points, resulting from discretisations of the B-spline surfaces (Section 2.1.3), are
then used to robustly estimate rigid body movements and to initially define non-distorted
regions of the object (Sections 2.1.4 and 2.1.5). Finally, the non-distorted regions are ex-
tended and their stability as well as their extents are statistically confirmed (Section 2.1.6).

2.1.2. Point Cloud Modelling by Means of Best-Fitting B-Spline Surfaces

When using B-spline surfaces (cf. Equation (1)) to model a point cloud PC(ie) (ie = 1, 2:
indicating the measuring epoch), the n(ie)

l individual points of the point cloud are the

observations S(ie)
k (u, v) (k = 1, . . . , n(ie)

l ) that are used to determine the best-fitting B-spline

surface Ŝ(ie)
k (u, v):

Ŝ(ie)
k (u, v) = S(ie)

k (u, v) + ε
(ie)
k (u, v), (2)

with the three-dimensional residual vectors ε
(ie)
k (u, v). As in Equation (1), each observation

S(ie)
k (u, v) is a three-dimensional point expressed in Cartesian coordinates.

Usually, only the position of the control points Pij (cf. Equation (1), for reasons of
simplicity, the epochal affiliations indicated by the superscript (ie) are not carried along) is
estimated in a linear Gauß Markov model, according to the following [31]:

ϑ̂P = (AT ·Q−1
ll ·A)−1AT ·Q−1

ll · l. (3)

In Equation (3), the vector of unknowns ϑ̂P summarises the estimated positions of all
(n + 1) · (m + 1) control points and is ordered coordinate-wise. The observation vector l
is structured accordingly and contains the observed noisy surface points Sk(u, v). The
stochastic behaviour of the observations is characterised by the corresponding cofactor
matrix Qll, the inverse of which is used as a weighting matrix in the estimation and which
differs from the corresponding VCM by the a priori variance factor σ2

0 [1]:

Σll = σ2
0 ·Qll. (4)

The design matrix A, describing the functional relationship between observations and
unknowns, is determined by means of the B-spline basis functions [31]:

A =

 N0,p(u1)N0,q(v1) . . . Nn,p(u1)Nm,q(v1)
...

. . .
...

N0,p(unl )N0,q(vnl ) . . . Nn,p(unl )Nm,q(vnl )

⊗ I3×3, (5)

with I3x3 being the 3 × 3 identity matrix. The vector of estimated control points ϑ̂P is
completed by the corresponding VCM Σϑ̂ϑ̂ , containing the stochastic information of the
estimated control points [1]:

Σϑ̂ϑ̂ = σ̂2
0 · (AT ·Q−1

ll ·A)−1, with σ̂2
0 =

ε̂T ·Q−1
ll · ε̂

3(nl − (n + 1) · (m + 1))
(6)
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and with the vector of estimated residuals ε̂ being computed according to the following:

ε̂ = l̂− l = Aϑ̂P − l. (7)

A geometrical interpretation of the estimation l̂ = Aϑ̂P in Equation (7) is that the orig-
inal vector of observations l is orthogonally projected to the 3(n + 1) · (m + 1)-dimensional
column space of the design matrix A [32]. Thus, the vector of estimated observations l̂ can
be computed as a linear combination of the vector of estimated control points ϑ̂P. Due to
nl > (n + 1) · (m + 1), linear dependencies between the estimated observations emerge.
The corresponding VCM of the vector of estimated observations

Σl̂l̂ = A · Σϑ̂ϑ̂ ·AT , (8)

thus, has a maximum rank of rk(Σl̂l̂) = 3(n + 1) · (m + 1) and—assuming an overdeter-
mined estimation problem—is singular.

The strategy described above requires appropriately determining the remaining pa-
rameter groups of the best-fitting B-spline surface separately from the adjustment of the
optimal control points: The B-spline’s degrees p and q are usually specified a priori. Using
cubic B-splines with p = 3 and q = 3 is a generally accepted choice [22]. Strategies to
determine the knot vectors are proposed in, for example, [22,31,33]. The optimal number
of control points to be estimated can be interpreted as a model selection problem and can
either be solved by classical model selection strategies or by structural risk minimisation
(cf. [34,35]). The latter strategy has the advantage that the degrees p and q can also be taken
into account during model selection, rather than choosing them arbitrarily [36]. Finally, ap-
propriate surface parameters u and v have to be allocated to the observations (cf. e.g., [37]
for an iterative parameterisation approach for laser scanning point clouds). When B-spline
surfaces are used as a basis for deformation analysis, however, an independent parameteri-
sation of different point clouds is not expedient; rather, a joint parameterisation has to be
implemented as demonstrated in [35]. As simulated data sets are investigated in this initial
study (cf. Section 2.2), nominal values for degrees, knot vectors and surface parameters are
available and, therefore, the appropriate determination of these parameter groups can be
left aside during this initial study.

2.1.3. Constructing Identical Points on Approximating B-Spline Surfaces

Having estimated the best-fitting B-spline surfaces, they are used to construct nid =

nid,u · nid,v identical (id) points X(ie)
k,l in the two measuring epochs ie = 1 and ie = 2.

Provided that the surfaces are based on a joint parameterisation, the surface parameters
u and v, discretising the estimated surfaces (cf. Equations (1) and (2)), can be used for
this purpose:

X(ie)
k,l = Ŝ(ie)(uk, vl), with k = 1, ..., nid,u, l = 1, ..., nid,v and ie = 1, 2. (9)

Using the stochastic information of the estimated control points, the sampled sur-
face points are completed by their VCMs ΣX(ie),X(ie) . Following the considerations in
Section 2.1.2, linear dependencies emerge between the discretised points as soon as nid >
(n + 1) · (m + 1), resulting in rank defects of the corresponding VCMs ΣX(ie),X(ie) . More
precisely, a rank defect occurs in at least one parameter direction of the B-spline surface
when the number of discretised surface points exceeds the number of estimated control
points. The rank defect linked to the u-direction, therefore, can be computed according to
the following [30]:

δu =

{
0 if nid,u ≤ n + 1

3 · (nid,u − (n + 1))(m + 1) otherwise,
(10)
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and the rank defect linked to the v-direction accordingly arises to the following:

δv =

{
0 if nid,v ≤ m + 1

3 · (nid,v − (m + 1))(n + 1) otherwise.
(11)

The overall rank defect δ is the sum of these two parts [30]:

δ = δu + δv. (12)

This singularity in the VCMs of the corresponding points represents an important dif-
ference to deformation models in which the observed data points are directly incorporated.

2.1.4. Estimation of Rigid Body Movements

The estimation of rigid body movements of an object of interest is based on nid three-
dimensional corresponding points X(1)

k,l and X(2)
k,l (k = 1, . . . , nid,u, l = 1, . . . , nid,v) in two

measuring epochs, in this study on corresponding surface points (cf. Equation (9)).
Assuming that the object undergoes solely rigid body movements, all corresponding

points—just like the entire surface—are subject to translations (summarised in the transla-
tion vector t) and rotations (fully described by means of the rotation matrix R, containing
the rotation angles ω, φ and κ). Sometimes, a change of scale (indicated by the scale factor s)
is also included, resulting in the mathematical formulation of a three-dimensional similarity
transform [1]:

X(2)
k,l = s · R · X(1)

k,l + t, k = 1, . . . , nid,u, l = 1, . . . , nid,v. (13)

When estimating the parameters of the similarity transform t, R and s based on
the corresponding surface points, it must be taken into account that both the points X(1)

k,l

available in the start system and the points X(2)
k,l available in the target system are defined

by estimated B-spline surfaces and, thus, are subject to uncertainties. In order to include
the stochastic information of both point groups into the estimation of the transformation
parameters, two strategies, delivering identical results, exist [38]: Either the transformation
parameters are estimated in a Gauß–Helmert model, or the classical Gauß–Markov model,
assuming the points in the start system to be deterministic, is extended. Because of the easier
possibility to extend the approach to a robust one, the second variant is chosen here [30].

Assuming that the data sets under investigation are acquired by means of the same
laser scanner and, hence, neglecting the scale factor s, the extended functional model to
estimate the transformation parameters is then given by the following [38]:

X̂(2)
k,l = X(2)

k,l + e(2)k,l = R · X∗(1)k,l + t (14)

X̂(1)
k,l = X(1)

k,l + e(1)k,l = X∗(1)k,l , (15)

with e(ie)k,l (ie = 1, 2) being residual vectors. The first part of the model (Equation (14))
describes the functional relationship between the identical points in the two epochs by
means of the unknown transformation parameters. Equation (15) simultaneously intro-
duces the coordinates of the identical points in the start system as additional observations
and, thus, allows for the consideration of their stochastic information. The link between
Equations (14) and (15) is given by the estimated point coordinates available in the start
system, which are introduced in both equations and are marked with an asterisk. Neglect-
ing inter-epochal correlations, the extended stochastic model is composed of the VCMs
ΣX(1)X(1) as well as ΣX(2)X(2) of the constructed surface points, resulting in the following [38]:

Σll =

[
ΣX(2)X(2) 0

0 ΣX(1)X(1)

]
= σ2

0 ·Qll. (16)
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Based on the functional model in Equations (14) and (15) as well as on the stochastic
model in Equation (16), the unknown transformation parameters can be estimated in a
non-linear Gauß–Markov model (cf. [38] for more information).

2.1.5. Robust Estimation of Rigid Body Movements

The derivations in Section 2.1.4 are based on the assumption that the object under
investigation is only subject to rigid body movements. However, rigid body movements
are usually superimposed by additional distortions in reality. When taking into account
points that are subject to both rigid body movements and distortions in the estimation of
the rigid body movement, these points falsify the estimated transformation parameters.
As a consequence, the determination of transformation parameters must necessarily be
accompanied by an elimination of surface points in distorted areas. Otherwise, the required
congruence of identical points is not given.

Considering points that are subject to both rigid body movements and distortion to
be outliers in the context of the similarity transform is one possible strategy to cope with
this challenge [30]. In order to accurately estimate rigid body movements in this situation,
a robust strategy based on the random sample consensus (RANSAC)-algorithm [39] is
proposed in this section. In general, RANSAC is an easy-to-implement method and is char-
acterised by a high breakpoint (>50%). Furthermore, with respect to the presented problem,
RANSAC allows for the robust estimation of rigid body movements while obtaining initial
information about non-distorted regions.

The general idea of RANSAC is to initially determine the unknown parameters of a
model describing nl data points by the minimum number nsub of data points that is needed
for this determination [39]. These nsub data points are randomly drawn from the entire
set of data points. After having computed the model parameters by means of these nsub
points, the distances of the resulting preliminary model to the entirety of the data points
are calculated. Points with distances that are within a predefined error tolerance ε are
considered to be consistent with the determined model parameters. These points form the
consensus set SCS. The procedure is repeated iteratively until either the number of points
in the consensus set equals a specified minimum number nmin or a maximum number of
iterations imax is performed. Finally, the points in the largest consensus set are used to
estimate the optimal model parameters.

RANSAC can be directly applied to the robust estimation of rigid body movements
that are superimposed by distortions (see Figure 4 for a schematic sketch of the proce-
dure): the six parameters of a three-dimensional similarity transform with neglected scale
factor (cf. Equation (14)) can principally be determined by means of two pairs of three-
dimensional corresponding data points. However, the estimation of the transformation
parameters described in Section 2.1.4 is a non-linear estimation problem and, thus, requires
approximate values. As these approximate values are determined by means of quaternions
(see, for example, [40]) in this study, a strategy that also yields the scale factor s, the number
of point pairs required is nsub = 3. Hence, three pairs of sampled surface points are re-
peatedly and randomly drawn from the entirety of surface points and are afterwards used
to determine approximate parameters t0, R0 and s0 by means of a quaternion approach.
(Strictly speaking, the modelled transformation is not a rigid body movement in this step.
However, as the results are only approximate values for the final estimation of rigid body
movements, this strategy is not to be regarded as critical.) Unlike the quaternion approach,
the strategy presented in Section 2.1.4 allows for the accuracies of the corresponding points
to be taken into account when estimating rigid body movements. For this reason, the ap-
proximate parameters are improved in a second step as described above, yielding optimal
translations t̂0 and optimal rotations R̂0, describing the rigid body movements of the three
chosen surface points. During this step, the scale factor is set to ŝ = 1 [30]. The entirety of
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computed surface points of the first measuring epoch X(1)
k,l is afterwards transformed using

the estimated transformation parameters as follows:

X(1)
tr,k,l = R̂0 · X(1)

k,l + t̂0, k = 1, . . . , nid,u l = 1, . . . , nid,v. (17)

Start

Random selection of nsub pairs
of corresponding points

Determination of approximate
values t0, R0 and s0 using quaternions

Estimation of t̂0 and R̂0 (ŝ = 1)
based on the nsub point pairs

Transforming X(1)

using t̂0 and R̂0 yields X
(1)
tr

Computation of distances dk,l (incl. σdk,l
)

between X
(2)
k,l and X

(1)
tr,k,l

Building SCS with nCS point pairs
fulfilling dk,l ≤ εk,l = τ · σdk,l

nCS ≥ nmini ≥ imax

Final estimation of
t̂CS and R̂CS

using SCS

Final estimation of
t̂CS and R̂CS

using SCS with
maximum nCS

Global test:
TG < Ff,∞

End

i = 1

no

yes

no

i = i + 1

yes

no

yes

Figure 4. Flow chart of the RANSAC-based estimation of rigid body movements [30].

The Euclidean distance

dk,l = ||X(1)
tr,k,l − X(2)

k,l || (18)

between each transformed point X(1)
tr,k,l belonging to epoch E1 and its corresponding point

X(2)
k,l belonging to epoch E2 provides the basis for the decision of whether a surface point is
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included in the consensus set of model-conforming points. This distance is compared to
the error tolerance as follows:

εk,l = τ · σdk,l
(19)

which is determined by the accuracy σdk,l
of the computed distance dk,l , arising from vari-

ance covariance propagation as well as a factor τ, which needs to be chosen appropriately
(see below). According to Equation (19), the error tolerance is assessed for each point pair
individually since the discretised surface points are not available with a homogeneous
precision [30]. When

dk,l ≤ εk,l (20)

is fulfilled, the corresponding point pair is assigned to the consensus set SCS.
This procedure is repeated either until the number nCS of points fulfilling Equation (20)

is larger than or equal the minimum size nmin of the consensus set or until the maximum
number of iterations imax is reached. It is worth noting that it is not possible to distinguish
distortions from gross errors in the data during this step. For this reason, it is essential to
successfully remove gross errors a priori using standard techniques, for example, when
estimating best-fitting B-spline surfaces.

The successful application of the developed strategy requires the definition of
three parameters:

• The parameter τ in Equation (19) has to be chosen in such a way that only model-
compliant points are included in SCS. When τ is chosen too small, points will be
erroneously identified as outliers, whereas when τ is chosen too large, outliers may
be included in the consensus set and, thus, the estimation result will become biased.
The influence of the parameter τ on the results is investigated in Section 3.2.

• The minimum number nmin of model-compliant points required to accept the current
SCS is estimated from the expected amount of gross errors nerr (0 ≤ nerr ≤ 1) contained
in the data set. When nerr is known, the optimal nmin can be determined according
to the following [41]:

nmin = (1− nerr) · nid. (21)

• The maximum number of iterations imax is determined by the desired probability P
that a solution without outliers is found [41]:

imax =
log(1− P)

log(1− (1− nerr)nsub)
. (22)

Finally, after the iteration is completed, the point pairs of the largest consensus set are
used to estimate the transformation parameters t̂CS and R̂CS in the extended Gauß–Markov
model (14) and (15).

With a final statistical global test, comparing the respective a priori variance factor
σ2

0 with the corresponding a posteriori variance factor σ̂2
0 , the presence of outliers can be

excluded with a confidence probability of 1− αG, with αG being the error probability [42]:

Null hypothesis H0,G : E{σ̂2
0} = σ2

0 (23)

Alternative hypothesis HA,G : E{σ̂2
0}>σ2

0 . (24)

The corresponding test variable TG is F-distributed with the degrees of freedom f and ∞:

TG =
σ̂2

0
σ2

0
∼ Ff ,∞. (25)
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If TG lies outside the associated quantile and, thus, the null hypothesis (23) has to
be rejected, a further RANSAC iteration should be performed [30]. (It is worth noting
that in this formulation of the global test the presence of errors in the stochastic model
is excluded).

2.1.6. Statistically Based Localisation of Distortions

Having successfully conducted the steps described in the previous section, estimated
parameters of the rigid body movement as well as a consensus set SCS are available. The
latter is a set of nCS point pairs that is free from outliers w.r.t to the estimated rigid body
movement with the confidence probability of the global test 1 − αG. Therefore, these
points can already be assigned to the non-distorted region. However, depending on the
parameter τ to be chosen, the consensus set does usually not cover the entire non-distorted
region of the B-spline surface. Hence, no exact statement can be made about the position
and the extent of the distorted regions. Therefore, the consensus set is stepwise and
statistically ensured extended by individual point pairs. With the extended consensus set,
the parameters of the rigid body movement can be estimated with a higher redundancy
and, thus, more precisely.

The starting point of the localisation is the set ST of points to be tested, which includes
all data points that are not assigned to the consensus set at the beginning. Using a forward
strategy (see below for information about the order in which the points are considered),
these points are then sequentially added to the group of points that is already detected as
non-distorted. Based on this extended set, the parameters of the rigid body movement are
re-estimated. Point pairs that are detected as outliers within this re-estimation are assigned
to the distorted region of the surface, whereas points that do not significantly change the
estimated transformation parameters are allocated to the set of non-distorted points, the
extended consensus set SCS,ex.

In order to implement the outlier detection, the classical Gauß–Markov model is
extended by an additional parameter vector ∇̂ that allows for the estimation of possible
outliers [42]. This extension enables the simultaneous testing of several observations with
regard to gross errors, a strategy that is desirable in the context of estimating rigid body
movements, as a testing of single coordinates is not meaningful [30].

The linearised Gauß–Markov model to estimate the parameters of the rigid body move-
ment (cf. Equations (14) and (15)) is the null hypothesis of the statistical test performed [42]:

H0 : E{l} = l + e = Aϑ̂R. (26)

Compared to Equations (14) and (15), the corresponding data points X(1) and X(2) are
summarised in the observation vector l, and the transformation parameters R and t to be
estimated are combined in the vector of unknowns ϑR in Equation (26). The design matrix
A describes the functional relationship between observations and unknowns.

Using the additional parameter vector ∇̂, containing the outliers to be estimated,
and the corresponding design matrix B, being a sparse matrix with numbers of ones at
the entries of the suspected observations, the alternative hypothesis can be formulated
as follows:

HA : E{l} = l + e′ = Aϑ̂
′
R + B∇̂. (27)

Due to the model extension, the parameter vector ϑ̂R of the rigid body movement
as well as the residual vector e are modified (indicated by the apostrophe). The dimen-
sions of ∇̂ and B are determined by the number na of suspected observations. The null
hypothesis (26) corresponds to the equivalent null hypothesis H0 : E{∇} = 0. Hence,
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it is examined whether the estimated gross errors differ significantly from zero. The
test variable

T =
∇̂T

Q−1
∇̂∇̂∇̂

na · σ̂2′
0

∼ Fna , f−na , (28)

used to investigate the validity of the null hypothesis, follows the F-distribution Fna , f−na ,
the degrees of freedom of which are determined by the number na of suspected observations
as well as the redundancy f of the initial estimation problem [42]. The computation of T
requires the determination of the following quantities:

Qεε = Q−1
ll −A(ATQ−1

ll A)−1A (29)

−ε = QεεQ−1
ll l (30)

Q∇̂∇̂ = (BTQ−1
ll QεεQ−1

ll B)−1 (31)

∇̂ = −Q∇̂∇̂BTQ−1
ll ε (32)

Ω′ = εTQ−1
ll ε− ∇̂T

Q−1
∇̂∇̂∇̂ (33)

σ̂2′
0 =

Ω′

f − na
. (34)

In the equations above, Qεε is the cofactor matrix of the vector of residuals ε, Q∇̂∇̂
the cofactor matrix of the additional parameter vector ∇̂ and Ω′ the corrected sum of
squared residuals.

With the strategy described above, the stability of single point pairs X(1,2)
k,l with respect

to distortions can be evaluated in a statistically ensured way (single point test).
In order to obtain an areal character of the localisation, alternatively, a predefined

domain of the surface can be included in the outlier detection. A straightforward way to
define this domain is to use the parametric neighbourhood [uk−a, uk+a]× [vl−a, vl+a] of the
investigated point pair X(1,2)

k,l = Ŝ(1,2)(uk, vl) (see Figure 5 for an example with a = 1). The
parameter a to be chosen determines the size of the neighbourhood. Depending on the
choice of a,

na = 3(2a + 1)2 (35)

observations are examined for gross errors [30]. Naturally, Equation (35) does only hold
when X(1,2)

k,l does not lie at the surface’s boundary. In that case, na reduces accordingly.

Investigated point

∈ SCS

6∈ SCS

Considered in testing

uk−2 uk−1 uk uk+1 uk+2

vl+2

vl+1

vl

vl−1

vl−2

Figure 5. Schematic sketch of the domain that is considered in the outlier detection. The domain is
predefined by the neighbourhood [uk−1, uk+1]× [vl−1, vl+1] (a = 1) of the surface point Ŝ(uk, vl) [30].
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Having determined the neighbourhood of the point pair to be tested, all point pairs
lying in the domain [uk−a, uk+a]× [vl−a, vl+a] are temporarily included in the extended
consensus set SCS,ex by adjusting the matrix B (cf. Equation (24)) accordingly. (It is worth
noting that previous test decisions on neighbouring points are not taken into account during
this step: neighbouring points that have already been allocated either to the distorted or
to the non-distorted regions as well as points that have not been under investigation yet
are equally treated and, thus, are involved in the formation of the neighbourhood.) If the
comparison of the resulting test variable Tk,l (cf. Equation (28)) with the corresponding
quantile of the Fisher distribution supports the null hypothesis, the existence of gross errors
can be ruled out with the respective confidence probability 1− α. As a consequence, the
point pair under investigation is added to the extended consensus set and is considered
non-distorted in the subsequent outlier tests. Otherwise, if the null hypothesis has to
be rejected, a distortion of the surface in the domain that is under investigation must be
assumed. In this case, the extended consensus set is not modified. With the removal of
the point pair X(1,2)

k,l from ST , an iteration step of the procedure is completed and the next
point pair is investigated. The procedure is continued until all point pairs are removed
from ST . At the end, the extended consensus set is used to estimate the final parameters of
the rigid body movement. Additionally, a completing global test can be used to check the
consistency of the detected non-distorted point pairs.

The order in which the point pairs are investigated by means of the strategy described
above, is determined by their degree of consistency with the determined rigid body move-
ment. For this purpose, all points X(1)

k,l to be tested are transformed using the transformation
parameters R̂CS,ex and t̂CS,ex, determined by means of the (extended) consensus set. The

transformed points X(1)
tr,k,l are then compared with their correspondences X(2)

k,l by computing
the Euclidean distances dk,l (cf. Equation (18)). Since a small dk,l indicates the consensus
of the corresponding point pair with the estimated transformation model, of all the point
pairs to be tested, the one with the smallest dk,l is examined first [30]. The strategy to
localise the distortions is summarised in the schematic sketch in Figure 6.

2.1.7. Regularisation of the System of Equations

By taking into account the accuracies of the sampled surface points, the system of
equations for estimating the transformation parameters becomes singular as soon as more
surface points are sampled than control points have been estimated (cf. Section 2.1.3). How-
ever, in order to achieve a (quasi)-continuous statement regarding the position and extent
of the distortions, the number of sampled surface points should considerably exceed the
number of control points [30]. The associated singularities of the system of equations must
be taken into account accordingly. In [30], three possibilities to deal with the singularities—
neglecting the correlations between the estimated surface points, use of the pseudoinverse
and regularisation of the VCM’s main diagonal—are investigated and compared. As the
second strategy outperforms the first and the third one w.r.t the correctness of the results
achieved, the pseudoinverse is used in this contribution if not stated otherwise.

2.2. Data Sets under Investigation
2.2.1. Data Simulation

The B-spline-based strategy to estimate rigid body movements and to simultaneously
detect non-distorted regions introduced in Section 2.1 is applied to a variety of simulated
data sets in this study, the simulation process of which is demonstrated by means of an
example data set. Due to the use of simulated data, the obtained results can be compared
with nominal surfaces and nominal transformation parameters and, thus, the developed
strategy can be directly validated.

The starting point of the data simulation is the cubic B-spline surface with (n + 1) ·
(m + 1) = 7 · 9 = 63 control points presented in Figure 7. This surface is considered the
reference surface in the remainder of this section.
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Establishment of ST

Estimation of R̂CS,ex

and t̂CS,ex using SCS,ex

ST = { } End

Determination of X
(1)
tr by transforming

X(1) with R̂CS,ex and t̂CS,ex

Computation of distances between X
(1)
tr

and their correspondences X(2)

Selection of the point pair X
(1,2)
k,l ,

with minimal distance

Determination of the neighbourhood
[uk−a, uk+a]× [vl−a, vl+a]

Computation of the test variable Tk,l

and the corresponding quantile Fk,l,

removal of X
(1,2)
k,l from ST

Tk,l ≤ Fk,l

Allocation of X
(1,2)
k,l to SCS,ex

yes

no

yes

no

Figure 6. Flow chart of the localisation of distorted regions [30].

The scanning process of this object during the first measuring epoch E1 is emu-
lated by regularly sampling the B-spline surface along the parameter lines, resulting in
10,000 surface points with a spatial resolution of 4–5 mm. Afterwards, the surface points are
superimposed by normally distributed measuring noise n ∼ N (0, Σnn), with Σnn being
the VCM of the measuring noise. In these initial studies, the measuring noise is modelled
to be uncorrelated, with a standard deviation of σnx = σny = σnz =

1
3 mm. The choice of

these specific values characterising the data points’ precision leads to an average point
error of 1 mm [30].

In order to simulate the point cloud of the second epoch E2, the reference surface
is distorted by moving one or more control points. This approach exploits the locality
of B-spline surfaces (cf. Section 2.1.1), meaning that the movement of a single control
point changes only a local part of the surface. For example, moving control point P3,3 (red
triangle in Figure 7) by 1.2 cm upwards results in a maximum distortion of the B-spline
surface of up to 6 mm. Figure 8 presents the distances between corresponding points on
the reference surface and on the distorted surface in the parameter space (cf. Equation (1)
for the relationship between Cartesian coordinates and surface parameters). As can be
seen, only parts of the parameter space are influenced by the control point’s movement (the
non-distorted parts are not coloured). In most of the distorted area, the distances between
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corresponding surface points are very small (<1 mm, coloured in green). Compared to
the simulated measurement noise, these deviations w.r.t to the reference surface are not
significant. The largest deformation occurs in the middle of the distorted part (coloured in
red), with a maximum distortion of up to 6 mm.

Figure 7. Reference surface and corresponding control points (triangles) used for the data
simulation [30]. Red triangle: control point P3,3. The X-axis complements the right-handed co-
ordinate system, and the surface’s colouring gives an idea of its height in the X direction.

Figure 8. Distances d between corresponding surface points after having shifted control point P3,3 by
1.2 cm in x-direction. Presentation of the influenced area in the parameter space [30].
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Afterwards, the distorted B-spline surface is subjected to a similarity transform with
neglected scale factor, using the B-splines’ property of invariance w.r.t a similarity transform.
For all generated data sets, the following transformations and rotations are chosen:

tT =
[

0.300 m 0.600 m 0.000 m
]

(36)[
ω φ κ

]T
=
[

35.000 gon 0.000 gon −10.000 gon
]T (37)

The control points of the distorted and transformed B-spline surface, therefore, result
from the following:

P(2)
ij = R · P(1)∗

ij + t, (38)

with the asterisk indicating the local distortion w.r.t the reference surface.
Finally, a noisy point cloud consisting of 10,000 data points is created by sampling the

distorted and transformed B-spline surface and by subsequently adding white noise as
described above.

The results of the data simulation are two noisy point clouds describing an object
in two measuring epochs that is subject to rigid body movements and superimposed
local distortions.

2.2.2. Introduction of the Simulated Data Sets

Figure 9 represents the distortions of the five data sets investigated in this study. The
denotation of the data sets contains the percentage of distortion (proportion of the distorted
area related to the entire area). In addition, Appendix A Table A1 lists the data sets as well
as some of their properties.

As can be seen, the data sets generated differ in the extent of the distorted area
(controlled by the number of shifted control points), in the magnitude of the distortion
and in the location of the distortions. In order to generate data sets V15 (Figure 9, top
left) and V20 (Figure 9, top right), two control points lying in the middle of the control
net are shifted. Due to the larger amount of the shift, the distortion in data set V20 has a
larger extension and a larger magnitude than the distortion in data set V15. Data set V18 is
generated by shifting five control points that are located at the boundary of the control net.
As a consequence, the distortion is also located at the boundary of the parameter space
(cf. Figure 9, middle left). Finally, data set V40 (Figure 9, middle right) is generated by
combining the distortions of data set V20 and V18, and data set V65 (Figure 9, bottom) is
generated by adding further distorted regions to V40.

In addition to the distorted data sets, a non-distorted data set V0 is created in order
to investigate how susceptible the developed localisation procedure is w.r.t the incorrect
detection of distortions in non-distorted regions.

When investigating the simulated distortions (cf. Figure 9), it is worth noting that not
only two, but three regions of the surfaces have to be distinguished: In data sets V15, V20
and V18, there are regions that—due to the locality of the B-spline surfaces—are completely
non-distorted (not coloured in Figure 9). However, there are also regions in which the
surface is distorted, but the distortions of which are so small (≈0 mm) that the distortions
are not significant w.r.t to the measurement noise (coloured in green). Finally, there is a
region in which the surface is clearly distorted. For a better distinction of this region, a
black line is drawn within the green regions of Figure 9, delineating the regions where the
deformation is >1 mm. In data sets V40 and V65, only minimally distorted and distorted
regions exist.
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Figure 9. Simulated distortions, presented in the parameter space. The knot grid is indicated by the grey lines. Top left: V15;
top right: V20; middle left: V18; middle right: V40; bottom: V65 [30].
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3. Results
3.1. Constructing Corresponding Surface Points

The estimation of approximating B-spline surfaces is a well-studied field of research,
especially when only the positions of the control points are estimated, as is the case in
this study. Hence, the estimation of B-spline surface is not the focus in this contribution.
Having determined approximating B-spline surfaces, they are discretised as described in
Section 2.1.3. In order to examine the influence of possible singularities arising from the
discretisation, different levels of discretisation are investigated in the following sections
(cf. Table 1). With (n + 1) · (m + 1) = 7 · 9 = 63 estimated control points, all point sets
yielded by a discretisation of nu · nv = 7 · 9 result in regular estimation problems.

Table 1. Overview of the discretisations [30].

Discretisation nu · nv nid Property of Σl̂l̂

I-V0 7 · 9 63 regular

I-V15 7 · 9 63 regular

I-V20 7 · 9 63 regular

I-V18 7 · 9 63 regular

I-V40 7 · 9 63 regular

I-V65 7 · 9 63 regular

II-V40 14 · 18 252 singular

II-V65 14 · 18 252 singular

III-V40 28 · 36 567 singular

III-V65 28 · 36 567 singular

3.2. Investigation of the Free Parameters’ Influence on the RANSAC-Based Estimation of Rigid
Body Movements

As pointed out, the results of the RANSAC method described in Section 2.1.5 strongly
depend on the free parameters to be chosen, especially the parameters τ (cf. Equation (19)),
a (cf. Equation (35)) and nmin (cf. Equation (21)).

In order to investigate the influence of these parameters, Table 2 shows the results
of the RANSAC strategy (number of iterations # i and number of point pairs in the final
consensus set nCS) under variation of the critical parameters for selected discretisations.
The results shown are averaged over 10 applications of the strategy and are separated
according to the regularity of the resulting system of equations (top: regular system of
equations, bottom: singular system of equations) [30].

Table 2. Influence of selected RANSAC parameters on the number of iterations # i and the size of
the consensus set nCS. The results are averaged over 10 applications. ’-’: no solution is found. Top:
regular system of equations, bottom: singular system of equations [30].

Discretisation τ a nmin # i nCS

I-V0 1 0 12 57 13
2 0 12 2 27

I-V40

1 0 12 - -
2 0 12 20 15
2 1 16 40 19
3 1 16 11 23

I-V65 2 0 12 549 12
3 1 16 214 17
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Table 2. Cont.

Discretisation τ a nmin # i nCS

II-V40

2 0 12 37 31
2 1 40 316 46
3 0 16 220 37
3 1 30 684 44

II-V65
2 0 12 86 20
2 1 20 810 23
3 1 16 1495 28

III-
V40

2 0 12 310 18
2 1 16 1015 32
3 0 12 - -

III-
V65

2 0 12 892 16
3 0 12 - -

The choice of τ = 1 is investigated for the undistorted data set I-V0 as well as for
data set I-V40. Both applications reveal that this choice is too pessimistic: Although a very
small consensus set can be found after relatively many iterations for I-V0, no solution is
found even after hundreds of iterations for I-V40. When using τ = 2 in combination with a
regular system of equations, the error threshold (19) is increased and, as a consequence,
the number of required iterations is clearly reduced both for data set I-V0 and I-V40. The
choice of τ = 2 also results in a sufficiently large consensus set for data set I-V65, but
requires a very large number of iterations. The further increase to τ = 3 leads to a further
reduction of the iterations and a larger consensus set. Values of τ > 3 are not considered at
this point: taking into account the 3-σ-rule (cf. [1]), it must be expected that these choices
are not realistic.

An opposite behaviour is apparent when considering the data sets causing a singular
system of equations: The increase from τ = 2 to τ = 3 leads to a significant increase of
the required iterations for almost all examined data sets. Although the pure RANSAC
procedure converges after a decreased number of iterations, the resulting consensus sets
do not pass the final global test, making further iteration steps necessary. This effect
is intensified by a reduced level of discretisation as well as by an increasing amount of
distortions. As a consequence, the use of τ = 3 does not at all result in a consensus
set for which the final global test is successful when considering data sets III-V40 and
III-V65. Furthermore, it is noticeable that—although the overall number of points increases
significantly by increasing the discretisation density—the size of the consensus set does not.

When a and, thus, the size of the neighbourhood considered in the outlier test are
increased, the minimum size nmin of the consensus set changes [30]. This behaviour is due
to the fact that the maximum number of observations that can be included in the outlier test
is influenced by the redundancy of the initial model [42]. Because of the increase of nmin,
the number of required iterations and the size of the resulting consensus set also increase.

The investigations reveal that a threshold determination with τ = 2 and τ = 3 delivers
a sufficiently large consensus set for the subsequent deformation analysis when considering
a discretisation with a 7 · 9 grid. With τ = 3 both a reduction of the required iterations and
an enlargement of the final consensus set can be achieved [30]. However, falsifications of
the consensus set due to point pairs lying in the slightly deformed area are to be expected
more frequently for τ = 3. As the subsequent global test rules out the existence of these
gross errors with a confidence probability of 1− αG, nevertheless, τ = 3 will be used in the
following investigations when considering a regular system of equations. However, the
use of τ = 3 is not expedient when considering an increased discretisation density. Hence,
τ = 2 is used in these cases.
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Finally, it is worth noting that not only the parameters of the RANSAC algorithm
influence the results of the deformation analysis, but also the choice of the significance
levels 1-α and 1-αG: the larger the significance level, the smaller the probability of type I
errors, whereas the probability of type II errors can be reduced by appropriately decreasing
the significance level. Despite this relationship, the significance levels are not considered
tuning constants in this contribution as these parameters are usually fixed or chosen w.r.t
the hazard that is monitored.

3.3. Deformation Analysis with a Regular System of Equations

Six discretisations listed in Table 1 (I-V0, . . . , I-V65) result in a regular system of
equations. These data sets are used in this section to demonstrate the general applicability
of the developed strategy.

3.3.1. Deformation Analysis for Data Set V0 (No Distortions)

Applying the RANSAC-based estimation of the rigid body movements to the undis-
torted data set V0 results in the estimated transformation parameters listed in Table 3.
Obviously, the rigid body movement can be estimated very accurately and very precisely
for data sets without an additional distortion.

When applying the localisation strategy to data set V0, the majority of point pairs is
correctly determined to be non-distorted, but also a few type I errors occur. Table 4 lists
the testing results for selected point pairs of data set V0 in dependence of the parameter a,
specifying the neighbourhood used during the testing. In addition to the test variable T and
the corresponding 99%-quantile F99, the size nCS of the consensus set and the distance d
between the respective point pair is given. Type I errors are printed bold. As shown by the
example X(1,2)

2,5 , a type I error can be eliminated by considering the direct neighbourhood
instead of the single point during the test. However, the exact opposite happens in the
case of point X(1,2)

3,4 : being detected as non-distorted in the single point test, it is incorrectly
determined as distorted when the direct neighbourhood is taken into account. Thus, the
occurrence of type I errors cannot be eliminated by defining a suitable neighbourhood.
In any case, tests with a = 1 lead to a homogenisation of the calculated test variables [30].
Remarkably, type I errors occur exclusively in the interior of the surface, whereas edge
(e.g., X(1,2)

0,1 ) and corner points (e.g., X(1,2)
6,8 ) are correctly detected to be non-distorted [30].

Table 3. Results of the estimated rigid body movement (data set V0) [30].

tx [m] 0.300 σtx [mm] 0.023

ty [m] 0.600 σty [mm] 0.015

tz [m] 0.000 σtz [mm] 0.026

ω [gon] 35.002 σω [mgon] 3.816

φ [gon] 0.008 σφ [mgon] 4.392

κ [gon] −9.997 σκ [mgon] 4.279
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Table 4. Results of the localisation for selected point pairs (data set V0). Type I errors are printed in
bold [30].

a d [mm] nCS T F99

X(1,2)
0,1

0 0.206 26 1.17 4.08
1 0.206 20 1.63 2.36

X(1,2)
2,5

0 0.180 54 4.82 3.91
1 0.180 47 1.23 1.90

X(1,2)
3,4

0 0.111 26 1.08 4.08
1 0.111 21 2.23 2.13

X(1,2)
6,8

0 0.717 62 3.48 3.89
1 0.717 56 1.62 2.30

3.3.2. Deformation Analysis of Data Sets V15 and V20 (Distortions in the Middle of
the Surface)

Table 5 summarises the final results of the estimated rigid body movements for data
set V15 when using the single point test (a = 0). The initial consensus set of nCS is extended
during the localisation procedure by 20 point pairs (nCS,ex = 45). The resulting estimated
parameters of the rigid body movement differ only minimally from those of the non-
distorted data set V0 (cf. Table 3). Noticeable differences are only visible in the standard
deviations of the estimated parameters, which are slightly larger for data set V15 than for
data set V0. The effect is amplified when the direct neighbourhood is included in the tests
(a = 1, Table 6). As the initial consensus set is validated by means of individual tests with
a = 1 before performing the localisation (cf. Section 2.1.6), the validated consensus set is
smaller than the initial consensus set for a = 0 (nCS,val = 14). A similar behaviour can be
seen in the sizes of the extended consensus sets: When single point tests are performed,
SCS,ex is clearly larger (nCS,ex = 45)—and, thus, the distorted region significantly smaller—
than when the direct neighbourhood is considered during the testing (nCS,ex = 28). This
effect is also evident from Figure 10, presenting for all point pairs the computed test values
T of the localisation procedure and the resulting test decision both for a = 0 (left) and for
a = 1 (right). However, both scenarios (a = 0 and a = 1) have in common that, regardless
of the choice of the initial SCS, the null hypothesis (23) of the global test is accepted after
having extended the consensus set.

Table 5. Results of the estimated rigid body movement after having extended SCS (data set V15,
a = 0, nCS = 25, nCS,ex = 45) [30].

tx [m] 0.300 σtx [mm] 0.026

ty [m] 0.600 σty [mm] 0.017

tz [m] 0.000 σtz [mm] 0.028

ω [gon] 35.000 σω [mgon] 4.211

φ [gon] 0.010 σφ [mgon] 4.912

κ [gon] −9.997 σκ [mgon] 4.848
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Table 6. Results of the estimated rigid body movement after having extended SCS (data set V15,
a = 1, nCS,val = 14, nCS,ex = 28) [30].

tx [m] 0.300 σtx [mm] 0.037

ty [m] 0.600 σty [mm] 0.027

tz [m] 0.000 σtz [mm] 0.045

ω [gon] 34.994 σω [mgon] 6.880

φ [gon] 0.000 σφ [mgon] 9.491

κ [gon] −10.008 σκ [mgon] 7.951

The estimated transformation parameters achieved by means of data set V20 (analo-
gously to V15 summarised in the Appendix B Tables A2 and A3) are almost identical to
those yielded by data set V15. The distortions’ dimension and/or magnitude, however,
seem to have an influence on the standard deviations of the estimated parameters, as they
are larger for data set V20 than for data set V15. Moreover, when using single point tests
for data set V20 (Table A2), an unexpected behaviour can be observed: although every
null hypothesis of the localisation procedure (26) for point pairs added to the extended
consensus set is accepted, the null hypothesis (23) of the final global test has to be rejected.
When changing the initial consensus set, it can further be observed that this behaviour does
not always occur, but seems to strongly depend on the choice of the initial consensus set.
A detailed investigation reveals that point pairs in the transition area between distorted
and non-distorted regions are the reason for this behaviour: when those point pairs are
assigned to the initial consensus set, the null hypothesis of the global test has to be rejected,
whereas it is accepted when only point pairs clearly lying in the non-distorted region are
contained in the initial consensus set. Furthermore, it can be observed that increasing the
size of the initial consensus set also leads to an increased success of the final global test.

Figure 10. Test values T of the localisation procedure for data set V15. For the circled points, the null hypothesis has to be
rejected and, hence, these points are assumed to lie in the distorted region. Left: a = 0, right: a = 1.

3.3.3. Deformation Analysis of Data Set V18 (Distortions at the Boundary of the Surface)

The results of the deformation analysis of data set V18 fully support the results of
V15 and V20: the transformation parameters can be estimated very accurately and very
precisely (cf. Appendix B Tables A4 and A5), and the distortions can also be successfully
detected. When using the direct neighbourhood in the localisation procedure, the region
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that is detected to be distorted is considerably larger than when single point tests are
performed (cf. Figure 11).

Figure 11. Test values T of the localisation procedure for data set V18. For the circled points, the null hypothesis has to be
rejected and, thus, these points are assumed to lie in the distorted region. Left: a = 0, right: a = 1.

3.3.4. Deformation Analysis of Data Sets V40 and V65 (Distortions in the Middle and at the
Boundary of the Surface)

As for the data sets considered above, the estimated parameters of the rigid body
movement (cf. Table 7 for a = 0 and Table 8 for a = 1) are very close to the nominal values
for data set V40.

Table 7. Results of the estimated rigid body movement after having extended SCS (data set V40,
a = 0, nCS = 19, nCS,ex = 28) [30].

tx [m] 0.300 σtx [mm] 0.041

ty [m] 0.600 σty [mm] 0.028

tz [m] 0.000 σtz [mm] 0.045

ω [gon] 35.007 σω [mgon] 5.785

φ [gon] -0.004 σφ [mgon] 8.032

κ [gon] −10.025 σκ [mgon] 6.860

Table 8. Results of the estimated rigid body movement after having extended SCS (data set V40,
a = 1, nCS,val = 7, nCS,ex = 7) [30].

tx [m] 0.300 σtx [mm] 0.141

ty [m] 0.600 σty [mm] 0.097

tz [m] 0.000 σtz [mm] 0.118

ω [gon] 35.014 σω [mgon] 12.867

φ [gon] -0.014 σφ [mgon] 20.105

κ [gon] −9.989 σκ [mgon] 21.812

However, the precision of the estimated parameters decreases further, both for the
single point test and when considering the direct neighbourhood during the testing. Again,
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the region detected as distorted becomes clearly larger when the direct neighbourhood is
considered than when a single point test is performed (cf. Appendix B Figure A1). As for
data set V20, a dependency of the initial consensus set’s choice on the results can also
be seen for data set V40: point pairs lying in the transition area between distorted and
non-distorted region of the surface are sometimes assigned to the distorted region and
sometimes to the non-distorted region when the points in the initial consensus set are
varied. As a consequence, the null hypothesis of the final global test has to be rejected in
the latter case. Again, this behaviour can be reduced by increasing the size of the initial
consensus set.

Due to the large amount of distortions, only investigations with a = 0 are possible for
data set V65. The further increase in the amount of distortions compared to the previously
investigated data sets results again in a rejection of the null hypothesis of the final global
test. However, due to the small non-distorted regions, it is not possible to control the success
of this data set’s deformation analysis by increasing the size of the initial consensus set.

3.4. Deformation Analysis with a Singular System of Equations

Using data set III-V40 as an example, the results of a deformation analysis with a
singular system of equations are shortly presented in this section. Figure 12 (left) shows
the results of the localisation procedure for data set III-V40 when performing a single point
test. Comparing this result to Figure A1 (left), presenting the equivalent result for I-V40,
the large amount of type II errors lying in the transition zone between the two distorted
regions is striking. However, as already described above, the number of type II errors
can be clearly reduced when the size nCS of the consensus set is increased. This effect is
clearly visible in Figure 12 (right), showing the results of the localisation procedure when
the consensus set is larger than in Figure 12 (left). Obviously, the separation of the two
distorted regions succeeds much more satisfactorily with the larger consensus set.

Figure 12. Test values T of the localisation procedure for data set III-V40 (a = 0, α = 5%). For the circled points, the null
hypothesis has to be rejected and, hence, these points are assumed to lie in the distorted region. Left: nCS = 14, right:
nCS = 25.

4. Discussion

The developed strategy to estimate rigid body movements and simultaneously detect
distorted regions is applied to a variety of synthetic data sets, the distortions of which
vary in dimension and shape. The results presented in Section 3 reveal that—for justified
selected free parameters of the algorithm—the estimated parameters of the rigid body
movement are very close to the nominal values for all investigated data sets. Naturally,
the larger the distorted region, the smaller the precision of the estimated parameters: due
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to the reduced number of point pairs in the non-distorted region, the redundancy and,
consequently, the precision of the estimated parameters decrease.

The localisation of the distorted areas on the basis of the data set V0 reveals that the
occurrence of type I errors cannot be completely avoided. However, since type I errors
usually do not occur in groups, most of them can be detected by investigating their direct
neighbourhoods: if their entire neighbourhood is located in the non-distorted region, it
can be assumed that a type I error exists. Furthermore, with a large confidence probability
1− α, the probability of the occurrence of type I errors can be regulated.

The results of the data sets that indeed represent distorted objects show that clearly
distorted regions can be successfully detected in all investigated scenarios, independently
of their location on the object. The only difficulty is to precisely distinguish the actual
distorted regions from the non-distorted ones. Particularly in the minimally distorted
regions—usually, the transition region between distorted and non-distorted regions—,
type II errors occur when performing single points tests: Point pairs lying in the minimally
distorted region are erroneously allocated to the non-distorted region. As a consequence,
the final global test (αG = 5%) fails. This failure of the final global test can be reduced by
considering the direct neighbourhood during the localisation procedure (a = 1) rather than
conducting single point tests (a = 0). Using this strategy, the minimally distorted region
can be more successfully detected.

Hence, the success of the deformation analysis depends on a suitable choice of the
free parameters: Satisfactory results are obtained with a = 1 for scenarios with relatively
large non-distorted regions (e.g., V15, V20 and V18), as is obvious when comparing the
detected distorted regions with the nominal ones. For data set V18 (results: Figure 11 (right),
nominal: Figure 9 (middle left)), the non-distorted region is almost perfectly delimited from
the distorted one. Only the discretised point Ŝ(1.00, 0.63) actually belongs to the distorted
region, but is assigned to the non-distorted region. However, as the actual distortion in this
point is almost zero, the impact of this erroneous allocation is minimal. Similar results are
achieved for data set V15 (results: Figure 10 (right), nominal: Figure 9 (top right)). Here,
even seven points are erroneously allocated to the non-distorted region, all of them lying
on the surface’s boundary. However, the points’ positions are not the reason for the wrong
allocation, but the minimal magnitude of the distortion.

The investigations using data sets V40 and V65 show that it is possible to satisfactorily
estimate rigid body movements, even when there are no non-distorted regions at all. Alter-
natively, there must be regions in which the distortions are so small that they nevertheless
are allocated to the consensus set. This behaviour can be observed particularly well by
means of data set V40 (results: Figure A1 (right), nominal: Figure 9 (middle right)): As
for data sets V18 and V15, few discretised points that are only minimally distorted are
erroneously allocated to the non-distorted region. Nevertheless, the estimated parameters
of the rigid body movement are very close to the nominal parameters. However, the larger
the distorted regions are, the more emphasis has to be placed on the definition of the initial
consensus set. The larger this consensus set is, the more reliably type II errors can be
avoided, as the initial estimation of the rigid body movement succeeds more accurately.

Furthermore, the results of data set V40 show that also for data sets with large dis-
torted regions, more accurate localisation results are achieved when considering the direct
neighbourhood during the localisation (a = 1) than when conducting single point tests
(a = 0). However, for data sets in which the distorted regions occupy the majority of the
surface (data set V65), a localisation with a = 1 is no longer possible, and single point tests
are the only option. In this case, the behaviour of single point tests that points that lie in the
minimally distorted region are increasingly detected as non-distorted must be accepted. To
take advantage of the localisation using a = 1, it has to be ensured during data acquisition
that a sufficiently large non-distorted area of the objects is captured.

Singularities arising from a decreased discretisation level can be successfully handled
by using the pseudoinverse in all subsequent analysis steps. This approach allows to signifi-
cantly increase the resolution of the results and, thus, to detect even small-scale distortions.
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5. Conclusions

In this contribution, a strategy is introduced that allows for the estimation of rigid body
movements of an object and for the simultaneous detection of distorted regions based on
laser scanning data. The starting points of the developed strategy are best-fitting B-spline
surfaces that approximate the point clouds acquired in at least two measuring epochs.
Using the surface parameters u and v, point correspondences on these B-spline surfaces
are defined. Based on these point correspondences, rigid body movements between the
surfaces are estimated. When the rigid body movements are superimposed by a local
distortion, the estimated parameters are falsified. In order to detect these gross errors
w.r.t to the rigid body movement, a robust RANSAC-based strategy to estimate rigid body
movements is implemented. The result of this step is an initial solution for the rigid body
movement as well as the consensus set SCS that is a subset of the surfaces’ non-distorted
region. Hence, the consensus set is extended in a second step using statistical hypotheses
tests within a forward strategy: Point pairs that do not significantly change the estimated
transformation parameters are also allocated to the non-distorted region. With the final
non-distorted region, the parameters of the rigid body movement are re-estimated.

Developed as an S2S comparison, the measurement noise and the amount of data
is reduced to a large extent during the deformation analysis. The results obtained are
approved by means of statistical tests, allowing for the significance assessment of the
determined deformations.

The developed strategy is applied to a variety of simulated data sets, the local dis-
tortions of which vary in shape, extent and magnitude. For all investigated data sets,
the parameters of the rigid body movement can be estimated very accurately and very
precisely. The detection of the distorted regions succeeds in all data sets when the local
neighbourhood is considered during the localisation procedure. When single point tests
are conducted, type II errors occur as points in the transition area are erroneously allocated
to the non-distorted region.

Point pairs lying in the distorted region can then be directly used to determine dis-
placement vectors. Alternatively, the parameter grids can be investigated within a strain
analysis, resulting in an areal deformation statement rather than in a point-wise one. This
strain analysis based on the B-spline parameter grid is the content of future investigations,
just like the application of the developed strategy to measured data sets. In contrast to the
study presented here, in which the stochastic model of the data is known due to the use of
simulated data, the determination of a realistic stochastic model of the data is of superior
importance in this future research.
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Appendix A. Supplementary Information Regarding the Data Sets

Table A1. Simulated data sets, the maximum distortions dmax of which are generated by a shift dP

of one ore more control points. The denotation of the data sets contains the percentage of distortion
εd [30].

Name Number of Shifted Pij dP [mm] εd [%] dmax [mm]

V0 0 0.0 0 0.0

V15 2 6.0 15 3.9

V18 5 12.0 18 8.1

V20 2 12.0 21 7.8

V40 7 12.0 39 8.1

V65 12 12.0 66 8.1

Appendix B. Supplementary Results

Table A2. Results of the estimated rigid body movement after having extended SCS (data set V20,
a = 0, nCS = 21, nCS,ex = 48) [30].

tx [m] 0.300 σtx [mm] 0.031

ty [m] 0.600 σty [mm] 0.021

tz [m] 0.000 σtz [mm] 0.034

ω [gon] 35.002 σω [mgon] 5.022

φ [gon] 0.020 σφ [mgon] 5.873

κ [gon] −9.999 σκ [mgon] 5.887

Table A3. Results of the estimated rigid body movement after having extended SCS (data set V20,
a = 1, nCS,val = 11, nCS,ex = 20) [30].

tx [m] 0.300 σtx [mm] 0.043

ty [m] 0.600 σty [mm] 0.035

tz [m] 0.000 σtz [mm] 0.072

ω [gon] 35.002 σω [mgon] 8.789

φ [gon] 0.018 σφ [mgon] 17.087

κ [gon] −10.008 σκ [mgon] 10.616

Table A4. Results of the estimated rigid body movement after having extended SCS (data set V18,
a = 0, nCS = 23, nCS,ex = 47) [30].

tx [m] 0.300 σtx [mm] 0.031

ty [m] 0.600 σty [mm] 0.019

tz [m] 0.000 σtz [mm] 0.038

ω [gon] 34.995 σω [mgon] 5.206

φ [gon] 0.011 σφ [mgon] 5.986

κ [gon] −10.000 σκ [mgon] 4.973
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Table A5. Results of the estimated rigid body movement after having extended SCS (data set V18,
a = 1, nCS,val = 17, nCS,ex = 34) [30].

tx [m] 0.300 σtx [mm] 0.038

ty [m] 0.600 σty [mm] 0.024

tz [m] 0.000 σtz [mm] 0.056

ω [gon] 34.997 σω [mgon] 7.309

φ [gon] 0.094 σφ [mgon] 7.898

κ [gon] −10.003 σκ [mgon] 5.586

Figure A1. Test values T of the localisation procedure for data set V40. For the circled points, the null hypothesis has to be
rejected and, thus, these points are assumed to lie in the distorted region. Left: a = 0, right: a = 1.

Figure A2. Test values T of the localisation procedure for data set V65 (a = 0). For the circled points, the null hypothesis
has to be rejected and, thus, these points are assumed to lie in the distorted region. Left: α = 1%, right: α = 5%.
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